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ABSTRACT: A power-law relation for the frequency—area distribution (FAD) of medium and large landslides (e.g. tens to millions of
square meters) has been observed by numerous authors. But the FAD of small landslides diverges from the power-law distribution,
with a rollover point below which frequencies decrease for smaller landslides. Some studies conclude that this divergence is an ar-
tifact of unmapped small landslides due to lack of spatial or temporal resolution; others posit that it is caused by the change in the
underlying failure process. An explanation for this dilemma is essential both to evaluate the factors controlling FADs of landslides and
power-law scaling, which is a crucial factor regarding both landscape evolution and landslide hazard assessment. This study exam-
ines the FADs of 45 earthquake-induced landslide inventories from around the world in the context of the proposed explanations. We
show that each inventory probably involves some combination of the proposed explanations, though not all explanations contribute
to each case. We propose an alternative explanation to understand the reason for the divergence from a power-law. We suggest that
the geometry of a landslide at the time of mapping reflects not just one single movement but many, including the propagation of nu-
merous smaller landslides before and after the main failure. Because only the resulting combination of these landslides can be ob-
served due to a lack of temporal resolution, many smaller landslides are not taken into account in the inventory. This reveals that
the divergence from the power-law is not necessarily attributed to the incompleteness of an inventory. This conceptual model will
need to be validated by ongoing observation and analysis. Also, we show that because of the subjectivity of mapping procedures,
the total number of landslides and total landslide areas in inventories differ significantly, and therefore the shapes of FADs also differ
considerably. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
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minor differences in the method used to estimate B (Bennett
et al., 2012; Tanyas et al., 2018). Additionally, other factors

Introduction

The statistical properties of landslide inventories are commonly
described using frequency—area distribution (FAD) curves,
which plot landslide areas versus the corresponding cumula-
tive or non-cumulative landslide frequencies. Observations
show that a power-law seems to be valid for medium and large
landslides (e.g. tens to millions of square meters), and also for
rock-fall distributions across the range of rock-fall sizes
(Malamud et al., 2004).

The slope of the power-law is defined using a power-law ex-
ponent (scaling parameter, B) (Figure 1). The power-law tail,
where we calculate B, is arguably the most important part of
the FAD because it gives insight to the characteristics of land-
slide size distribution and contains the greatest volume of mate-
rial (Bennett et al., 2012). For example, Hovius et al. (1997)
used B to quantify total denudation caused by landsliding.
Power-law fit and the identified B value also are used as a tool
for quantitative analysis of landslide hazard (Guzzetti et al.,
2005). However, the B value of a given FAD is sensitive to

such as mapping techniques and expertise of mappers can
cause uncertainty in FAD and B, which has not been analyzed
in detail.

For most landslide inventories, the frequencies of small land-
slides generally diverge from the power-law (Guzzetti et al.,
2002; Malamud et al., 2004; Stark and Hovius, 2001; Van
Den Eeckhaut et al., 2007). The point where divergence begins
is defined as the cutoff point (Stark and Hovius, 2001) which is
visible in both the cumulative and non-cumulative FADs
(Figure 1). For non-cumulative landslide FADs, the peak point
of the curve after which the frequency—density value begins
to decrease for smaller landslides following a positive power-
law decay is commonly referred to as the rollover point (Van
Den Eeckhaut et al., 2007) (Figure 1(a)). Some studies refer to
the cutoff point as the rollover point (Parker et al., 2015), but
in this study, we refer to the divergence point as the cutoff point
and the peak point of the non-cumulative probability distribu-
tion curve as the rollover point.
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The cause of the divergence is a controversial issue and five
hypotheses for this divergence have been proposed. The focus
of this issue is the cutoff point rather than the rollover point
(Figure 1) because that is where the divergence from the nega-
tive power-law decay is first observed.

The first hypothesis (Hypothesis 1) is that the power-law di-
vergence is an artifact of undersampling small slides (Hungr
et al., 1999; Stark and Hovius, 2001; Brardinoni and Church,
2004) caused by inadequate resolution of the imagery used to
create the landslide inventory.

