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Grazing-incidence X-ray diffraction (GID) is a well known technique for the

characterization of crystal surfaces. A theoretical study has been performed of

the sensitivity of GID to the structure of a crystal surface and distorted

nanometre-thin surface layers. To simulate GID from crystals that have a

complex subsurface structure, a matrix formalism of the dynamical diffraction

theory has been applied. It has been found that the azimuthal rocking curves of a

crystal that has a distorted subsurface, measured over a wide angular range,

show asymmetric thickness oscillations with two distinguishable sets of

frequencies: one corresponding to the diffraction in the single-crystal subsurface

layer and the second corresponding to the diffraction in the single-crystal

substrate. Therefore, azimuthal rocking curves allow characterization of the

subsurface structure of a single crystal. Furthermore, thickness oscillations

induced by evanescent diffraction modulate the specular reflection intensity,

showing high-intensity modulations. This will potentially allow implementation

of subsurface crystal characterization using, for instance, a laboratory-scale

X-ray diffractometer.

1. Introduction

The motivation for the characterization of crystal surfaces can

be found in, for example, the development of topological

insulators (Ngabonziza et al., 2015) and spin-injection struc-

tures (Aronzon et al., 2008) in which their properties depend

on the crystal subsurface structure. However, the character-

ization of this crystal subsurface is challenging because it

typically requires high-brilliance synchrotron radiation

(Robinson, 1986) that is generally not as readily available as

radiation from compact laboratory-scale X-ray source setups.

Theoretical study of the diffraction of evanescent X-rays

and its relation to the dispersion surface (Afanas’ev &

Melkonyan, 1983) has shown that diffraction in grazing-inci-

dence geometry is sensitive to the surface structure of the

crystals. In particular, grazing incidence ensures a limited

penetration depth, and thus the beam mainly irradiates the

surface and subsurface of the crystal. Near-surface horizon-

tally propagating X-rays diffract from crystal planes perpen-

dicular to the surface if the angle between the X-ray beam and

the crystal planes satisfies the Bragg condition. This effect has

been demonstrated experimentally (Cowan et al., 1986).

However, the intensity of the diffracted beam is very low in

grazing-incidence X-ray diffraction (GID), necessitating

synchrotron-based experiments. Yet the specular reflection

intensity, at grazing incidence, is much higher than that of

diffraction. It has been shown by Bushuev & Oreshko (2001),

Bushuev et al. (2001) that specular reflection intensity is
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modulated by the Bragg peak in GID. The intensity of the

specular reflection in the Bragg condition for GID gives

information about the structure of the subsurface layer,

namely, thickness, amorphization and deformation [for

example with use of a static factor (Afanasev et al., 1977)].

However, the analysis discussed above is limited to the

Bragg condition. Yet information about the depth profile of

the lateral lattice parameter and the relative lattice orientation

is within a range that is far from the GID Bragg condition. In

order to obtain the structural parameters of ultra-thin crystal

subsurface layers, we here propose to extend the analysed

angular range further away from the Bragg condition. In

numeric simulations we observed that a GID beam far from

the Bragg condition also modulates a specular reflection

intensity.

In this article, we present a theoretical study of reflection

intensity modulation involving the use of the matrix formalism

of the dynamical diffraction theory (Stepanov & Kohler,

1994). A minor difference in structures of the bulk and the

surface of the crystal significantly affects the GID intensity.

The phase of the wave diffracted from the surface is slightly

different from the phase of the wave diffracted from the bulk

crystal substrate. Both these waves interfere, in a similar way

to an acoustic beat, creating thickness oscillations with two

distinguishable sets of frequencies on the rocking curves far

from the Bragg condition.

We have derived approximate expressions for the disper-

sion surface in order to understand how the parameters of the

structure affect specular reflection intensity modulation. In

addition to thickness, deformation and amorphization, one

can analyse the depth profiles of the lateral lattice parameter

and the lattice orientation. Finally, a wider angular range

allows us to increase the precision of estimation of these

parameters compared with estimates in previous studies.

To study the feasibility of such measurement using low-

intensity sources, we have conducted numerical simulation of

specular reflection intensity while assuming typical parameters

for a laboratory-scale X-ray instrument. Based on the results

of this simulation, we conclude that it is feasible to take such a

measurement using a laboratory X-ray source.

