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Science, medicine and engineering demand efficient information processing. It is a long-

standing goal to use quantum mechanics to significantly improve such computations1. The

processing routinely involves examining data as a function of complementary variables, e.g.,

time and frequency. This is done by the Fourier transform approximations which accu-

rately compute inputs of 2n samples in O(n2n) steps2. In the quantum domain, an analogous

process exists, namely a Fourier transform of quantum amplitudes3, which requires expo-

nentially fewer O(n logn) quantum gates. Here, we report a quantum fractional Kravchuk-

Fourier transform, a related process suited to finite string processing24. Unlike previous

demonstrations5, 6, our architecture involves only one gate, resulting in constant-time pro-

cessing of quantum information. The gate exploits a generalized Hong–Ou–Mandel effect7,

the basis for quantum-photonic information applications8. We perform a proof-of-concept

experiment by creation of large photon number states, interfering them on a beam splitter

and using photon-counting detection. Existing quantum technologies may scale it up towards

diverse applications.

∗Contribution of NIST, an agency of the U.S. government, not subject to copyright.
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Signal extraction, compression and analysis in diagnostics, astronomy, chemistry and digital

broadcasting often builds on effective implementation of the discrete Fourier transform (DFT)2.

It converts data, a function of e.g. frequency, into their constituent temporal or spatial parts. The

DFT is an efficient approximation to the Fourier transform (FT). The signal (x0, x1, . . . , xS) is

taken to be samples of one period of a continuous function, and is turned into a new sequence

(X0, X1, . . . , XS) where

Xk =
1√
S + 1

S∑

l=0

e
−i2π

kl
S+1 · xl, k = 0, . . . , S. (1)

The DFT does not, however, reproduce all essential features of the FT. In some cases, a

transform which is a fractional power of the FT, the α-fractional FT where 0 ≤ α ≤ 1, yields

advantages9. For α = 0 this transform is the identity, while for α = 1 this is the FT. The α-

fractional DFT defined as the α power of Eq. (1) does not correspond to the α-fractional FT9.

The DFT is powerful due to the fast Fourier transform algorithm (FFT)2. Using an FFT low-

ers the number of operations from O(22n) to O(n2n) which nevertheless remains a bottleneck in

signal processing10. The FFT employs a “divide and conquer” method to recursively split Eq. (1)

into 2n sums which can be processed quickly, and therefore is applicable to signals of period 2n.

Notably, the minimal number of operations required to implement the DFT is unknown11. The

quantum Fourier transform (QFT), the cornerstone of quantum algorithms12, 13, enables implemen-

tation of the DFT on quantum amplitudes with O(n logn) operations by processing n qubits (n

quantum bits encode 2n amplitudes)14.

In many applications, e.g. bioimaging, the signals are typically not periodic and are random

in length. For such cases, the Kravchuk transform (KT) is a useful alternative to the FFT because it

can be applied to finite signal processing9, 16. The KT computes orthogonal moments correspond-
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ing to the Kravchuk polynomials, which are discrete and orthogonal with respect to a binomial

distribution in the data space24. By varying a parameter of the binomial distribution, one is able to

set the fractionality α of the KT (SI). This feature allows to explore a specific region of interest of

an image. To illustrate the action of a KT, the numerical study in Fig. S1 in the SI demonstrates

advantages of the KT over FFT in reconstructing test images.

The KT’s computational time is equal to the DFT’s runtime21 (SI) and implementations with

lower number of operations are of high demand. Recently, quantum KTs (QKTs) have been re-

alized in waveguides with two photons, but they are difficult to scale up and their fractionality is

fixed by waveguide length5, 6.

The α-fractional KT employs the weighted Kravchuk polynomials φ
(p)
k (q, S)24 which are

real-valued and correspond to wave functions of finite harmonic oscillators

Xk =
S∑

l=0

e−i
πα
2

S
2 ei

π
2
(l−k) φ

(p)
k (l − Sp, S) · xl, k = 0, . . . , S, (2)

where p = sin2
(
πα
4

)
. Unlike plane waves, e

−i2π
kl

S+1 , the polynomials are defined and orthogo-

nal on a set of S + 1 points. This enables one to transform the signal as a finite sequence rather

than as an infinite periodic one. In the limit of S → ∞, φ
(p)
k (q, S) tend to eigenfunctions of

quantum harmonic oscillators and the α-fractional KT reproduces the α-fractional FT. Eq. (2)

can be viewed in terms of overlaps of two spin S/2 states, in which they are prepared as eigen-

states of S3 and one undergoes a rotation by angle πα
2

generated by S1, e
i
π
2
(l−k)φ

(p)
k (l − Sp, S) =

〈S
2
; S
2
− k|ei

πα
2

S1 |S
2
; S
2
− l〉.

In this Letter, we demonstrate a single-step QKT with tunable fractionality using quantum

effects, based on multi-particle bosonic interference resulting from an exchange interaction. To

this end, we interfere photon number states (light pulses with definite particle number) on a beam
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a) b)

Figure 1: Photonic implementation of a fractional QKT. a) HOM interference of photon num-

ber states on a variable beam splitter followed by two photon counting detectors, b) Setup: Ti:Sa –

titanium-sapphire laser pump (blue), BS – 50 : 50 beam splitter, τ – optical phase delay, SPDC –

periodically-poled potassium titanyl phosphate (PP-KTP) nonlinear spontaneous parametric down

conversion waveguide chip which produces photon number correlated states (red), PBS – polariza-

tion beam splitter, VC – variable coupler, TES – transition edge sensors, DAQ – data acquisition

unit.

a) b)

c) d)

e) f)

g) h)

Figure 2: HOM interference and QKT on a Bloch sphere. a-d) Two-mode Fock states (blue)

correspond to Dicke states (black) – the basis of spin S
2

states. HOM interference turns Dicke

states into a superposition of them. This coincides with a rotation Rθ,ϕ in the Dicke state basis.

The two most distinct cases are shown: the rotation Rπ
2
,
π
2

of the pole |S
2
, S
2
〉 and of the great circle

state |S
2
, 0〉. e-h) Q-function representation of a-d. HOM interference implements a rotation on

the Bloch sphere by θ = π
2

around Sx of input Sz-eigenbasis Dicke states and thus, the full QKT,

cf. Eq. (2). The sequence (x0, x1, . . . , xS) is (1, 0, 0, . . . , 0) in a) and (0, . . . , 1, . . . , 0) in c). The

QKT transfers the input – a position eigenstate – into the same state but in Sy basis – a momentum

eigenstate.
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splitter (BS) with an adjustable splitting ratio. This leads to a multi-particle Hong–Ou–Mandel

(HOM) effect18 which we observe for states with up to five photons. This QKT implementation

enables constant-time quantum information processing for qudit data encoding which is set by the

total number of interfering particles S, allowing up to d=S+1 signal samples.