Three other hypotheses (Hypothesis 2, 3 and 4) that
argue that the divergence from the power-law is real and can
be attributed to physical explanations. Hypothesis 2 suggests
that rollover is caused by the transition between the factors
controlling slope-failure mechanisms of large, deep landslides
versus small, shallow landslides (Katz and Aharonov, 2006).
Guzzetti et al. (2002) argued that large, deep landslides are
primarily controlled by friction, whereas small, shallow land-
slides are controlled more by cohesion. Stark and Guzzetti
(2009) and Frattini and Crosta (2013) used the mechanical
properties of the substrate to propose an explanation for the
power-law divergence. Stark and Guzzetti (2009) claimed that
the scaling of small, shallow failures is the result of the low
cohesion of soil and regolith, whereas the power-law distribu-
tion observed for larger landslides is controlled by the greater
cohesion of bedrock. Similarly, Bennett et al. (2012) suggest
through analysis of a large database of landslides in the
Illgraben, Switzerland, that failures within the rollover and
power-law parts of the distribution represent two different types
of slope failure. Type-1 refers to the numerous small, shallow
slides within the top loose weathered layer of slopes where
the depth and thus the size of the distribution is limited by the
depth of the weathered layer. The depth of this layer limits
the volume of landsliding and causes the rollover. Type-2 slides
are less common, deeper and larger rock slides and falls
where the depth is controlled by fractures within the bedrock.
These failures have a wide range of depths and make up the
power-law tail.

Hypothesis 3 is based on the geomorphology of an area and
claims that the distribution of soil moisture over the landscape
controls the size distribution and FADs of landslides (Pelletier
et al., 1997). To model the FAD of landslides, Pelletier et al.
(1997) examined the FADs of two historical and one
earthquake-induced landslide-event inventory and conducted
a slope-stability analysis using soil moisture as a controlling
factor. They defined the domains where shear stress is greater
than a threshold value and showed that FADs of these domains
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give similar power-law to FADs of landslides. According to this
hypothesis, the landslide areas could be associated with
areas of simultaneously high levels of soil moisture and steep
slopes. Whereas this might be the case for medium and large
landslides, the terrain surface is not dissected on a scale that
would control smaller landslides, and so fewer landslides in
this size range are expected. Therefore, the effect of the smooth
topography at small scales causes rollover in the FAD of
landslides.

Hypothesis 4 posits that the power-law divergence results
from physiographic limitations (Guthrie and Evans, 2004; Guth-
rie et al., 2008). This argument suggests that middle and upper
slopes are most susceptible to landslide initiation because of
steepness, and the mobilized material moves downslope and
amalgamates into larger landslides. Small landslides occur
where long runout is improbable because of the physiography
of the slope; such areas are less common in most landscapes.
Thus, this argument interprets the power-law divergence as a
consequence of slope-length constraint on the downslope prop-
agation of long-runout landslides.

Hypothesis 5 suggests that a lack of temporal mapping reso-
lution causes rollover observed in rock-falls (Williams et al.,
2018). Barlow et al. (2012) showed the effect of temporal reso-
lution of mapping on FADs of rock-falls. They compared inven-
tories having temporal resolutions of 1 and 19 months and
stated that coarser temporal resolution causes an increase in
the superimposition of rock-fall events. Williams et al. (2018)
went one step further by monitoring rock-falls on a slope
(length ~180 m and height ~60 m) at approximately 1-hour in-
tervals. They showed that increasing temporal resolution cap-
tures many smaller failures and significantly changes the FAD.
Williams et al. (2018) also showed that this high-temporal-
resolution monitoring increased the power-law exponent to
2.27 (1 hour) from 1.78 (30days). Additionally, they reported
that the low-temporal-resolution inventory (30 days) had a roll-
over, whereas the inventory created from near-continuous
slope monitoring did not.

There is currently no consensus on the reason why landslides
show fractal size distributions and the FAD diverges from fractal
scaling for small landslide areas. The arguments about whether
the rollover is real or is an artifact can be traced back to the
very definition of a landslide. The definition of what constitutes
a single occurrence of a landslide can be complex and a matter
of debate; this differs significantly from other phenomena that
have a power-law relation, such as earthquakes. Earthquakes
are recorded by seismometers and, except for events closely
spaced in time, each distinct fault rupture can be assessed
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and quantified separately from others. In this context, diver-
gence from the power-law decay is attributed to the loss of per-
ceptibility of smaller events (Davison and Scholz, 1985). When
quantifying landslides, on the other hand, the number of land-
slides cannot be objectively identified because of both amal-
gamation of coalescing or adjacent landslides and the
subjectivity of mapping procedures.