2. Theoretical background: dynamical theory of
diffraction

In this section, we review the matrix formalism (Stepanov et

al., 1998; Caticha, 1993) of the dynamical diffraction theory

(Pinsker, 1978) that we implement for the numerical simula-

tions in x4. The problem of X-ray diffraction is approximated

by the scalar wave equation (Pietsch et al., 2013):

r
2E� ½1þ �ðrÞ�q2

0E ¼ 0; ð1Þ

where E is the scalar amplitude of the polarized electric wave

and q0 ¼ 2�=� is the wavenumber of the wave in vacuum with

wavelength �. This equation was derived by assuming that

diffraction is an elastic scattering process and the magnetic

permittivity is equal to unity � ¼ 1. The crystal structure is

represented with a dielectric susceptibility �ðrÞ as a function of

coordinate r.

In the GID geometry (see Fig. 1), one has to consider

multiple scattering processes. Therefore, the dynamical theory

of diffraction is used for GID. In that theory the solution of the

wave equation is in the form of the Bloch wave (Holý &

Fewster, 2003). The matrix formalism of the dynamical

diffraction theory (Stepanov et al., 1998) considers two main

scattering processes: reflection and diffraction. Within such a

two-beam approximation, the wavefield has the form

EðrÞ ¼ E0 expðik0 � rÞ þ Eh expðikh � rÞ; ð2Þ

where k0 and kh ¼ k0 þ h are the wavevectors and E0 and Eh

are Fourier components of the electric field corresponding to

the transmitted and diffracted waves, respectively, and

jhj ¼ 2�=a is the reciprocal-lattice vector, perpendicular to

the lattice planes with spacing a. The dielectric susceptibility �
describes the optical properties of the medium (Born & Wolf,

2000). Following the two-beam approximation, in a medium

with a periodical local structure such as in a crystal, one can

represent the susceptibility as a Fourier series,

�ðrÞ ¼ �0 þ �h expð�ih � rÞ; ð3Þ

where the �0 component represents the amorphous properties

of the medium and �h defines the local crystal structure. The

reciprocal-lattice vector h determines the family of lattice

planes on which diffraction occurs.

Following the approximations in equations (2) and (3), one

can derive the dispersion equation for an s-polarized beam:

ðk2
0 � k2Þðk2

h � k2Þ ¼ q4
0�h��h; ð4Þ

where k ¼ ð1þ �0Þ
1=2

q0 and is the wavenumber of the trans-

mitted wave in the case of an amorphous medium. Wave-

numbers k0 and kh are associated with transmitted and

diffracted waves in a crystal medium and differ from k due to

the dispersion in the crystal. An explicit analytical solution of

the dispersion equation in GID geometry (close to the Laue–

Bragg transition point) is given by Kaganer et al. (1982). For

simplicity, here we consider the exact vector form of the

dispersion equation and solve it numerically.
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Figure 1
Geometry of the GID azimuthal rocking-curve measurement.



The tangential component of a wavevector is constant in all

media as a result of translational invariance. The difference

between the vertical components of the wavevectors is

expressed as the aberration coefficient �; these two states can

then be formulated as

k0 ¼ q0 þ q0�ez; kh ¼ q0 þ q0�ez þ h; ð5Þ

where ez is the unit vector along the z axis normal to the

surface of the crystal. Applying equation (5), the dispersion

equation (4) becomes a polynomial equation of the fourth

order with respect to �. Solutions of the dispersion equation

(4) represent a geometrical surface – a dispersion surface. The

Laue diffraction condition for vectors k0 and kh is satisfied at

the intersection of the dispersion surfaces. Therefore, the

shape of the dispersion surface describes the scattering

process. We describe this in detail in Appendix A.