Photon number (Fock) states |l〉 = (a†)l√
l!
|0〉 and |S − l〉 = (b†)S−l√

(S−l)!
|0〉 impinging on a beam

splitter (BS) exhibit a generalized HOM effect, Fig. 1a. A BS interaction between two such inputs

described by annihilation operators a and b is UBS = exp{ θ
2
(a†be−iϕ − ab†eiϕ)}, where r = sin2 θ

2

is the BS reflectivity (defined as the probability of reflection of a single photon) and ϕ is the

phase difference between the reflected and transmitted fields23. Since ϕ does not influence our

experiments, we assume ϕ = π
2

for convenience. If the BS is balanced (r = 0.5), two photons at

the input ports will leave through the same exit port. This is known as photon bunching7. Similar

effects hold for multiphoton number states18. This is reflected in the probability amplitudes of

detecting |k〉 and |S − k〉 behind the BS, A(r)
S (k, l) = e−iθ

S
2 〈k, S − k|UBS|l, S − l〉. This is

important for implementing the KT, since A(r)
S (k, l) = e−iθ

S
2 ei

π
2
(l−k) · φ(r)

k (l − Sr, S); thus, if

we send a quantum state |Ψ〉 =
∑S

l=0 xl |l, S − l〉 into the BS, the probability of measuring k

and S − k photons behind is the absolute square of a fractional QKT of the input probability

amplitudes, |Xk|2 = |
∑S

l=0A
(r)
S (k, l) · xl|2, cf. Eq. (2). The reflectivity r determines the QKT

fractionality, α = 2θ
π

= 4
π
arcsin

√
r. Since two-mode optical interference can be achieved in a

single step, regardless of the number of photons involved, this process implements a constant time

QKT. For full derivations see SI.

A deeper understanding of the result may be gained from the Schwinger representation of

the spin algebra (SI) which links multiphoton interference to spin systems and allows the quantum

states to be visualized on a Bloch sphere. In this picture, a total of S photons corresponds to a
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spin-S
2

system. The Hamiltonian generating UBS = exp{−iθHBS} corresponds to an Sx operator

for a spin-S
2

. The two-mode Fock state |l, S − l〉 corresponds an Sz =
S
2
− l eigenstate, known as

a Dicke state. Hence, HOM interference may be considered a rotation Rθ,ϕ = exp{−iθSx} of Sz

around the Sx axis on the sphere. It transfers the eigenstate |S
2
; S
2
− l〉 to a superposition of Dicke

states, Figs. 2a-d. The Q-function in Figs. 2e-h shows that the initial and final states are eigenstates

of two complementary observables, Sz and Sy, respectively. Thus, one may identify the former

with a position, while the latter with a momentum eigenstate.

The experimental setup for multiphoton HOM interference is depicted in Fig. 1b. Two

pulsed spontaneous parametric down-conversion (SPDC) sources each generate two-mode photon-

number correlated states (see Methods). The signal and idler are separated with a polarization BS

(PBS) into four spatial modes. The modes A and D are used for heralding and creation of Fock

states |l〉 in B and |S − l〉 in C which interfere in a variable ratio fiber coupler (the BS). An

optical path delay τ in one of the pump beams ensures optimal temporal overlap at interference.

Photon-number-resolved measurements are achieved using transition edge sensors (TESs) that we

previously estimated to achieve over 90% efficiency29.

We interfered the vacuum |0〉 (l = 0) with multiphoton Fock states |S〉 (S − l = S) on a

coupler with splitting ratios r = 0.05 (green), 0.2 (red), 0.5 (blue) and 0.95 (gray), and measured

photon number statistics. They are depicted in Figs. 3a-c for S = 3, 4, 5. The input states en-

code sequences (x0 = 1, x1 = 0, . . . , xS = 0), while the measured probabilities set their QKTs:

(|X0|2, |X1|2, . . . , |XS|2), where |Xk|2 = |A(r)
S (k, 0)|2. The reflectivities used correspond to frac-

tionalities α = 0.28, 0.60, 1.00, 1.72. Errors were estimated as a square root inverse of the number

of measurements (SI). The second-order interferometric visibility reached values between 71.4%

and 98.6% for S = 5 (SI).
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Figure 3: Photon number statistics resulting from Fock state |l, S − l〉 interference. The prob-

abilities of detecting |k〉 and |S − k〉 photons behind the BS for input a) |0, 3〉, b) |0, 4〉, c) |0, 5〉,
d) |1, 2〉, e) |2, 2〉, f) |2, 3〉. The BS reflectivities are r = 0.05 (green), 0.2 (red), 0.5 (blue) and

0.95 (gray). Vertical bars represent theoretical values for an ideal system, while dots are values

determined in experiment. The states a)-c) encode sequences (x0 = 1, x1 = 0, . . . , xS = 0), and

in d) – (0, 1, 0, 0), c) – (0, 0, 1, 0, 0), f) – (0, 0, 1, 0, 0, 0), respectively. The measured probabilities

set their QKTs (|X0|2, |X1|2, . . . , |XS|2), |Xk|2 = |
∑S

l=0A
(r)
S (k, l) · xl|2 of fractionality α = 0.28

(green), 0.60 (red), 1.00 (blue) and 1.72 (gray).
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For the same values of r we measured photon number distribution resulting from interference

of |1, 2〉, |2, 2〉 and |2, 3〉. They are shown in Figs. 3d-f. The inputs encode (0, 1, 0, 0, 0, 0, 1, 0, 0),

(0, 0, 1, 0, 0, 0), while |Xk|2 = |A(r)
3 (k, 1)|2, |A(r)

4 (k, 2)|2 and |A(r)
5 (k, 2)|2, respectively. The visi-

bility was between 54.8% and 99.5% (S = 5) (SI).

Fig. 3 shows that the theoretical values computed for an ideal system (the bars) match the

experimental results (the dots) well.

Realization of the fractional QKT with qudit systems opens a new prospect for transforma-

tion of large data sequences in O(1) time. This is not possible with the implementations based

on waveguides. Both cases are examples of a non-universal quantum computer optimized for one

task which is the basis for a variety of important applications9. The photonic proof of concept is

currently limited by the range of input states that can be prepared. However, deterministic creation

of an arbitrary superposition of Fock states has been demonstrated for trapped ions and supercon-

ducting resonators21. Since a BS sees orthogonal spectral or polarization modes independently,

one can extend the transform to higher dimensions22, 23. We note that the QKT could also be im-

plemented on existing quantum annealing processors24, which operate on a chain of interacting

spin-1
2

systems (SI), and using HOM interference of fermions with symmetric wavefunction of the

interfering degrees of freedom.

Our result, along with the fact that qudit-based algorithms exhibit significantly lower num-

ber of operations than qubit-based ones25, motivates the further development of highly-controllable

quantum harmonic oscillator platforms with implications for quantum signal processing in a whole

range of applications. Provided efficient input state preparation and detection of larger Fock states,

the O(1) QKT demonstrated here in principle may find practical applications in imaging of un-
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precedented quality, fostering early diagnostics and neuroscience5.