Several factors cause the amalgamation of landslides in in-
ventory maps. Delineating landslide polygons is subjective
and depends on the methodology followed, the skill of the in-
terpreters, and the time invested in the inventory (Soeters and
van Westen, 1996). Adjacent landslides commonly are delin-
eated as a single polygon if their runouts or scars overlap and
differentiation is difficult (Harp and Jibson, 1995, 1996). Poor
image resolution or contrast between affected and unaffected
areas might be another reason for amalgamation (Marc and
Hovius, 2015). Lack of temporal resolution also can cause
amalgamation of landslides.

Marc and Hovius (2015) propose a method for automatic de-
tection and separation of amalgamated polygons. The algo-
rithm redefines landslide polygons according to geometric
and topographic considerations. For example, if a landslide
polygon crosses a ridge, the algorithm splits this polygon into
two along the ridge-line. The methodology provides only a par-
tial correction for amalgamated landslides, however. Along the
same slope, multiple adjacent landslides can be triggered and
amalgamated. For such cases, the suggested methodology is
not capable of detecting amalgamation.

Li et al. (2014) manually differentiate the amalgamated land-
slides provided by an automated landslide-detection algorithm
(Parker et al., 2011) for the 2008 Wenchuan earthquake-
induced landslide (EQIL) inventory. They show that amalgam-
ated landslides can strongly bias both total number of
landslides and individual landslide areas. As a result, this also
significantly affects the FAD of landslides and the estimated
landslide volume, which is highly sensitive to the changes both
in the number of landslides and the area of each individual
landslide (Li et al., 2014).

No clear physical process explains why landslide distribu-
tions should follow a power-law across the entire size distribu-
tion (Hergarten, 2003). Yet considering the literature showing
that the power-law seems to be valid for medium and large
landslides, it is logical to hypothesize that in the absence of ar-
tifacts, the scaling might also continue to smaller landslide sizes
as is the case for rock fall inventories (Williams et al., 2018). If it
does not, then a physical explanation should reveal something
about the fundamentals of landslide processes. Whether the
cutoff and rollovers are artifacts or if they reflect an actual
change in the physical process for smaller slides is unclear. A
consistent explanation for the observed variability in FAD pat-
terns can help us isolate the physically based factors that yield
a fundamental understanding of the landslide process.
Explaining this issue also provides valuable information to un-
derstand the factors controlling the FAD of landslides and the
power-law exponent (B) as well.

This study aims to better understand the factors controlling
the FADs of landslides, particularly why the FAD cutoffs and
rollovers are present even in inventories that are considered
complete. We do so by analyzing 45 digital EQIL inventories
triggered by 32 earthquakes. This contrasts with the aforemen-
tioned studies that base their proposed explanations only on
one or a few inventories. We analyze the different proposed
rollover explanations using examples from these data and
show that though each could contribute in some way, none
of them by itself is adequate to cover the whole phenomenon.
We elaborate on the argument that lack of temporal resolution
in mapping of landslides causes superimposition and

© 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

coalescence of features because the landslide events that
happened at different times are formed on top of each other
and afterwards look like a single event (Barlow et al., 2012;
Williams et al., 2018). We suggest an alternative conceptual
model to the existing hypotheses. Our model argues that the
divergence from the power-law and rollover are caused by
lack of temporal resolution with which to capture the smallest
of landslides.

Input Data

Earlier studies for explaining the rollover use a variety of histor-
ical landslide inventories that are not limited to those related to
earthquakes (Guzzetti et al., 2002; Malamud et al., 2004). We
use an EQIL inventory database (Schmitt et al., 2017) that was
collected by Tanyas et al. (2017).

This database contains 64 digital EQIL inventory maps from
around the world covering the period from 1971 to 2076.
However, they have differing levels of quality and complete-
ness because each inventory was created for a different pur-
pose based on different expertise and materials. For example,
the 2015 Gorkha EQIL inventory of Tanyas et al. (2018) was
created soon after the earthquake to understand the general
spatial size-distribution characteristics of the triggered land-
slides; therefore, the inventory is preliminary and includes only
a small part of the landslide-affected area with a high amount of
amalgamation. On the other hand, Harp et al. (2016) published
the 2010 Haiti inventory about six years after the event. This in-
ventory covers the entire area affected by landslides down to
the smallest resolvable landslide sizes and is far more detailed
and comprehensive.

