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Abstract  In this present paper, a size-biased Poisson-Aradhana distribution (SBPAD) has been proposed and its nature 

has been studied graphically. Its moments and moments based measures including coefficients of variation, skewness, 

kurtosis and index of dispersion have been obtained and their natures have been discussed graphically. The unimodality and 

increasing hazard rate function of the distribution has been discussed. Method of moments and the method of maximum 

likelihood have been discussed for estimating the parameter. Applications of SBPAD have been explained through three 

examples and it gives much better fit over size-biased Poisson distribution (SBPD) and size-biased Poisson-Lindley 

distribution (SBPLD). 
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1. Introduction 

Let a random variable X  has probability distribution  0 ; ; 0,1,2,..., 0  P x x . Suppose the sample units are 

selected or weighted from the distribution with probability proportional to 
x . Then the corresponding size-biased 

distribution of order   can be defined by its probability mass function (pmf) 
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E X x P x . The simple size-biased distribution and area-biased distribution are the particular 

cases of (1.1) for 1   and 2   respectively. Note that simple size-biased distribution has applications in size-biased 

sampling and area-biased distribution has been used in area-biased sampling. 

When organism occurs in groups and the size of the group influences the probability of detection, size-biased distributions 

are the appropriate choice. Size-biased distributions are a special class of weighted distributions which arise naturally in 

many real life situations when observations from a sample are recorded with probability proportional to some measure of unit 

size, known as probability proportional to size (PPS). In the field applications, size-biased distributions can arise due to 

sampling of individuals with unequal probability by design and unequal detection probability. The concept of weighted 

distributions can be traced to the study of the effect of methods of ascertainment upon frequencies by Fisher (1934). In 

extending the basic ideas of Fisher, Rao (1965) have seen the need for a unifying concept and identified various sampling 

situations that can be modeled by weighted distributions. Size-biased distributions have applications in almost every branch 

of knowledge namely, social science, econometrics, environmental science, biomedical science, human demography,  
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ecology, geology, forestry, are some among others. The fitting of distributions of diameter at breast height (DBH) data arising 

from horizontal point sampling (HPS) using size-biased distributions has been discussed by Van Duesen (1986). Similarly, 

the analysis of HPS diameter increment data using size-biased distributions has been discussed by Lappi and Bailey (1987). 

Patil and Rao (1977, 1978) have detailed discussions and applications of size-biased distributions to the analysis and 

modeling of observed data relating to human population and ecology. Patil (1991, 1996, and 1997) has pursued weighted 

distributions for the purpose of encountered data analysis, equilibrium population analysis subject to harvesting and predation, 

meta-analysis incorporating publication bias and heterogeneity, modeling cluster and extraneous variation, etc., and has 

detailed discussion on applications of size-biased distributions in biostatistics, ecology, environment and risk assessment. A 

number of papers have appeared during a short period of time implicitly using the concept of weighted and size-biased 

distributions and their applications in various fields of knowledge by researchers in statistics, namely, Scheaffer (1972), Patil 

and Ord (1976), Singh and Maddala (1976), Patil (1981), McDonald (1984), Drummer and McDonald (1987), Gove (2000, 

2003), Correa and Wolfson (2007), Ducey (2009), Alavi and Chinipardaz (2009), Ducey and Gove (2015), are some among 

others. 

Shanker (2017) has introduced Poisson-Aradhana distribution (PAD) defined by pmf 

 
   

 

2 2
3

0 2 3

2 5 4 5
;  ; 0,1,2,..., 0

2 2 1

  
 

  


    
  

  
x

x x
P x x             (1.2) 

Its important statistical properties, estimation of parameter and applications have been discussed by Shanker (2017). It has 

been shown by Shanker (2017) that PAD gives much better fit than both Poisson distribution and Poisson-Lindley 

distribution (PLD). It should be noted that PAD is a Poisson mixture of Aradhana distribution when the parameter   of the 

Poisson distribution follows Aradhana distribution introduced by Shanker (2016) having probability density function (pdf.) 
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The pmf of the size-biased Poisson-Aradhana distribution (SBPAD) with parameter   can be obtained as 
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where 
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 is the population mean of the PAD having pmf. (1.2). The pmf of SBPAD (1.4) can also be 

obtained from the size-biased Poisson distribution (SPBD) having pmf 
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when the parameter   of SBPD follows the size-biased Aradhana distribution (SBAD) having pdf 
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Thus, we have  
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which is the pmf of SBPAD obtained earlier in (1.4). 