Methods

A light pulse from a Ti:Sapphire laser at 775 nm (FWHM of 2 nm; repetition rate of 75 kHz)

pumps collinear type-II phase-matched 8 mm-long SPDC waveguides written in a periodically

poled KTP (PP-KTP) crystal sample. They generate two independent photon-number correlated

states – the two-mode squeezed vacua |Ψ〉 =
∑∞

n=0 λn|n, n〉, where λn = tanhn g
cosh g

is a probability

amplitude for creation of a pair of n photons and g is the parametric gain. The average photon

number in the signal and idler mode equals 〈n̂〉 = sinh2 g. For small g, cosh g ≈ 1, and thus

λ2n ≈ sinh2n g = 〈n̂〉n. In the experiment, the average photon number is 〈n̂〉 ≈ 0.2. This value

is sufficient to ensure the emission of multiphoton pairs, but at the same time to diminish the

interferometric visibility of two-photon events. In both output states, the signal and idler pulses

are split with a polarization beam-splitter (PBS) to four spatial modes A–D. Subsequently, they

are filtered by bandpass filters with 3 nm FWHM angle-tuned to the central wavelength of their

respective spectra, in order to reduce the broadband background typically generated in dielectric

nonlinear waveguides27. The pump beam is discarded with an edge filter. The modes A and D are

used for heralding and conditional creation of Fock states in modes B and C which interfere in a

variable ratio PM fiber coupler. The coupling ratio can be set in the range 0-100% with an error

of ±1.5%. The heralding signal modes (H-pol.) are centered at 1554 nm, while the interfering

idler modes (V-pol.) are at 1546 nm. We employ transition-edge sensors (TES) running at 70 mK

which allow for photon-number resolved measurements in all modes31. Their voltage output is

captured with an ADC card.

Before demonstrating the HOM interference, we characterized the setup. A high photon

number resolution and single-mode input states are pivotal for this experiment. The resolution
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of TES detectors (the confidence that the detector gives a correct information about the number

of photons) was previously confirmed to exceed 95%29. The depth of the HOM dip of 85.9% ±

0.3% for a two-photon interference indicates an effective Schmidt mode number K = 1.16 (SI).

For the measured 4-tuples of photon numbers losses were computed by assuming perfect setup

components, each followed by a beam splitter with a reflection coefficient introducing the loss. We

estimate the total transmission in each mode to be approximately 50%. For the details, see SI.

Measurements for individual settings of the splitting ratio were taken over approximately 400

seconds, giving 109 data samples for each r ranging from 0 to 1 with a step of approximately 3%.

Small error bars for low photon numbers and larger bars for the higher ones result from keeping

the pump power fixed and near-single-modeness of the interfering beams.
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Supplemental Information

1 Applications of the Kravchuk transform

Comparison of the KT and FFT for reconstruction of MRI scans. Medical imaging, especially

Magnetic Resonance Imaging (MRI) is an example of the most prominent applications of the FFT

algorithm1. The signal received from electromagnetic coils is encoded in the frequency domain

(k-space) and must be processed by the inverse Fourier transform in order to obtain a readable

scan of the patient’s body2. The MRI resolution and thus, the quality of the imaging is strongly

limited by the bandwidth of the receiver and the accuracy of the magnetic field3. The signal is

sampled with an analog-to-digital converter (ADC) and stored in the computer memory before

processing. Typical sampling capacity of the ADC corresponds to approximately 250 frequency

slots and the magnetic gradient is steered with an accuracy of 100-150 levels, corresponding to

the effective size of voxels to be several millimeters3. Further improvement of the accuracy is

very difficult and requires higher magnetic fields as well as longer examination time which are not

indifferent to the patient’s health4. This is the reason why the accuracy of data processing is crucial.

It is worth noting that the voxel size must be of the order of micrometers to examine neurons5.

Fig. S1 shows a comparative numerical study of the KT and FFT for a “pirate” test image and

a brain scan from the OASIS database6. It highlights the influence of sample size and added noise

on the reconstruction quality. The FFT produces artifacts due to zero padding, while some details

(which could be tumor cells) are missing. This is best captured by the structural similarity index

(SSIM)7. For the “pirate” it was 0.74 (FFT) and 0.96 (KT), and for the brain it was 0.81 and 0.97,

respectively. The mean square error (MSE)7 was ten times smaller and the peak signal-to-noise

ratio (PSNR)7 was 10 dB larger for the KT than for the FFT. The FFT leads to degradation of the

usable resolution from 1-2 mm per voxel to over 5 mm. Our findings confirm the results of the

previous research8.
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d) e) f)

a� b� c)

Source KT FFT

Figure S1: Numerical example of FFT and KT image processing. Two 257 × 257-pixel test

images, a “pirate” and a brain scan from the OASIS database, were converted to the frequency

domain with the KT and FFT (full image moment orders), supplemented with a 1% additive white

Gaussian noise, and then reconstructed back with corresponding inverse transforms (without any

truncation) to model the operation of an MRI analysis: a) & d) the source data, b) & e) the images

processed with the KT. The green circles mark some fine details which were retained during this

processing, c) & f) the images processed with the FFT after zero-padding to 2n × 2n = 512× 512
pixels. The red circles highlight the artifacts resulting from zero padding.
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Digital image processing and computer vision. The image analysis with Kravchuk moments

was first proposed by Yap et al.9, where the transform coefficients were used as data vectors for

shape recognition. The new method overperformed the “classical” Hu approach10 giving accu-

racy over 80% for noisy input, compared to 31% obtained with the Hu’s method. The Kravchuk

moments were thoroughly compared with the state-of-the-art methods towards various medical

imaging applications8. Tests were performed with magnetic resonance data coming from open

repositories of brain and knee examinations. The images were reconstructed with the Kravchuk,

Zernike, Pseudo-Zernike, Fourier-Merlin, Legendre and Chebyshev kernels8, 9. It has been pointed

out that only the Kravchuk and Chebyshev transforms are discrete and allow to operate in the orig-

inal Cartesian image coordinates8, 11. The Kravchuk-based method presented the best behavior in

most test cases, giving the smallest reconstruction error and the highest peak signal-to-noise ratio

as the moment order increased thus, is best suited for processing of high resolution data8, 11. For

similar reasons, the numerical method of the Kravchuk moments was chosen as the most promis-

ing in analysis of breast mammography images12, where it allowed to identify benign and malign

masses with 90% accuracy, compared to 81% offered by the other techniques. This scheme was

proven to outperform also other algorithms in analysis of computer tomography and ultrasound

scans towards recognition of liver and prostate tumors13.

The Kravchuk transform is also getting attention in processing of other kinds of numerical

data, for example in the Chinese character recognition14, development of error-correcting codes15

and watermarking in anti-fraud techniques16 (the fractional KT).

KT software implementations. The algorithms for computation of the Kravchuk polynomials

and transforms have been proposed both for software17 and hardware solutions18. They are in-

cluded in various programming libraries19, e.g. POLPAK, an established package of polynomial-

computing routines20. However, these algorithms are still underperforming the FFT because their
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number of operations is O(n2 log2 n) compared to O(n logn) for the FFT. This turns into the re-

construction time of e.g. 15 min per image instead of several seconds19. This seriously limits the

scope of the KT in the numerical image processing. This result has been improved by Venkatara-

mana et al. to O(n2) by using the Clenshaw’s recurrence formula21.

2 Theory: multi-photon Hong–Ou–Mandel interference

We will now analyze in a detailed manner a generalized multi-photon HOM effect. As explained in

the main text, we consider two interfering modes a and b on a beam splitter device with a tunable

reflectivity r (defined as the probability of reflection of a single photon). As the input states we

take photon number (Fock) states |l〉a=
(a†)l√

l!
|0〉a and |S − l〉b=

(b†)S−l√
(S−l)!

|0〉b.