The 45 EQIL inventories from 32 earthquakes used in this
study are described in Table I. Except for the 2008 Wenchuan
inventory of Li et al. (2014) and the 2007 Pisco inventory of
Lacroix et al. (2013), where landslides were mapped from satel-
lite imagery using an automated algorithm and manual delinea-
tion, all other inventories were created primarily based on
systematic visual interpretation of satellite images and/or aerial
photography (Tanyas et al., 2017).

Tanyas et al. (2018) numerically assessed the validity of
power-law distribution for these earthquake-induced landslide
inventories. They used the method of Clauset et al. (2009)
and generated P-values based on the Kolomogrov—-Smirnov sta-
tistic. A P-value close to 1 indicates a good fit to the power-law
distribution, whereas a p-value equal to or less than 0.1 might
indicate that the power-law is not a plausible fit to the data.
They showed that 39 of the 45 inventories have P-values larger
than 0.1 and thus the power-law fit is a plausible hypothesis for
landslide inventories in general.

Analysis
FADs of EQIL inventories

We calculate the cutoff and P-values using the method de-
scribed by Clauset et al. (2009) (Table 1) (see Supplementary
material) and plotted the landslide FADs from the inventories
analyzed (Figure 2). We identify the landslide size bin where
the corresponding FAD begins to roll over. We consider them
approximate rollover points (Table I) because the locations of
rollover points differ slightly based on the binning methodol-
ogy. We identify rollover points using ten different bin sizes to
quantify the variation in rollover point (see Supplementary ma-
terial). As a result, we define average rollover values with 95%
confidence intervals. Empirical curves from Malamud et al.