To calculate the amplitudes Es and Eh of specular reflection

and diffraction waves, respectively, for a layered sample, one

needs to consider the continuity conditions for the electric

field (Born & Wolf, 2000) in a stratified medium. A semi-

infinite vacuum is separated from a semi-infinite crystal

substrate by a stack of N � 1 layers that have parallel inter-

faces. The vacuum medium has an index i ¼ 0 and the crystal

is enumerated as i ¼ N. Each ith layer has a thickness di. Then,

applying continuity conditions to each interface one can

derive

v0 ¼ M � vN ð6Þ

where v0 ¼ ð1; 0;Es;EhÞ
T and vN ¼ ðD1;D2; 0; 0ÞT are vectors

of values of the amplitudes in the vacuum and in the substrate,

respectively, M is the characteristic matrix of the sample:

M ¼ M�1
0 M1T1M�1

1 M2 . . . TN�1M�1
N�1MN; ð7Þ

where Ti ¼ �jk expði�ðjÞi diÞ is a propagation matrix of the ith

layer, �i ¼ k
ðjÞ
0i;z is the jth solution of the dispersion equation in

the ith layer and Mi is the characteristic matrix of the ith layer.

In the case of a mono-crystalline layer its characteristic matrix

has the form

Mi ¼

1 1 1 1

�ð1Þi �ð2Þi �ð3Þi �ð4Þi

c
ð1Þ
i c

ð2Þ
i c

ð3Þ
i c

ð4Þ
i

u
ð1Þ
i u

ð2Þ
i u

ð3Þ
i u

ð4Þ
i

2
664

3
775; i 6¼ 0: ð8Þ

Here c
ðjÞ
i ¼ ðjq0 þ q0�

ðjÞ
i ezj

2
� k2

i Þ=q2
0��h;i and u

ðjÞ
i ¼ c

ðjÞ
i �
ðjÞ
i . In

the special case of the vacuum medium, the characteristic

matrix has the form

M0 ¼

1 0 1 0

q0;z 0 �q0;z 0

0 1 0 1

0 �qh;z 0 qh;z

2
664

3
775: ð9Þ

Element qh;z is the vertical component of the wavevector of

the diffracted wave in the vacuum medium. Due to the

translational invariance, the wavenumbers of the diffracted

and incident waves are the same: q0 ¼ qh. Therefore, one can

derive

q2
h;z ¼ q2

0 � ðq0 þ hÞ2k: ð10Þ

Finally, solving equation (6) with respect to Es and Eh allows

calculation of the amplitudes of the specular reflection and

diffraction waves:

Es ¼
M31M22 �M32M21

M11M22 �M12M21

; Eh ¼
M41M22 �M42M21

M11M22 �M12M21

: ð11Þ

3. Geometry of the diffraction of evanescent X-rays

In general, the measurement of GID rocking curves is carried

out through an azimuthal rotation of the sample (rotation

around the normal to the surface). We denote the angle

between vector h and the xy plane as  . Fig. 1 shows a typical

measurement geometry for GID, where for clarity of the

drawing the lattice planes are chosen to be perfectly perpen-

dicular to the crystal surface ð ¼ 0Þ, although the equations

in x2 allow any orientation of the lattice planes. For  ¼ 0 the

reciprocal-lattice vector h lies in the surface plane. The coor-

dinate system is chosen such that the tangential projection of

the incident wavevector lies in the plane yz and the xy plane is

parallel to the surface. Thereby, the orientation of the crystal

planes is described by the position of the vector h, i.e. by

azimuthal angle ’.

The Bragg condition in this geometry can be formulated as

q0 � h ¼ �q0h sin 	B, where 	B is the Bragg angle. Since lattice

planes are chosen to be perpendicular to the surface, the

diffracted wave propagates towards the bottom of the crystal:

Re khz < 0. If the grazing angle of incidence is slightly above

the critical angle 	0 2 ð	c; 2	cÞ then the diffracted wave kh also

propagates at an angle nearly parallel to the surface and

reflects from the surface (Afanas’ev & Melkonyan, 1983;

Cowan, 1985).

The nature of that evanescent diffracted wave with wave-

vector qh is counter-intuitive. On the one hand, that wave has a

diffraction nature, but on the other hand it clearly does not

satisfy the Laue diffraction condition qh � q0 6¼ h, since

qhz > 0. However, equation (10) holds, and that yields the

interesting result that a small change of the azimuthal angle ’
will lead to a much larger change in the diffraction exit angle

	h. The ratio can be two to three orders of magnitude,

depending on wavelength and lattice spacing.

The fact that 	h changes during azimuthal rotation is not the

only consequence of equation (10). One can notice that in the

case of q2
0 < ðq0 þ hÞ2k equation (10) has no solution in real

numbers. In that case, by analogy with the effect of total

external reflection, the evanescent diffracted wave is extinct.