The Schwinger representation. One may represent the su(2) Lie algebra in terms of the annihila-

tion and creation operators of the harmonic oscillator – the Schwinger representation22. For a single

spin two independent oscillators a and b are required. The spin operators are then constructed in

the following way

Sx =
a†b+ a b†

2
, Sy =

i
(
a b† − a†b

)

2
, Sz =

a†a− b†b

2
, S0 =

a†a+ b†b

2
. (S1)

S0 is the Casimir operator S0(S0 + 1) = S2
x + S2

y + S2
z . The spin components fulfill the standard

su(2) commutation relations

[Sx, Sy] = iSz, [Sy, Sz] = iSx, [Sz, Sx] = iSy. (S2)

Beam splitter. Interference of two independent modes a and b on a beam splitter is governed by

the following Hamiltonian

H = H0 +HBS, (S3)

H0 =
~

2

(
a†a + b†b

)
, (S4)

HBS = i~
2

(
a†b e−iϕ − a b†eiϕ

)
. (S5)

18



H0 is the free quantum oscillator energy and HBS – the beam splitter interaction23. ϕ is the phase

difference between the reflected and transmitted fields behind the beam splitter. H0 commutes with

HBS .

Using the Schwinger representation, we express H in terms of the spin operators S0, Sx, Sy, Sz

H0 = ~S0, (S6)

a†b e−iϕ − a b†eiϕ = cosϕ
(
a†b − a b†

)
− i sinϕ

(
a†b + a b†

)
(S7)

= 2i (cosϕ · Sy − sinϕ · Sx) . (S8)

HBS = i~
2
2i (cosϕ · Sy − sinϕ · Sx) (S9)

= ~ (sinϕ · Sx − cosϕ · Sy) . (S10)

The Hamiltonian generates the evolution operator

U = exp{−iθH/~} (S11)

= exp{−iθ(H0 +HBS)/~} (S12)

= exp{−iθ HBS/~} exp{−iθ H0/~} (S13)

= UBS U0, (S14)

U0 = exp {−iθS0} , (S15)

UBS = exp {−iθ (sinϕ · Sx − cosϕ · Sy)} . (S16)

The evolution in the Heisenberg picture allows to establish a linear relation between the input (a, b)

and the output (ar, at) annihilation operators

ar = U †
BS aUBS = a cos θ

2
+ b e−iϕ sin θ

2
, (S17)

at = U †
BS b UBS = −a eiϕ sin θ

2
+ b cos θ

2
. (S18)
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The relation takes the following matrix form

UBS =






cos θ
2

sin θ
2
e−iϕ

− sin θ
2
eiϕ cos θ

2




 , (S19)

where UBS U
†
BS

= 1 and U
†
BS

= UBS
−1 hold true. U0 amounts to a global phase.

We now substitute sin θ
2
=

√
r and cos θ

2
=

√
1− r to relate the evolution directly to the

beam splitter reflectivity

UBS =






√
1− r e−iϕ

√
r

−eiϕ√r
√
1− r




 , (S20)

UBS
−1 = U

†
BS

=






√
1− r −e−iϕ

√
r

eiϕ
√
r

√
1− r




 . (S21)

This brings us to the following relation between the input and output creation operators, to be used

in the next section





a

b




 = UBS

−1






ar

at




 =






√
1− r −e−iϕ

√
r

eiϕ
√
r

√
1− r











ar

at




 , (S22)






a†

b†




 =






√
1− r −eiϕ√r

e−iϕ
√
r

√
1− r











a†r

a†t




 , (S23)

a† =
√
1− r a†r − eiϕ

√
r a†t , (S24)

b† = e−iϕ
√
r a†r +

√
1− r a†t . (S25)
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Photon number amplitude. Let the input states in modes a and b be the Fock states |l〉 and

|S − l〉, respectively. Then,

U0 |l〉a |S − l〉b = e−iθ
S
2 |l〉a |S − l〉b , (S26)

UBS |l〉a |S − l〉b = UBS

(
a†
)l

√
l!

(
b†
)S−l

√

(S − l)!
|0〉 (S27)

=
1

√

l! (S − l)!

(√
1− r a†r − eiϕ

√
r a†t

)l (

e−iϕ
√
r a†r +

√
1− r a†t

)S−l

|0〉

(S28)

=
1

√

l! (S − l)!

l∑

m=0

S−l∑

n=0

(
l

m

)(
S − l

n

)
(√

1− r a†r
)m
(

−eiϕ
√
r a†t

)l−m

×

×
(
e−iϕ

√
r a†r
)n
(√

1− r a†t

)S−l−n

|0〉

(S29)

=
1

√

l! (S − l)!

l∑

m=0

S−l∑

n=0

(
l

m

)(
S − l

n

)
(
−eiϕ

√
r
)l (√

1− r
)S−l ×

×
(√

1− r
)m−n (√

r
)n−m (

e−iϕ
)m+n ×

× (−1)−m
(
a†r
)m+n

(

a†t

)S−m−n

|0〉

(S30)

U |l〉a |S − l〉b = e−iθ
S
2
(−eiϕ√r)l

(√
1− r

)S−l

√

l! (S − l)!

l∑

m=0

S−l∑

n=0

(
l

m

)(
S − l

n

)

(−1)−m ×

×
(
e−iϕ

)m+n
(√

1−r
r

)m−n

×

×
√

(m+ n)! (S −m− n)! |m+ n, S −m− n〉 .

(S31)

Let us substitute m+ n = k to change the summation variables. Then,

|m+ n, S −m− n〉 = |k, S − k〉
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and the ranges of k and m are as follows

0 ≤ m+ n = k ≤ S

0 ≤ k −m = n ≤ S − l ⇒ k + l − S ≤ m ≤ k,

l∑

m=0

S−l∑

n=0

⇒
S∑

k=0

min{l,k}
∑

m=max{0,k+l−S}
,

U |l〉a |S − l〉b = e−iθ
S
2
(−eiϕ√r)l

(√
1− r

)S−l

√

l! (S − l)!

S∑

k=0

min{l,k}
∑

m=max{0,k+l−S}

(
l

m

)(
S − l

k −m

)

(−1)−m ×

×
(
e−iϕ

)k
(√

1−r
r

)2m−k√

k! (S − k)! |k, S − k〉 .

(S32)

The probability amplitude of detecting k and S−k photons behind the beam splitter provided

that l and S − l were injected into it is

AS(k, l) = 〈k, S − k|U |l, S − l〉 , (S33)

thus,

U |l〉a |S − l〉b =
S∑

k=0

AS(k, l) |k, S − k〉 , (S34)

where

AS(k, l) = e−iθ
S
2
(−eiϕ√r)l

(√
1− r

)S−l

√

l! (S − l)!

min{l,k}
∑

m=max{0,k+l−S}

(
l

m

)(
S − l

k −m

)

(−1)−m
(
e−iϕ

)k ×

×
(√

1−r
r

)2m−k√

k! (S − k)!

(S35)
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= e−iθ
S
2
(−eiϕ√r)l

(√
1− r

)S−l

√

l! (S − l)!

(
e−iϕ

)k
(√

1−r
r

)−k√

k! (S − k)!×

×
min{l,k}
∑

m=max{0,k+l−S}

(
l

m

)(
S − l

k −m

)

(−1)−m
(
1−r
r

)m
.

(S36)

The inner sum over m in Eq. (S36) is a hypergeometric series. In order to simplify it, the identities

from Section 3 are used. The four cases below (A-D) correspond to different summation ranges.

For simplicity, let us assume that l ≤ S − l, i.e. l ≤ S
2

.