Earth Surf. Process. Landforms, (2018)
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Table I. EQIL inventories used in this study. Cutoff and P-values were determined using the methodology of Clauset et al. (2009)
Approximate
rollover  Cutoff points
ID Location Date/Time P-value B point (m?) m?) Reference study
1 Guatemala 1976-02-04/09:01:43 UTC 0.67 2.21+£0.14 19135£7x10° Harp et al., 1981
2 Friuli (Italy) 1976-05-06/20:00:11 UTC 0.45 2.20+£0.09 2050+211 1466+1x10° Govi, 1977
3 Izu Oshima Kinkai (Japan) 1978-01-14/03:24:39 UTC 0.89 2.61+0.11 537+83 1508+2x10° Suzuki, 1979
4 Mammoth Lakes (USA) 1980-05-25/19:44:50 UTC 0* 2.29+0.09 2696+467 6784+2x10° Harp et al., 1984
5 Coalinga (USA) 1983-05-02/23:42:37 UTC 0.31 2.64+0.06 1831+3x10° Harp and Keefer, 1990
6 Loma Prieta, California (US) 1989-10-18/00:04:15 UTC 0.55 2.93+0.28 3642+5x10° McCrink, 2001
7 Limon (Costa Rica) 1991-04-22/21:56:51 UTC 0.92 3.30+0.18  1231+189 9171+1x10°  Marc et al., 2016
8 Finisterre Mt./ (Papua N. G.) 1993-10-13/02:06:00 UTC 0.96 2.40+0.18 2351+354 34585+9x10°  Meunier et al., 2008
9 Northridge (USA) 1994-01-17/12:30:55 UTC 0.88 2.62+0.11 617+74 9189+1x10° Harp and Jibson, 1995, 1996
10  Hyogo-ken Nanbu (Japan) 1995-01-16/20:46:52 UTC 0.11 2.17+0.02 66+8 102+2x10°  Uchida et al., 2004
11 Umbria-Marche (Italy) 1997-09-26/09:40:26 UTC 0.55 2.85+0.37 4461461 10412+3x10° Marzorati et al., 2002
12 Jueili (Taiwan) 1998-07-17/04:51:14 UTC 0.99 3.21+0.60 2168+378 10920+3x10° Huang and Lee, 1999
13 Chi-chi (Taiwan) 1999-09-20/17:47:18 UTC 0.99 2.29+0.09 881+138 26259+7x10°  Liao and Lee, 2000
14 Denali Alaska 2002-11-03/22:12:41 UTC 0.96 2.11+0.06 16144+1997 24153+7x10° Gorum et al., 2014
15  Lefkada lonian Islands 2003-08-14/05:14:54 UTC 0.83 2.77+0.46  1984+219 19164+8x10° Papathanassiou et al,, 2013
(Greece)
16a Mid-Niigata (Japan) 2004-10-23/08:56:00 UTC 0.11 2.31+0.21 508+87 520+2x10° GSI of Japan, 2005
16b Mid-Niigata (Japan) 2004-10-23/08:56:00 UTC 0.96 2.32+0.05  1198+207 1683+4x10? Sekiguchi and Sato, 2006
16¢c Mid-Niigata (Japan) 2004-10-23/08:56:00 UTC 0.25 2.48+0.04 617+74 1157£2x10" Yagi et al., 2007
17a Kashmir (India-Pakistan) 2005-10-08/03:50:40 UTC 0.58 2.39+0.12 804+152 6573+1x10° Sato et al., 2007
17b  Kashmir (India-Pakistan) 2005-10-08/03:50:40 UTC 0.76 2.39+0.07 4166+547 44139+5x10° Basharat et al.,, 2014
17¢  Kashmir (India-Pakistan) 2005-10-08/03:50:40 UTC 0.62 3.67+0.09 8767+1450 57717+9x10° Basharat et al., 2016
18 Kiholo Bay (Hawaii) 2006-10-15/17:07:49 UTC 0.94 2.45+0.46 17203+6x10° Harp et al., 2014
19a Aysen Fjord (Chile) 2007-04-21/17:53:46 UTC 0.57 2.07£0.10  2115+527 19166+3x10°  Sepulveda et al., 2010
19b  Aysen Fjord (Chile) 2007-04-21/17:53:46 UTC 0.01* 1.82+0.18 2578+512 5312+3x10°  Gorum et al., 2014
20 Niigata Chuetsu-Oki 2007-07-16/01:13:22 UTC 0.80 2.80+0.28  1009+109 828+3x10% Kokusai Kogyo, 2007
(Japan)
21 Pisco (Peru) 2007-08-15/23:40:57 UTC 0.93 2.63+0.23 2080332 4100£1x10°  Lacroix et al., 2013
22a  Wenchuan (China) 2008-05-12/06:28:01 UTC 0.12 2.77+0.10 1110+£190 97846+1x10* Daj et al., 2011
22b  Wenchuan (China) 2008-05-12/06:28:01 UTC 1.00 3.09+0.10  1110£190  143664+6x10°> Xu et al., 2014b
22¢  Wenchuan (China) 2008-05-12/06:28:01 UTC 0* 3.23+0.05 1661x211 78826+5x10° Li et al., 2014
22d Wenchuan (China) 2008-05-12/06:28:01 UTC 1.00 2.72+0.12 35767 39169+4x10° Tang et al., 2016
23 Iwate-Miyagi Nairiku 2008-06-13/23:43:45 UTC 0.96 2.39+0.22 384+60 5653+£2x10° Yagi et al., 2009
(Japan)
24a Haiti 2010-01-12/21:53:10 UTC 0.99 2.71+0.25 122+16 6330+1x10° Gorum et al., 2013
24b Haiti 2010-01-12/21:53:10 UTC 0* 2.26+0.07 39+8 2674+5%10° Harp et al., 2016
25  Sierra Cucapah (Mexico) 2010-04-04/22:40:42 UTC 0.13 2.61+0.12 496+113 1457+1x10> Barlow et al., 2015
26  Yushu (China) 2010-04-13/23:49:38 UTC 0.01* 2.26+0.33 106+15 581+6x10° Xu et al.,, 2013
27  Eastern Honshu (Japan) 2011-03-11/05:46:24 UTC 0.87 2.90+0.29 97+18 1916+6x10> Wartman et al.,, 2013
28a Lushan (China) 2013-04-20/00:02:47 UTC 0.67 2.63+0.20 496197 5726+1x10° Li et al., 2013
28b Lushan (China) 2013-04-20/00:02:47 UTC 0.94 2.93+0.21 5359+1x10° Xu et al., 2015
29  Minxian-Zhangxian 2013-07-21/23:45:56 UTC 0.78 2.27+0.11 106+15 228+6x10> Xu et al., 2014a
(China)
30 Ludian (China) 2014-08-03/08:30:13 UTC 0.99 2.46+0.18 761139 9234+2x10° Tian et al., 2015
31a Gorkha (Nepal) 2015-05-12/07:05:19 UTC 0.68 2.40+0.08 1397+193 5210+1x10° Zhang et al., 2016
31b Gorkha (Nepal) 2015-05-12/07:05:19 UTC 0.95 2.04+0.09 13517 8461+1x10° Tanyas et al., 2018
31c  Gorkha (Nepal) 2015-05-12/07:05:19 UTC 0* 2.49+0.11 211+38 1344+1x10> Roback et al., 2017
32a Kumamoto (Japan) 2016-04-15/16:25:06 UTC 0.79 2.44+0.29 377+114 6249+2x10° DSPR-KU, 2016
32b Kumamoto (Japan) 2016-04-15/16:25:06 UTC 0.56 2.02+0.14 192+25 2362+1x10° NIED, 2016