The point q2
0 ¼ ðq0 þ hÞ2k is termed the Laue point. By analogy

with the situation of a critical angle, the Laue point is the

azimuthal angle position below which a GID beam cannot exit

the crystal.
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4. Diffraction of an evanescent wave from a distorted
subsurface layer

In this section, we discuss predictions of the dynamical theory

for the diffraction of a GID wave on a distorted crystal

subsurface. The model sample is a silicon single crystal

incorporating a thin ‘distorted’ single-crystalline Si layer with

a lattice mismatch on top. The layer and substrate consist of

the same material, and the lateral lattice mismatch of 0.1% is

not sufficient to change the optical density; hence there is no

optical contrast between the subsurface layer and the bulk of

the single crystal. In this example, the thickness of the layer is

d = 9 nm.

Consider the ideal case in which the Laue point is close to

the Bragg condition. In that case, the crystal planes are

perpendicular to the surface of the sample. As described in x3,

in this case the Bragg condition is satisfied for the diffracted

wave propagating towards the bottom of the crystal but due to

the small angle of propagation that beam partially reflects and

exits the crystal through the surface. That process is due to the

diffraction that occurs in the lateral direction, and the phase

rapidly changes in the vertical direction due to constraints on

the wavevector in a vacuum medium [equation (10)]. That

makes this scattering process sensitive to the lateral crystal

structure with respect to its vertical displacement from the

surface of the sample.

Although the model of the sample does not have any optical

contrast, there are actually strong thickness oscillations (see

Fig. 2a). Three details are relevant about these oscillations.

First, the frequency of the oscillations varies with the azimu-

thal angle ’. Second, the thickness oscillations have a duplet

structure: an oscillation consists of two peaks. Third, there are

no oscillations for azimuthal angles bellow the Laue point. The

Laue point for the layer is shown in Fig. 2 as a vertical black

dashed line.

To address these features, we refer to the cross section of

the dispersion surface. The curves in Fig. 2(b) show the

dependency of the vertical component of the wavevectors with

respect to the azimuthal position. Essentially, these wave-

vectors describe the propagation angles of the waves in the

sample. There are two branches of the dispersion surface: the

orange curves are due to the waves in the substrate and the

blue curves are due to the waves in the distorted layer.

During azimuthal rotation of the sample, the angles of

propagation of the transmitted and reflected waves are

constant. Therefore, the transmitted and reflected waves are

represented by horizontal lines. Note that the dispersion

curves of the transmitted and reflected waves in the layer and

substrate coincide. That is due to the absence of any optical

contrast. The wave reflected on the interface between the

layer and substrate (black dashed line) is negligible due to the

small angle of incidence and the absence of optical contrast.

For this reason, that wave was neglected in the three-roots

approach (see Appendix B).

The dispersion curves of the diffracted waves diverge in the

range above the Laue point, because the propagation angle of

the diffracted wave changes with azimuthal angle, as discussed

in x3. That is the reason why the frequency of the thickness

oscillations shifts with azimuthal angle. The difference

between orange and blue branches (see Fig. 2b) yields the

duplet shape of the oscillations in Fig. 2(a). The physical

explanation for this phenomenon is the fact that there are two

evanescent waves propagating through the layer representing

diffraction in both the layer and in the substrate.

Now consider approximated analytic solutions of the

dispersion equation. To derive these we will approximate the

dispersion equation by a continuity condition, expressed as

equation (10). Following that approach, solutions for the

specular waves simply converge to translational invariance:

k0;z

q0

¼ �ð�0 þ sin2 	0Þ
1=2: ð12Þ

Assuming that jqhj ’ jkhj for diffracted waves we derive

k2
h;z / sin2 	0 � 


2
B cos2  � 2
B�; ð13Þ

where � ¼ cos cos 	0 sin ’ and 
B ¼ 2 sin 	B ¼ �=a for

lattice constant a. The approximation jqhj ’ jkhj is due to the

fact that in an in-plane geometry the asymmetry of the

diffraction is significantly higher than the refraction. Yet the

refraction can be taken into account by a factor 1þ �0 in the
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Figure 2
Simulation of a GID azimuthal rocking curve. Model: incident angle 	0 =
0.5�, wavelength � = 0.154 nm. Si mono-crystal, surface orientation (001),
scattering crystal planes series {220}, no miscut  = 0�; with 9 nm distorted
crystalline Si layer with lateral lattice constant difference
1� acrystal=alayer ¼ 0:1%. (a) GID azimuthal rocking curve. (b) Disper-
sion surface cross section. Orange curves – dispersion in the substrate,
blue curves – dispersion in the subsurface layer, blue dashed curve –
neglected root of dispersion equation.