Case A: min{l, k} = l and max{0, k + l − S} = 0. This implies l ≤ k ≤ S − l.

l∑

m=0

(
l

m

)(
S − l

k −m

)

(−1)−m
(
1−r
r

)m
(S37)

=

l∑

m=0

(
l

m

)(
S − l

k −m

)
(
1− 1

r

)m
(S38)

=
l∑

m=0

(
l

m

)
(S − l)!

(k −m)! (S − l − k +m)!

(S − l − k)! k!

(S − l − k)! k!

(
1− 1

r

)m
(S39)

=

l∑

m=0

(
l

m

)
(S − l)!

(S − l − k)! k!

(S − l − k)!

(S − l − k +m)!

k!

(k −m)!

(
1− 1

r

)m
(S40)

=

l∑

m=0

(
l

m

)(
S − l

k

)
(−1)m(−k)k

(S − l − k + 1)k

(
1− 1

r

)m
cf. (S92), (S93) (S41)

=

(
S − l

k

)

2F1

[
−l,−k;S − l − k + 1; 1− 1

r

]
cf. (S95) (S42)

=

(
S − l

k

)
(S − l − k + 1 + k)K
(S − l − k + 1)K

2F1

[
−l,−k;−S; 1

r

]
cf. (S96) (S43)

=

(
S

k

)

2F1

[
−l,−k;−S; 1

r

]
. (S44)

Case B: min{l, k} = k and max{0, k + l − S} = k + l − S. This implies S − l ≤ k ≤ l, i.e. the

empty set.
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Case C: min{l, k} = k and max{0, k + l − S} = 0. This implies k ≤ l ≤ S − l.

k∑

m=0

(
l

m

)(
S − l

k −m

)

(−1)−m
(
1−r
r

)m
(S45)

=
k∑

m=0

(
l

m

)(
S − l

k −m

)
(
1− 1

r

)m
(S46)

=

k∑

m=0

l!

m! (l −m)!

(S − l)!

(k −m)! (S − l − k +m)!

k! (S − l − k)!

k! (S − l − k)!

(
1− 1

r

)m
(S47)

=

k∑

m=0

k!

m! (k −m)!

(S − l)!

k! (S − l − k)!

l!

(l −m)!

(S − l − k)!

(S − l − k +m)!

(
1− 1

r

)m
(S48)

=
k∑

m=0

(
k

m

)(
S − l

k

)
(−1)m(−l)k

(S − l − k + 1)k

(
1− 1

r

)m
cf. (S92), (S93)

(S49)

=

(
S − l

k

)

2F1

[
−k,−l;S − l − k + 1; 1− 1

r

]
cf. (S95)

(S50)

=

(
S − l

k

)

2F1

[
−l,−k;S − l − k + 1; 1− 1

r

]
cf. (S94)

(S51)

=

(
S − l

k

)
(S − l − k + 1 + k)K
(S − l − k + 1)K

2F1

[
−l,−k;−S; 1

r

]
cf. (S96)

(S52)

=

(
S

k

)

2F1

[
−l,−k;−S; 1

r

]
(S53)

Case D: min{l, k} = l and max{0, k + l − S} = k + l − S. This implies l ≤ S − l ≤ k. To

compute the sum, the following substitution is used: m = l −m′.

l∑

m=k+l−S

(
l

m

)(
S − l

k −m

)
(
1− 1

r

)m
=

S−k∑

m′=0

(
l

l −m′

)(
S − l

k +m′ − l

)
(
1− 1

r

)l−m′

(S54)
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=
(
1− 1

r

)l
S−k∑

m′=0

(
S − k

m′

)
m′! (S − k −m′)!

(S − k)!

l!

(l −m′)!m′!
×

× (S − l)!

(S − k −m′)! (k +m′ − l)!
(−1)−m′ (1

r
− 1
)−m′

(S55)

=
(
1− 1

r

)l
S−k∑

m′=0

(
S − k

m′

)

(−1)m
′ l!

(l −m′)!

(S − l)!

(S − k)! (k +m′ − l)!

(
1
r
− 1
)−m′

(S56)

=
(
1− 1

r

)l
S−k∑

m′=0

(
S − k

m′

)

(−1)m
′

(−1)m
′

(−l)m′ ×

× (S − l)!

(S − k)! (k − l +m′)!

(k − l)!

(k − l)!

(
r

1−r

)m′

(S57)

=
(
1− 1

r

)l
S−k∑

m′=0

(
S − k

m′

)

(−1)m
′

(−l)m′

(S − l)!

(S − k)! (S − l − S + k)!
×

× (k − l)!

(k − l +m′)!

(
r

r−1

)m′

cf. (S92), (S93)

(S58)

=
(
1− 1

r

)l
(
S − l

S − k

) S−k∑

m′=0

(
S − k

m′

)

(−1)m
′ (−l)m′

(k − l + 1)m′

(
r

r−1

)m′

cf. (S95)

(S59)

=
(
1− 1

r

)l
(
S − l

S − k

)

2F1

[
−(S − k),−l; k − l + 1; r

r−1

]
cf. (S96)

(S60)

=
(
1− 1

r

)l
(
S − l

S − k

)
(k − l + 1 + l)S−k

(k − l + 1)S−k

×

× 2F1

[
−(S − k),−l; 1− S + k − l − (k − l + 1); −1

r−1

]

(S61)

=
(
1− 1

r

)l
(

S

S − k

)

2F1

[
−(S − k),−l;−S; −1

r−1

]
cf. (S97)

(S62)

=
(
1− 1

r

)l (
1− −1

r−1

)l

︸ ︷︷ ︸

=1

(
S

k

)

2F1

[

−S + (S − k),−l;−S;
−1
r−1

−1
r−1

− 1

]

(S63)
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=

(
S

k

)

2F1

[
−k,−l;−S; 1

r

]
cf. (S94)

(S64)

=

(
S

k

)

2F1

[
−l,−k;−S; 1

r

]
. (S65)
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Summarizing, the inner sum in Eq. (S36) equals
(
S
k

)

2F1

[
−l,−k;−S; 1

r

]
under the assumption that

l ≤ S
2

. The probability amplitude can be rewritten into the following form

AS(k, l) =
(−eiϕ√r)l

(√
1− r

)S−l

√

l! (S − l)!
e−iθ

S
2
(
e−iϕ

)k
(√

1−r
r

)−k√

k! (S − k)!

(
S

k

)

2F1

[
−l,−k;−S; 1

r

]
,

(S66)

√

k! (S − k)!

l! (S − l)!

(
S

k

)

=

√
(
S

k

)(
S

l

)

,

AS(k, l) =

√
(
S

k

)(
S

l

)

(−1)l
(
eiϕ
)l−k

e−iθ
S
2
(√

1− r
)S
(√

r
1−r

)l+k

2F1

[
−l,−k;−S; 1

r

]

(S67)

=

√
(
S

k

)(
S

l

)

(−1)l
(
eiϕ
)l−k

e−iθ
S
2
(
cos θ

2

)S (
tan θ

2

)l+k
2F1

[

−l,−k;−S;
(
sin θ

2

)−2
]

(S68)

=

√
(
S

k

)(
S

l

)

(−1)l
(
eiϕ
)l−k

e−iθ
S
2
(
cos θ

2

)S (
tan θ

2

)l+k
2F1

[

−k,−l;−S;
(
sin θ

2

)−2
]

.