*Inventory does not meet the criteria for a power-law based on the Kolmogorov-Smirnov statistic.

(2004) also are shown for comparison. Results show that
power-law scaling at medium to large landslide areas exists
for 39 inventories having P-value larger than 0.1 (Tanyas
et al, 2018) (Table 1), whereas all of them diverge from
power-law scaling for smaller areas (Figure 2). The FADs for
medium to large landslides of many of the inventories match
the shape, though not necessarily the slope of the modeled roll-
over of Malamud et al. (2004). Most of the FADs plot below the
theoretical curves, which Malamud et al. (2004) interprets as an
indicator of incompleteness. Some inconsistencies are difficult
to explain. For example, the FADs of some inventories extend
beyond the empirical curves at small landslide areas
(Figure 2(g)—(h)). In these inventories, the rollover point is not
located where predicted by the empirical curves. In fact, for a

© 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

significant number of EQIL inventories, the form and position
of the rollover do not follow the modeled empirical distribution
curves. Furthermore, we observe FADs without an obvious roll-
over for some inventories such as the Guatemala (Harp et al.,
1981), Coalinga (Harp and Keefer, 1990), Loma Prieta
(McCrink, 2001), Kiholo Bay (Harp et al., 2014) and Lushan
(Xu et al., 2015) inventories (Figure 2(h)). This implies that
existing rollover explanations need to be reevaluated.

Rollover and cutoff sizes

We plot the rollover points of all EQIL inventories in the same
graph for comparison (Figure 3(a)). This plot shows that the

Earth Surf. Process. Landforms, (2018)
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2010 Haiti inventory of Harp et al. (2016), which also is well
documented and one of the most complete inventories in this
EQIL inventory database (Tanyas et al., 2018), gives the
smallest rollover size (~40 m?) with the highest frequency den-
sity value (y-axis in a FAD graph). At the other end of the spec-
trum, the 2002 Denali inventory of Gorum et al. (2014) has the
largest rollover size (~16 000 m?). Gorum et al. (2014) noted
that many small landslides might not have been mapped in this
inventory because of low-resolution satellite imagery. How-
ever, the meaning of this large rollover size should not entirely
be associated with the poor resolution of the interpreted imag-
ery; many other studies use imagery of similarly low resolution
(Figure 3(b)). Also, it could reflect real differences in the distri-
bution. For example, Jibson et al. (2004) stated that compared

© 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

with comparable or lower magnitudes earthquakes, the Denali
earthquake had significantly lower concentrations of rock-falls
and rock slides and proposed that this was because the earth-
quake was deficient in high-frequency energy and attendant
high-amplitude accelerations. This argument requires a com-
prehensive analysis considering the dominant frequencies of
earthquakes that is beyond the scope of this study.

We compare the rollover sizes with the cutoff values
(R?=0.333 and RMSE=0.486) (Figure 4(a)). Although the results
show no one-to-one relation between rollover and cutoff
values, the increasing cutoff values correlate generally with in-
creasing rollover values. Also, we plot both the rollover and
cutoff values in relation to imagery resolution (Figure 4(b) and
4(c)). The lack of systematic patterns shows that high-resolution
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Figure 2. (continued)

imagery is not required to have a small rollover or cutoff value
and vice versa. However, the results do reveal that only the
smallest rollovers occur with the highest resolution imagery.
This implies that spatial resolution partly controls the rollover
point but that other factors also contribute to the divergence
from a power-law.