Ghitany and Mutairi (2008), introduced the size-biased Poisson-Lindley distribution (SBPLD) having pmf 
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Note that SBPLD is a simple size-biased version of Poisson –Lindley distribution (PLD), introduced by Sankaran (1970) 

and it is a Poisson mixture of Lindley (1958) distribution. Ghitany and Mutairi (2008) have discussed its statistical properties, 

estimation of the parameter, and goodness of fit. Shanker et al (2015) has detailed study on applications of SBPLD for 

modeling data on thunderstorms and shown that in majority of datasets, SBPLD gives much better fit than SBPD. 

The main purpose of this paper is to propose a size-biased Poisson-Aradhana distribution (SBPAD) as a size-biased 

Poisson mixture of size-biased Aradhana distribution and investigate some of its properties. Its statistical properties based on 

moments, unimodality, and increasing hazard rate function have been discussed. The estimation of parameter has been 

discussed using both the method of moments and the maximum likelihood. Applications of the distribution have been 

explained through three real observed datasets from biological sciences and the fit has been compared with SBPD and 

SBPLD. 

The nature of SBPAD for some values of parameter   has been shown in figure 1. 

 

Figure 1.  Nature of SBPAD for some values of the parameter  

2. Moments, Skewness, Kurtosis and Index of Dispersion 

The rth factorial moment about origin, using (1.7), of the SBPAD (1.4) can be obtained as 
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Taking  y x r , we get 
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After a simple algebraic simplification using gamma integral, the rth factorial moment about origin of SBPAD (1.4) can be 

expressed as 
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Taking 1,2,3, and 4r  in (2.1) the first four factorial moments can be obtained. Then using the relationship between 

moments about origin (raw moments) and factorial moments, the first four moments about origin of the SBPAD (1.4) are thus 

obtained as 
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 between central moments and raw moments, the 

central moments of the SBPAD (1.4) are given by 
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The expressions for coefficient of variation  .CV , coefficient of Skewness  1 , coefficient of Kurtosis  2  and 

index of dispersion    of the SBPAD (1.4) are thus obtained as 
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The dispersion (over-dispersion, equi-dispersion and under-dispersion) of SBPAD and SBPLD for parameter   are 

presented in table 1. 

Table 1.  Over-dispersion, equi-dispersion and under-dispersion of SBPAD and SBPLD for parameter  

Distributions 

Over-dispersion 

 2
   

Equi-dispersion 

 2
   

Under-dispersion 

 2
   

SBPAD 1.916770   1.916770   1.916770   

SBPLD 1.671162   1.671162   1.671162   

The nature of coefficient of variation (C.V), coefficient of Skewness  1 , coefficient of Kurtosis  2  and index of 

dispersion    of SBPAD for varying values of parameter   are shown graphically in figure 2 

  

  

Figure 2.  Nature of coefficient of variation, coefficient of Skewness, coefficient of Kurtosis, and index of dispersion of SBPAD for varying values of 

parameter  
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3. Statistical Properties  

3.1. Unimodality and Increasing Failure Rate 

Since 
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is a deceasing function of x ,  2 ;P x  is log-concave and this means that SBPAD is unimodal, has an increasing failure 

rate (IFR), and hence increasing failure rate average (IFRA). Also, it is new better than used in expectation (NBUE) and has 

decreasing mean residual life (DMRL). A discussion about definitions, concepts and interrelationship between these 

reliability concepts are available in Barlow and Proschan (1981). 

3.2. Generating Function 

The probability generating function of the SBPAD (1.4) can be obtained as 
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Thus, the moment generating function of the SBPAD (1.4) is given by 
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4. Estimation 

4.1. Estimation by Method of Moments 

Since SBPAD has only one parameter to be estimated, equating the population mean to the corresponding sample mean, 

method of moments estimate (MOME)   of the parameter   of SBPAD is the solution of the following cubic equation in 

  

     3 21 2 3 2 6 3 24 0        x x x , 

where x  is the sample mean. This equation can be easily solved using Newton-Raphson method for MOME estimate   of 

  of SBPAD. 

4.2. Estimation by Maximum Likelihood Method 

Let  1 2, ,..., nx x x  be a random sample of size n from the SBPAD (1.4). Suppose xf  be the observed frequency in the 

sample corresponding to ( 1,2,3,..., ) X x x k  such that 

1


k

x

x

f n , k  being the largest observed value having 

non-zero frequency. Then, the log likelihood function, log L , of the SBPAD (1.4) can be expressed as 
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The first derivative of the log likelihood function can be given by  
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where x  is the sample mean. 