(S69)

The photon number statistics behind the beam splitter is given by the probability pS(k, l) =

|AS(k, l)|2

pS(k, l) =

(
S

k

)(
S

l

)
(
cos θ

2

)2S (
tan θ

2

)2(l+k)
∣
∣
∣2F1

[

−l,−k;−S;
(
sin θ

2

)−2
]∣
∣
∣

2

= pS(l, k). (S70)
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Kravchuk transform. The α-fractional Kravchuk transform of an input sequence xn = f(ξn),

where n = 0, 1, . . . , N and ξn = (n−N/2), is defined as follows24 (cf. Eq. (5.2))

Xn =

N∑

n′=0

F α
n,n′ xn′, (S71)

F α
n,n′ = ei

π
2
(n+n′−Nα/2)

√
(
N

n

)(
N

n′

)

cosN
(
πα
4

)
tann+n′ (πα

4

)

2F1

[
−n,−n′;−N ; sin−2

(
πα
4

)]
= F α

n′,n

(S72)

= ei
π
2
(n′−n−Nα/2)

√

n! (N − n)!

n′! (N − n′)!
sinn′−n

(
πα
4

)
cosN−n′−n

(
πα
4

)
k[sin

2(πα/4)]
n (n′, N) (S73)

= ei
π
2
(n′−n−Nα/2)φ(p)

n (n′ −Np,N), (S74)

where k
(p)
n (n′, N) is a Kravchuk polynomial and φ

(p)
n (n′ −Np,N) is a Kravchuk function.

We used the following relations25, 26

k(p)n (n′, N) = (−1)n
(
N

n

)

pn 2F1

[

−n,−n′;−N ; 1
p

]

, (S75)

φ(p)
n (n′ −Np,N) =

√

n! (N − n!)

n′! (N − n′)!

√

pn′−n(1− p)N−n−n′ k(p)n (n′, N), (S76)

φ(p)
n (n′ −Np,N) = (−1)n+n′

φ
(p)
n′ (n−Np,N), (S77)

as well as the fact that the Kravchuk functions are orthonormal

N∑

n′=0

φ(p)
n (n′ −Np,N)φ(p)

m (n′ −Np,N) = δn,m. (S78)
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Now we turn AS(k, l) shown in Eq. (S69) to the form of Eq. (S74)

AS(k, l) = e−iθ
S
2 eiϕ(l−k) (−1)k+l φ

(r)
k (l − Sr, S)

= e
i
π
2

(

2(π+ϕ)
π

(l−k)−S
θ
π

)

φ
(r)
k (l − Sr, S)

= e−iθ
S
2 eiϕ(l−k) φ

(r)
l (k − Sr, S)

= e
i
π
2

(

2ϕ
π

(l−k)−S
θ
π

)

φ
(r)
l (k − Sr, S),

(S79)

where r = sin2 θ
2
.

In specific, if we take ϕ = −π
2

and rearrange terms

AS(k, l) = ei
π
2
(k+l−S

θ
π
)

√
(
S

k

)(
S

l

)
(
cos θ

2

)S (
tan θ

2

)l+k
2F1

[

−k,−l;−S;
(
sin θ

2

)−2
]

(S80)

= F
2θ
π

k,l (S81)

= ei
π
2
(l−k−S

θ
π
)φ

(

sin2
θ
2

)

k (l − S sin2 θ
2
, S), (S82)

AS(k, l) = ei
π
2
(l−k−S

θ
π
)φ

(r)
k (l − Sr, S). (S83)

Quantum Kravchuk transform on a beam splitter. Let us send a superposition
∑S

l=0 xl |l, S − l〉

to a BS. The superposition amplitudes encode the sequence (x1, . . . , xS) to be transformed. We

will compute the probabilities of detecting |k〉 and |S − k〉 photons behind the BS

∣
∣
∣
∣
∣
〈k, S − k|U0 UBS

(
S∑

l=0

xl · |l, S − l〉
)∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

S∑

l=0

xl · 〈k, S − k|U0 UBS |l, S − l〉
∣
∣
∣
∣
∣

2

(S84)

=

∣
∣
∣
∣
∣

S∑

l=0

xl · e−iθ
S
2 〈k, S − k|UBS|l, S − l〉

∣
∣
∣
∣
∣

2

(S85)

=

∣
∣
∣
∣
∣

S∑

l=0

xl · A(r)
S (k, l)

∣
∣
∣
∣
∣

2

(S86)
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=

∣
∣
∣
∣
∣

S∑

l=0

xl · e−iθ
S
2 ei

π
2
(l−k)φ

(r)
k (l − Sr, S)

∣
∣
∣
∣
∣

2

(S87)

= |Xk|2 . (S88)

It is clear now that multi-photon interference on a beam splitter followed by photon-counting

detection implements α = 2θ
π

-fractional QKT of the input probability amplitudes

(x0, x1, . . . , xS) → (|X0|2, |X1|2, . . . , |XS|2), (S89)

where |Xk|2 are experimentally determined photon number statistics for k = 0, . . . , S.

3 Gauss hypergeometric function.

Definition. The Gauss hypergeometric function is a special function defined with the following

hypergeometric series

2F1(a, b; c; z) =

∞∑

k=0

(a)k (b)k
(c)k

zk

k!
, (S90)

where a, b and c are parameters, z is an argument and (x)k is the Pochhammer symbol

(x)k = x(x+ 1)(x+ 2) · · · (x+ k − 1). (S91)

In general, all 2F1 arguments and the parameter may be complex, a, b, c, z ∈ C however, within

this note the arguments are always integer, a, b, c ∈ Z and the parameter is real, z ∈ R.

Properties. The Pochhammer symbol can be expressed as a division of factorials

a!

(a− k)!
=(−1)k(−a)k, (S92)

a!

(a + k)!
=

1

(a+ 1)k
. (S93)
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The form of Eq. (S90) implies that the arguments a and b can be swapped

2F1(a, b; c; z) =

∞∑

k=0

(a)k (b)k
(c)k

zk

k!
=

∞∑

k=0

(b)k (a)k
(c)k

zk

k!
= 2F1(b, a; c; z). (S94)

In case of a negative a or b, the infinite sum in Eq. (S90) is truncated because (x)k = 0 if x is a

negative integer and k > −x. Let us assume that a < 0 and b ≥ 0 ∨ b < a. Then, let m = −a

2F1(−m, b; c; z) =
∞∑

k=0

(−m)k (b)k
(c)k

zk

k!
cf. (S92)

=

m∑

k=0

(−1)k
m!

k! (m− k)!

(b)k
(c)k

zk

=

m∑

k=0

(
m

k

)

(−1)k
(b)k
(c)k

zk. (S95)

Moreover, for the same assumptions as in case of Eq. (S95), the following transformation can be

used to change z to 1− z [NIST Digital Library of Mathematical Functions, 15.8.7]

2F1(−m, b; c; z) =
(c− b)m
(c)m

2F1(−m, b; b− c−m+ 1; 1− z). (S96)

Identities analogous to Eqs. (S95) and (S96) are also valid for negative b and a ≥ 0 ∨ a < b, due

to Eq. (S94).

Finally, the following Pfaff’s hypergeometric transformation is valid for any a, b, c and z

2F1(a, b; c; z) = (1− z)−b
2F1(c− a, b; c; z/(z − 1)). (S97)

4 Characterization of the setup

In order to estimate transmission losses, we performed Klyshko efficiency measurements on the

setup. In a Klyshko measurement with one SPDC source and binary detectors, one counts single

events CA, CB from either output channel and coincidence clicks CAB between both channels and

defines the Klyshko efficiencies ηA and ηB

ηB =
CAB

CA

(S98)
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and vice versa. For low pump powers, these Klyshko efficiencies show a linear pump power

dependency, and their intercept is a measure at zero pump power of total transmission efficiency

(including both propagation and detection losses) of the associated spatial mode27.