left-hand term of equation (10). The Laue point then satisfies

the equality

sin2 	0 � 

2
B cos2  ¼ 2
B�: ð14Þ

Now, consider the displacement related to the miscut angle  :

kh;z

q0

’ �ðsin2 	0 � 

2
B cos2  � 2
B�Þ

1=2
� 
B sin : ð15Þ

Thus, equations (15) and (12) are approximated solutions of

the dispersion equation. The comparison of the approximated

and exact solution is shown in Fig. 3. Therefore the diffraction

is the result of coupled oscillations of

these two evanescent waves.

This approximate solution can be

used for easy analysis of the frequencies

of the thickness oscillations, omitting

complex numerical simulations. Finally,

below the Laue point the dispersion

curves converge to zero and remain

constant. Within that range, diffracted

waves in the layer are extinct and there

is no interference, and thus no oscilla-

tions.

Now, by analogy with the study of

amorphous layers with specular reflec-

tion intensity (Bushuev & Oreshko,

2003), let us consider how diffraction of

the evanescent wave in the distorted

layer affects the specular reflection. To

observe modulation of the specular

reflection intensity by GID, a small

miscut of  = 1� is considered in the

model of the sample. Fig. 4 shows a

simulation of the specular reflection and

evanescent diffraction for various

thicknesses of the top layer, as a func-

tion of the azimuthal angle around the

substrate Bragg peak.

For the simulations shown in Fig. 4(a) there is no top layer

present, and one can observe that the intensity of the specular

reflection intensity is modulated by the diffraction from the

substrate Bragg peak alone. With a thickness d = 2 nm of the

top layer (Fig. 4b), the diffracted intensity of the Bragg peak

from the substrate decreases drastically and one can note how

thickness oscillations are appearing. In Fig. 4(c), one can see

the shape of the Bragg peak from a distorted crystal layer at a

thickness of d = 5 nm. At this thickness, both diffraction from

the subsurface and diffraction from the substrate simulta-

neously modulate the specular reflection. At a 12 nm layer,
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Figure 3
Exact (solid lines) and approximated (dashed lines) solutions of the dispersion equation. Model: incident angle 	0 = 3�, wavelength � = 0.154 nm. Single
Si crystal, surface orientation (001), scattering crystal planes series {220}, miscut angle  = 2�. (a) Large scale, (b) near the Laue point, (c) close to the
Bragg condition.

Figure 4
Simulations of the specular reflection intensity and GID azimuthal rocking curve. Model: Si mono-
crystal with various thicknesses of the distorted layer: (a) d = 0 nm, (b) d = 2 nm, (c) d = 5 nm and
(d) d = 12 nm. Incident angle 	0 = 0.5�, wavelength � = 0.154 nm. Single Si crystal, surface
orientation (001), scattering crystal planes series {220}, miscut angle  = 2�.



there is no peak of diffraction from the substrate but there is

still a modulation to the specular reflection. That can be

explained by the fact that there is no diffracted wave propa-

gating towards the surface, but there is still a transmitted

diffracted wave in the substrate propagating towards the

bottom of the crystal.

Notice that for the case of a thick subsurface layer shown in

Fig. 4(d), there is almost no Bragg peak from the substrate

visible in the GID rocking curve. However, modulation of the

specular reflection intensity by the Bragg peak from the

substrate is still observed. This can be used in an experiment as

a reference point in order to estimate the difference in lattice

constants between the distorted layer and the substrate. The

approximated solution [equation (15)] of the dispersion

equation depends on the lattice constant 
B ¼ �=a and the

miscut angle  . The form of this equation implies that it would

be possible to distinguish the influence of the lattice constant

and the miscut angle on the frequencies and the shape of

oscillations during the experiment.