The maximum likelihood estimate (MLE) ̂  of the parameter   of SBPAD (1.4) is thus the solution of the following log 

likelihood equation 
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This non-linear log likelihood equation can be solved by any iterative methods. Here we used Newton-Raphson method to 

solve above equation. Note that the initial value for Newton-Raphson method is the value given by MOME of the parameter . 

5. Goodness of Fit 

We know that when organism occurs in groups and the group size influences the probability of detection, size-biased 

distributions are the appropriate choice to model the datasets. In this section, three examples of real datasets, two from the 

size distribution of freely-forming small group at various public places, available in James (1953) and Coleman and James 

(1961) and one from the number of pairs of running shoes owned by 60 members of an athletic club, available in Simonoff 

(2003, p. 100), have been taken for testing the goodness of fit of SBPAD and compared with SBPD and SBPLD. The 

estimation of parameter of all distributions is based on MLE. The criterion for the selection of best distribution is based on  

the values of chi-square  2
 , 2log L  and AIC (Akaike Information Criteria). The AIC is calculated using 

2log 2  AIC L k , where k  the number of parameters involved in the distribution. The best distribution is the 

distribution whose values of chi-square, 2log L  and AIC is the lowest. Clearly SBPAD gives a much better fit as compared 

with SBPD and SBPLD, and, therefore, it should be considered an important distribution over SBPD and SBPLD. 

Table 2.  Play Groups-Eugene, Spring, Public Playground A 

Group Size 
Observed 

frequency 

Expected frequency 

SBPD SBPLD SBPAD 

1 

2 

3 

4 

5 

306 

132 

47 

10 

2 

292.2 

155.2 

41.2 

7.3 

1.1 

309.4 

131.2 

41.1 

11.3 

4.0 

308.6 

132.2 

41.3 

11.2 

3.7 

Total 497 497.0 497.0 497.0 

ML Estimate  ˆ 0.5312   ˆ 4.3548   ˆ 4.95006   

2
   6.479 1.494 1.373 

d.f.  2 2 2 

p-value  0.039 0.4737 0.5033 

2log L   2142.03 971.86 971.59 

AIC  2144.03 973.86 973.59 

Table 3.  Play Groups-Eugene, Spring, Public Playground D 

Group Size 
Observed 

frequency 

Expected frequency 

SBPD SBPLD SBPAD 

1 

2 

3 

4 

5 

316 

141 

44 

5 

4 

306.3 

156.1 

39.8 

6.8 

1.0 

323.0 

132.6 

40.2 

10.7 

3.5 

322.2 

133.4 

40.4 

10.6 

3.4 

Total 510 510.0 510.0 510.0 
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Group Size 
Observed 

frequency 

Expected frequency 

SBPD SBPLD SBPAD 

ML Estimate  ˆ 0.50980   ˆ 4.52061   ˆ 5.12468   

2
   2.395 2.947 2.658 

d.f.  2 2 2 

p-value  0.3019 0.2291 0.2647 

2log L   2376.75 972.78 972.47 

AIC  2378.75 974.78 974.47 

Table 4.  The number of pairs of running shoes owned by 60 members of an athletic club, available in Simonoff (2003, p. 100) 

Number of pairs 

of running shoes 

Observed 

frequency 

Expected Frequency 

SBPD SBPLD SBPAD 

1 18 15.0 20.3 19.8 

2 18 20.8 17.4 17.7 

3 12 14.4 10.9 11.2 

4 

5 

7 

5 

6.6

3.2





 
5.9 

5.5 

6.0 

5.3 

Total 60 60.0 60.0 60.0 

ML Estimate  ˆ 1.383333   ˆ 1.818978   ˆ 2.20145   

2
   1.87 0.64 0.39 

d.f.  2 3 3 

P-value  0.3926 0.8872 0.9423 

2log L   556.13 187.08 186.54 

AIC  558.13 189.08 188.54 

The probability plots of SBPAD, SBPLD and SBPD for the considered datasets are shown in figure 3.  

 

  

 

Figure 3.  Fitted probability plots for distributions for considered datasets 
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6. Concluding Remarks 

In this paper, a size-biased Poisson –Aradhana distribution (SBPAD) has been proposed by size-biasing the discrete 

Poisson- Aradhana distribution (PAD) suggested by Shanker (2017), a Poisson mixture of Aradhana distribution introduced 

by Shanker (2016). Its statistical constants including coefficients of variation, skewness, kurtosis, and index of dispersion 

have been studied. Both the method of moments and the maximum likelihood estimation has been discussed Applications of 

SBPAD have been explained with three examples of real datasets and the goodness of fit shows that SBPAD gives better fit 

over SBPD and SBPLD. 
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