We pumped each of our SPDC sources, one at a time, with the variable beam-splitter in

position 50 : 50, at successively lower power values. The resulting four-mode correlated photon

statistics were then transformed into binary “photon(s)/no-photon” datasets to emulate standard

binary detectors such as avalanche photo-diodes, and we determined the total efficiencies of the

heralding modes to be η1 = 50.3% and η4 = 48.5%. The beam-splitter modes, carrying each a

3 dB loss from the splitter itself and an additional 1 dB due to splitter insertion loss and fiber-to-

fiber coupling loss, exhibit a total efficiency of η2 = 21.6% and η3 = 20.6%. Taking into account

the additional optical elements in the splitter modes, the efficiencies are consistent. We account

for the transmission losses of approximately 50% ≈ 3 dB with 1 dB initial fiber in-coupling loss

due to spatial mode mismatch, 0.25 dB from imperfect detectors, and the rest from three FC/PC

fiber-to-fiber couplers per mode as well as bending losses in the transmission fibers between the

experimental setup and the detectors.

Fig. S2 shows the standard HOM interference dip between both sources measured with bi-

nary detectors (InGaAs APDs) for a small mean photon number of the order of 10−4 in order to test

the setup. The maximal visibility achieved is VHOM = 85.9%. An independent measurement of the

second order correlation function for each SPDC source g(2) = 〈n2〉−〈n〉
〈n〉2 ≥ 1.86 ≈ 1 + VHOM

is consistent with this result. From this, we can infer an effective Schmidt mode number of

K = 1
g(2)−1

= 1.16,28 i.e. both of our SPDC sources are close to being single-mode.

The TES detectors used in the experiment were thoroughly characterized with quantum to-

mography methods29. Their quantum efficiency is above 90%.
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Figure S2: HOM dip. Black dots with error bars represent the experimental results whereas the

blue line is a fitted curve. The maximal visibility amounts to 85.9% which proves the quantum

nature of impinging multiphoton states.

5 Analysis of the experimental data

HOM visibilities. The second-order visibility exceeding the classical value of 50% certifies quan-

tum nature of the HOM interference and thus, the fractional QKT. The visibility is computed with

the following formula30

v(2) =
nmax − nmin

nmax + nmin

, (S99)

where nmax and nmin are the maximal and minimal number of events registered by the TES detectors

for the given photon number S.

The obtained values are gathered in Tab. 1. For S = 5 it was always greater than 50%. The

visibility of interference of |1, 1〉 given in this Table is much lower than the one reported in Fig. S2.

This is because in order to perform quantum simulations with S > 2 we increased the power of

a laser pumping our source. However, this power increase is too small to affect the analysis from

Sec. 4, i.e. the source operates in the parametric regime and our photon-number states are near

single-mode.

33



|ψ〉 r = 0.05 r = 0.3 r = 0.5 r = 0.95

|0, 1〉 87.2%± 0.1% 35.1%± 0.1% 0.8%± 0.0% 87.8%± 0.1%

(n̄ = 0.2134) (n̄ = 0.2082) (n̄ = 0.2097) (n̄ = 0.2082)

|0, 2〉 98.2%± 0.3% 59.9%± 0.2% 26.5%± 0.1% 99.0%± 0.3%

(n̄ = 0.2134) (n̄ = 0.2082) (n̄ = 0.2097) (n̄ = 0.2082)

|0, 3〉 99.7%± 0.8% 78.6%± 0.7% 52.4%± 0.4% 99.9%± 0.8%

(n̄ = 0.2134) (n̄ = 0.2082) (n̄ = 0.1996) (n̄ = 0.2082)

|0, 4〉 99.1%± 2.5% 87.6%± 2.2% 65.7%± 1.7% 99.9%± 2.5%

(n̄ = 0.2134) (n̄ = 0.2082) (n̄ = 0.2097) (n̄ = 0.2082)

|0, 5〉 97.8%± 6.2% 96.7%± 7.2% 71.4%± 4.6% 98.6%± 7.2%

(n̄ = 0.2076) (n̄ = 0.2082) (n̄ = 0.2097) (n̄ = 0.1983)

|1, 2〉 74.8%± 0.8% 18.9%± 0.3% 50.3%± 0.2% 79.3± 0.8%%

(n̄ = 0.2043) (n̄ = 0.2082) (n̄ = 0.1997) (n̄ = 0.2051)

|2, 2〉 94.5%± 2.2% 42.5%± 1.0% 50.6%± 1.2% 93.8%± 2.3%

(n̄ = 0.2088) (n̄ = 0.2141) (n̄ = 0.2097) (n̄ = 0.2051)

|2, 3〉 97.7%± 7.0% 76.6%± 4.7% 54.8%± 3.7% 99.5%± 7.5%

(n̄ = 0.2043) (n̄ = 0.2150) (n̄ = 0.2097) (n̄ = 0.1969)

Table 1: Second-order interferometric visibilities in HOM interference. The visibility above

50% proves quantum character of the interference. Two-mode Fock states |ψ〉 impinging on a beam

splitter of a variable reflectivity r implement the fractional QKTs. n̄ denotes the mean number of

interfering photons reached in the experiment.
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Computation of probability distributions and estimation of errors. Experimental demonstra-

tion of two-mode multi-photon HOM interference requires collecting photon-number statistics,

which are then compared with theoretical probability distributions. The statistics result from mul-

tiple measurements performed with the setup depicted in Fig. 1b in the main text. The heralding

modes (A & D) inform about the input state fed into the variable BS and together with the output

modes are measured by highly efficient photon counting TES detectors. Thus, each measure-

ment results in a 4-tuple consisting of the number of photons registered by TES1−4, denoted as

(n1, n2, n3, n4) and corresponding to photon-number states in modes A–D31. In a single run, the

SPDC source produces input Fock states consisting of up to approximately 10 photons with prob-

ability governed by the pump power (see the Methods section in the main text). The detectors

register all possible values of ni ∈ [0, 10], i = 1, . . . , 4. The automation software stores this data

in a database and assigns the number of events to each possible tuple. During a single 400-second

run, approx. 109 data points are collected.

In order to obtain a photon-number statistics for a given r = sin2 θ
2

and input Fock state a

post-processing is required. The database is searched for a given pair (n1, n4) which determines the

two-mode Fock state at the BS input. Then, only records fulfilling the condition n1+n4 = n2+n3

are selected as they may correspond to the case of no losses in all paths. For the given (n1, n4) the

individual probabilities are computed as

pS(k, n1 + n4 − k) =
N (n1, k, n1 + n4 − k, n4)

S(n1, n4)
,

where N(n1, n2, n3, n4) denotes the number of events of registering the given 4-tuple, S(n1, n4) =

∑n1+n4

m=0 N(n1, m, n1+n4 −m,n4) is the total number of contributing data points and k as well as

n1 + n4 − k are the photon numbers registered at the BS outputs. The full probability distribution

consists of n1 + n4 + 1 values for k ranging from 0 to n1 + n4.