Finally, in order to check the feasibility of specular reflec-

tion intensity modulation, we conducted a numerical simula-

tion. The results of this numerical simulation are shown in

Fig. 5. Here we consider the typical parameters of a laboratory

X-ray instrument. For higher resolutions, compared with a

conventional Cu K-line X-ray tube, we consider an X-ray tube

with a lower photon energy: Co K-line. We have considered

the Ge {220} monochromator. The spectral width of the Ge

{220} peak for the Co K-line is �E = 1.03 eV. For the simula-

tion, we consider the worst parameters for which features of

the ideal curve are still resolvable: photon energy dispersion

�E = 1.1 eV, angular divergence in the azimuthal direction �’ =

15 arcsec, direct beam intensity considered to be low I =

104 c.p.s. due to a strong collimation of the beam. Measure-

ment uncertainties were estimated considering that measure-

ment took 90 min. Thus we conclude specular reflection

intensity modulation measurement is feasible on a laboratory-

scale X-ray diffractometer

As a logical next step, experimental evaluation of these new

predictions of the dynamical theory would be necessary. In

particular, the simplicity of the specular geometry and the high

intensity of the reflected beam provide an opportunity to

implement the technique on a relatively (compared with

synchrotron) low-power laboratory-based X-ray diffract-

ometer, as distinct from a synchrotron-based system.

5. Conclusions

Implementation of the matrix formalism of the dynamical

X-ray diffraction theory allowed us to describe theoretically a

novel scattering process for single crystals that have defects in

the crystal structure of the subsurface layers, that were

introduced by the interaction with the atmosphere. GID waves

induced in the subsurface interface and on the surface yield

strongly asymmetric azimuthal curves. That asymmetry

allowed us to estimate the difference between lattice constants

of the subsurface and crystal substrate, the thickness of the

distorted subsurface structure, the difference in miscut

between the subsurface and substrate, and the optical contrast.

Based on the obtained approximate solutions of the dispersion

equation we conclude that these parameters are uncorrelated.

It was also shown by means of simulations that GID modu-

lates the specular reflection which potentially allows one to

take measurements using laboratory-based instruments,

making the technique widely accessible to researchers.

APPENDIX A
Numerical simulation of the dispersion surface

The roots � of equation (4) are aberration coefficients. They

determine the deviations from the vertical components of the

wavevectors. Tangential components are known due to

translational invariance. So, for a given set of � calculated for

every possible incident wavevector q0 and using equation (5),

one can calculate the dispersion surface. The physical inter-

pretation of the roots of the dispersion equation is that each of

them is assigned to a component of a Bloch wave as expressed

in equation (2). Thus, one can distinguish the role of a parti-

cular component in the scattering process.

For simplicity, we first consider the trivial case of conven-

tional symmetric X-ray diffraction. The cross section of the

dispersion surface for that case is shown in Fig. 6. The axes of

Fig. 6 represent the vertical and the tangential components of

the wavevectors. The surface of the crystal is shown schema-

tically in Fig. 6(a) as a solid black line at the centre. In the case

of symmetric X-ray diffraction, the lattice planes are parallel

to the surface (Fig. 6a). It is similar to an Ewald construction,

considering two spheres of k ¼ ð1þ �0Þ
1=2

q0 radius. The

distance between the centres of the spheres is the length of the

reciprocal-lattice vector h. The sphere that has its centre in

(kz; kk) = (0, 0) (blue circle) represents the set of k0 vectors

while the other sphere (orange circle) represents the set of kh
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Figure 5
Specular reflection intensity. Comparison between ideal curve and
measurement simulation. Instrument model parameters: Ge {220}
monochromator, wavelength (Co K�-line) � = 0.18 nm, photon energy
dispersion �E = 1.1 eV, incidence angle 	0 = 0.7�, angular divergence in
the azimuthal direction �’ = 15 arcsec, direct beam intensity I = 104 c.p.s.,
measurement time 85 min. Sample model: single Si crystal, surface
orientation (001), scattering crystal planes series {220}, miscut angle  =
1�, with distorted d = 7 nm-thick layer.



vectors. The point of intersection corresponds to the Bragg

angle.