Proposed hypotheses

Here, we analyze the different proposed rollover hypotheses
using examples from the data presented above.

Hypothesis T argues that the divergence/rollover is an artifact
based on limitations in mapping small landslides. But most
event inventories that claim to be complete, which means they
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include virtually all landslides triggered by the corresponding
event down to a well-defined size, also have a rollover
(Guzzetti et al., 2002; Malamud et al., 2004). If the divergence
were purely a mapping artifact, a very large number of small
landslides should be observable following earthquakes, but
field investigations and published comprehensive landslide in-
ventories show this not to be the case (Malamud et al., 2004).

To demonstrate this contrast between the theoretical expec-
tation and the field data, we analyze the FAD from the
Northridge inventory (Harp and Jibson, 1995, 1996), which
used high-altitude analog aerial photography and thus might
have inadequate resolution to detect very small landslides.
Figure 5 shows the Northridge data diverging from the power-
law fit around landslide areas of 9000 m>. However, Harp
and Jibson (1995, 1996) estimated that they missed no more

Earth Surf. Process. Landforms, (2018)



FACTORS CONTROLLING LANDSLIDE FREQUENCY-AREA DISTRIBUTIONS

(a) g (b) Cutoff values (m2) Resolution
N ‘gjm IDs Inventories 10° 10 10* 106 of imagery
22b ©10 Hyogo-ken Nanbu / Uchida et al., 2004 4m
» @29 Minxian-Zhangxian / Xu et al., 2014a 0.5to2m
@16a Mid-Niigata / GSI of Japan, 2005
@26 Yushu/Xuetal, 2013 0.2to 10m
©20 Niigata Chuetsu-Oki / Kokusai Kogyo, 2007
asb ©16¢c Mid-Niigata / Yagi et al., 2007 20m
=] ©O31c Gorkha / Roback et al., 2017 0.2t00.5m
133 &2‘: ©25 Sierra Cucapah / Barlow et al., 2015 2.5m
= 1%1 ..29 @2 Friuli / Govi, 1977
III 9 ©3  |zu Oshima Kinkai / Suzuki, 1979 5to25m
- & 016b Mid-Niigata / Sekiguchi and Sato, 2006 5t025m
26 ezza ©5 Coalinga / Harp and Keefer, 1990 im
27 24a @27 Eastern Honshu / Wartman et al., 2013 0.5to2.5m
©32b Kumamoto / NIED, 2016
22d @24b Haiti / Harp et al., 2016 0.6m
16 16c ©6  Loma Prieta / McCrink, 2001 30m
& 31b.. . o e @21 Ppisco / Lacroix et al,, 2013 5m
E ! 23 @31a Gorkha / Zhang et al., 2016 2to5.8m
?_,n 12b ©19b Aysen Fjord / Gorum et al., 2014 S5m
g = @28b Lushan / Xu et al,, 2015 0.2t05.8m
8 |I|- 023 |wate-Miyagi Nairiku / Yagi et al., 2009 5tol0m
- b 1724 @28a Lushan / Lietal.,, 2013 0.2t025m
g 8 o @32a Kumamoto / DSPR-KU, 2016
g fae @243 Haiti / Gorum et al., 2013 0.6t01.0m
g bsae o e @17a Kashmir / Sato et al., 2007 25m
'S ©4  Mammoth Lakes / Harp et al., 1984 im
2'-59* .7 @31b Gorkha / Tanyas et al., 2018 1to5m
@7 Llimon/Marcetal., 2016 30m
3 20 @9 Northridge / Harp and Jibson, 1995 l1to2m
=] @30 Ludian/ Tian et al., 2015 2to 10 m
Y 12 23c ©11 Umbria-Marche / Marzorati et al., 2002 1to5m
o 32a e @12 Jueili / Huang and Lee, 1999
- 21 ©18 Kiholo Bay / Harp et al., 2014 3m
2@ 17b ©1 Guatemala/Harp et al., 1981 im
1568 14 @15 Lefkada / Papathanassiou et al,, 2013
19b e ©19a Aysen Fjord / Sepulveda et al., 2010 10to35m
i @14 Denali f Gorum et al., 2014 1to30m
19a @13 Chi-chi / Liao and Lee, 2000
@8  Finisterre Mt. / Meunier et al., 2008 30m
11 @22d Wenchuan / Tang et al., 2016 05t025m
a ©17b Kashmir / Basharat et al., 2014 25m
o~ ©17c Kashmir / Basharat et al., 2016 25m
w I I r ©22c Wenchuan / Lietal., 2014a 3tol0m
T1E+1 1E+2 1E+3 1E+4 1E+5| ©22a Wenchuan / Dai et al., 2011 5.8t025m
Rollover point (m?) ©22b Wenchuan / Xu et al., 2014b 1t019.5m