For the TES detectors, due to the overlap between the outcomes associated with neighboring
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photon numbers, an |n〉 state results in a value of n±1, where n is registered with probability over

0.9 and the probabilities of n − 1 and n + 1 are below 0.1 with p(n− 1) ≫ p(n + 1). Therefore,

the absolute error of a single measurement ∆n = ±1. As the computation of probability is based

on S(n1, n4) data points, the measurement uncertainty equals

∆p =
|∆n|

√

S(n1, n4)
≈ 1
√

S(n1, n4)
.

The data post-processing and error estimation was done with a Python script, which prepared

input files for the Asymptote plotting software. The probability distributions for an ideal system

were computed with Eq. (S70). Factorials and binomial coefficients were approximated with the

standard lgamma(n) function.

Realistic theoretical model. Actual experimental results (Fig. 3 in the main text) were compared

with an enhanced realistic theoretical model which allowed to assess the imperfections of the

system. The model includes the following parameters: average photon numbers at the outputs of

both SPDCs, strength of the fiber coupling, losses in heralded and interfering modes as well as

efficiencies of individual TES detectors.

The computations are done with 6×6 complex matrices, where the indexes 1-2 correspond to

heralded modes and 3-4 to the outputs of the variable beam splitter. The indexes 5-6 are responsible

for the losses in modes entering the beam splitter, which are modeled by two additional beam

splitters which bring the SPDC outputs B and C to interference with the vacuum state. The TES

detectors are described by the probability of detecting nd photons in a Fock state |nin〉, given by

the following formula

pTES(nin, nd, η) =







(
nin

nd

)

(1− η)nin−nd ηnd if nd ≤ nin,

0 otherwise,

(S100)

36



where η is the efficiency of the detector, additionally decreased to model imperfections in optical

signal transfer (e.g. fiber coupling). The distribution in Eq. (S100) well models detectors used in

the experiment29.

The numerical program was written in the Java programming language and run on a standard

PC. It allows to compute output probability distributions pS(k, l) for given set of model parameters

and given readouts at heralded modes (n1, n4). The computation results were passed to Python

scripts which prepared Asymptote data files to be merged with experimental plots. The computa-

tions were performed for the same input Fock states as in Fig. 3 in the main text and mean number

of photons equal to 0.2. Then, the program was run for various parameters in order to fit the

theoretical distributions to the actual experimental data. The results are presented in Fig. S3.

6 Mapping between qudit and interacting spin-1
2
-chain quantum computer architectures

Any state of a d-level qudit can be encoded in a chain of d qubits where only one qubit is excited

at a time, i.e. using the single excitation basis |1, 0, . . . , 0〉, |0, 1, . . . , 0〉, etc. The XY Heisenberg

model maps the next-neighbor interaction in the chain to the qudit rotation discussed in the main

text.

XY model. Let us consider an interacting chain of N qubits governed by the following Hamilto-

nian

HXY =

N∑

n=1

Jn
2

[
σx
n σ

x
n+1 + σy

n σ
y
n+1

]
, (S101)

where σx
n, σy

n, σz
n are the Pauli operators acting on the nth qubit and Jn denote couplings between

neighboring qubits in the chain.

We first note that a spin-N−1
2

particle corresponds to an N-qubit chain with relabeled basis

vectors as |m〉, where m = −N−1
2

+ n − 132. The N-qubit Hilbert space is of dimension 2N . Let

us restrict HXY to the N-dimensional single-excitation subspace of this system. This subspace is
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Figure S3: Photon number statistics resulting from Fock state |l, S − l〉 interference. a) |0, 3〉,

b) |0, 4〉, c) |0, 5〉, d) |1, 2〉, e) |2, 2〉, f) |2, 3〉. The BS reflectivities are r = 0.05 (green), 0.2

(red), 0.5 (blue) and 0.95 (gray). Vertical bars represent theoretical values computed for a realistic

system, while dots are values determined in experiment – the probabilities of detecting |k〉 and

|S − k〉 photons behind the BS. The parameters of computation: mean number of photons gener-

ated by SPDC equal to 0.2, TES detection efficiency – 0.9, fiber coupling – 0.7 and overall losses

in the system – 50%. The states a)-c) encode sequences (x0 = 1, x1 = 0, . . . , xS = 0), while in

d) – (0, 1, 0, 0), c) – (0, 0, 1, 0, 0), d) – (0, 0, 1, 0, 0, 0), respectively. The measured probabilities

set their QKTs (|X0|2, |X1|2, . . . , |XS|2), |Xk|2 = |
∑S

l=0A
(r)
S (k, l) · xl|2 of fractionality α = 0.28

(green), 0.60 (red), 1.00 (blue) and 1.72 (gray).
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spanned by the basis vectors |n〉, n = 1, . . . , N , corresponding to spin configurations in which all

spins are “down” apart from just one spin at the vertex n which is “up”, i.e. by the eigenstates

of the σz
tot =

∑

i σ
z
i operator. Then HXY is identical to the Hamiltonian of a spin-N−1

2
particle

H = λSx, where λ is a constant. Here Jn = λ
2

√

n(N − n). This particular form of Jn allows us to

link the XY with the BS interaction. The BS infinitesimal evolution turn the input state |l, S − l〉

into the superposition

HBS|l, S − l〉 = ql,l−1 |l − 1, S − l + 1〉+ ql,l+1 |l + 1, S − l − 1〉 , (S102)

with the amplitudes

ql,l+1 =

√
(l+1)(S−l)

2
. (S103)

The amplitudes reproduce Jn for N = S + 1, n = l + 1 and λ = 1.

Example: quantum annealing processor. A Hamiltonian describing quantum annealing proces-

sor based on N interacting qubits reads

HS(s) = E(s)HP − 1

2

∑

i

∆(s)σx
i , i = 1, . . . , N, (S104)

where s denotes time (s = t/tf , t ∈ [0, tf ]), E(s) and ∆(s) are the transverse and longitudinal

energies, respectively. HP is a dimensionless Hamiltonian

HP = −
∑

i

hi σ
z
i +

∑

i<j

Jij σ
z
i σ

z
j , (S105)

where biases hi and couplings Jij encode a particular optimization problem. Quantum annealing

starts with setting ∆ ≫ E , then ∆ is reduced and E is increased until E ≫ ∆ and HS ≈ HP .

Thus, initially the qubit register is prepared in an eigenstate of the σx
tot =

∑

i σ
x
i operator

and then the following evolution
∑

i<j Jij σ
z
i σ

z
j is applied (for simplicity we assume hi = 0). If

we now take Jij = Jn for two neighboring qubits and Jij = 0 otherwise, we will reproduce the

evolution in the XY model, where the register is initially in the eigenstate of σz
tot and evolution

takes place in the orthogonal subspace
∑

n

Jn
2

[
σx
n σ

x
n+1 + σy

n σ
y
n+1

]
.
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How to perform the QKT of MRI data? The MRI frequency data form a matrix of complex

coefficients {fx,y}, x, y = 1, . . . , N , and their processing requires a two-dimensional QKT. Thus,

the input data have to be encoded in a 2D quantum superposition with {fx,y} defining its amplitudes

For a spin chain implementation this could be the following encoding

|Ψin〉 =
N∑

i,j=1

fi,j |01, . . . , 1i, . . . , 0N〉 |01, . . . , 1j, . . . , 0N〉 . (S106)

Here a long chain of spins is divided into two subchains, and the operations on them are performed

independently.
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