Due to dispersion, absolute values of the incident and

diffracted waves are not restricted to being the same. Indeed,

close to the Bragg angle one can see deviations of the

dispersion surface from a spherical shape; see Fig. 6(b). This is

qualitatively explained by the formation of a standing wave

under the Bragg conditions due to the coherence between the

incident and the scattered waves. Fig. 6(b) shows that in the

case of symmetrical diffraction there are two roots of the

dispersion equation involved.

In the case in which the lattice planes are not parallel to the

surface of the crystal, the process of X-ray diffraction is

asymmetric. The angle of the reflected beam and the exit angle

of the diffracted beam are no longer equal. The shape of the

dispersion surface is different in that case (see Fig. 7). It can be

observed that the Ewald sphere is rotated with reciprocal-

lattice vector h at an angle  . In this case, part of the blue

sphere (corresponding to k0) to the right from the dashed line

in Fig. 7(a) is not covered above with the orange sphere

(corresponding to kh). This means that an incident beam

unnecessarily spawns a diffracted beam exiting the crystal.

The vertical dashed line represents the Laue point. At that

point, the configuration of the scattering process is changing.

The diffracted beam propagates towards the bottom of the

crystal instead of exiting through the surface. The effect of the

Bragg–Laue transition on in-plane diffraction curves is

considered in x3.

The shape of the dispersion surface close to the Bragg

condition shows that three roots of the dispersion equation are

involved in the diffraction (see Fig. 7b). The fourth root is far

on the other side of the Ewald sphere. In other words, the

wave represented by this root is not coherent with the other

waves; therefore, its contribution to the diffraction is negli-

gible. We assume that in any geometry at least one wave is not

coherent with the others. Following that assumption, we

modify the matrix formalism to accommodate only three roots

of the dispersion equation, as discussed in Appendix B.

APPENDIX B
Comparison of simulations that use three-root and
four-root matrices

The propagation matrix T may become poorly conditioned

due to exponents in its elements. Reducing the number of

elements in the matrix T can significantly improve the calcu-

lation stability. Therefore, following our assumption (see

Appendix A) that only three roots of the dispersion [equation

(4)] are relevant, one can reduce the matrix, neglecting the

root of the incoherent wave:

Mi ¼

1 1 1

�ð1Þi �ð2Þi �ð3Þi

c
ð1Þ
i c

ð2Þ
i c

ð3Þ
i

u
ð1Þ
i u

ð2Þ
i u

ð3Þ
i

2
664

3
775; i 6¼ 0: ð16Þ

For given atomic coordinates in a unit cell and atomic scat-

tering factors for each atom in that unit cell, one can calculate

the components of the susceptibility:

�g ¼ �
rel�

2

�V

X
s

fs expð�ig � rsÞ; g ¼ 0; h;�h; ð17Þ

where V is the unit-cell volume, rel the classical electron radius,

rs the coordinates of an atom in a unit cell and fs the atomic

scattering factor (Henke et al., 1993). Summation is performed

over all atoms s in a unit cell of the lattice.

Next, the dispersion equation [equation (4)] is solved and

each root is associated with an amplitude in an array from one

to four. The first root should correspond to a transmitted

wave, the second to a diffracted wave towards the bottom of a

crystal, the third to a specular reflection wave and the fourth

to a diffracted wave towards the surface. Next, roots of the

incoherent wave are neglected and then via equations (7) and

(11) amplitudes Es and Eh are calculated. Finally, the inten-

sities are calculated:

Is ¼ jEsj
2; Ih ¼ jEhj

2 qh;z

q0;z

����
����: ð18Þ

We tested these approaches with three and four roots for

simulation of symmetric diffraction and reflection. The

research papers
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Figure 7
The dispersion surface cross section of asymmetrical diffraction in co-
planar geometry. Scattering planes: Si {111} lattice planes family. Surface
orientation (111). (a) Large scale. (b) Small scale near the Bragg
condition.

Figure 6
The dispersion surface cross section of symmetrical diffraction in co-
planar geometry. Scattering planes: Si {111} lattice planes family. Surface
orientation (111). (a) Large scale. (b) Small scale near the Bragg
condition.



discrepancies concerned the levels of machine epsilon. For the

GID geometry, discrepancies were highest at a level of

�I ’ 10�5. However, such discrepancies are irrelevant for

practical applications. Thus, three-root approximation was

used for all numerical examples described in this article.
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