Figure 3. Graphs showing the (a) distribution of rollover points, and (b) the inventories with the scale/resolution of imageries used sorted in descend-
ing order according to their cutoff values. [Colour figure can be viewed at wileyonlinelibrary.com]

than about 20% of landslides greater than 5 m in maximum di-
mension and no more than 50% of those smaller than 5m.
They also estimated that they mapped more than 90% of the
area covered by landslides, which suggests that most of the
landslides larger than 5m across (=25m?) were mapped in
the Northridge inventory.

This resolution estimate differs significantly from the cutoff
value. If, in fact, Harp and Jibson (1995, 1996) could not map
the small landslides as completely as they thought because of
inadequate image resolution, then the FAD for a theoretically
complete version of the inventory should follow a power-law
also for small landslides. To test this argument, we construct a
power-law curve for the Northridge inventory (Figure 5). Based
on this theoretical distribution, we calculate the number of
landslides for each bin from 25m? to the cutoff point
(=9000 m?). For each bin, we also estimate the number of land-
slides that theoretically should exist and calculate the differ-
ence between these values and the number of landslides in
the same bins for the actual inventory. The results indicate that
more than 8 million more landslides would have been triggered
than were mapped in the existing Northridge inventory of Harp
and Jibson (1995, 1996). Even if landslides smaller than

© 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

1000m? are eliminated, more than 20 000 landslides would
be missing from the inventory, which is double the entire num-
ber of landslides in the inventory. Also, we estimate the number
of theoretically missing landslides for other inventories
(Figure S1, Supplementary material) using the same method.
We tentatively select the lower landslide bin of 25 m? for these
estimations. Results show that the number of theoretically miss-
ing landslides ranges between 3x10° and 4x10'°, which indi-
cates a dramatic, implausible contradiction between the
hypothesis and the data. Thus, it appears that mapping resolu-
tion alone is inadequate to explain the power-law divergence.

Hypothesis 2 argues that a change in the underlying failure
process from small, shallow failures located in soil and regolith
to large, deep bedrock slides causes rollover due to the transi-
tion from shear resistance controlled by cohesion to friction.
However, we do not know the underground conditions in each
landslide-affected area, which would be necessary to evaluate
this argument. On the other hand, Larsen et al. (2010) assume
that landslides that are smaller than about 100 000 m? are gen-
erally a combination of both bedrock and soil failures; larger
landslides are assumed to be entirely in bedrock. But this does
not provide a consistent definition for shallow and deep
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Figure 5.  Non-cumulative FAD and its power-law fit for the landslide

inventory of the 1994 Northridge earthquake (Harp and Jibson, 1995,
1996). The differences between the number of landslides based on
the inventory and the power-law fit are indicated. Power-law expo-
nents (-2.62) and cutoff values (9189 m?) were estimated using the
methodology presented by Clauset et al. (2009). [Colour figure can be
viewed at wileyonlinelibrary.com]

landslides because Larsen et al. (2010) also show that, for ex-
ample, small landslides (~10m?) can involve bedrock at a
depth ranging from 0.1 to 10 m. Therefore, landslide size is
not a reliable measure to estimate the underlying material.
Figure 3 shows variety in cutoff values from around 107 to
10°m?. For example, in the 2008 Wenchuan inventory (Xu
et al., 2014b) the observed cutoff value is around 144 000 m?
(Table 1), which corresponds roughly to a landslide width of

© 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

about 400 m. Hypothesis 2 would suggest landslides 144
000 m? as the cutoff for small, shallow landslides located within
the top soil layer of the hillslope lacking cohesion compared
with deeper bedrock. Published studies from Wenchuan, how-
ever indicate that rock slides and rock avalanches are moder-
ately common in the Wenchuan inventory, whereas soil slides
are much less numerous (Gorum et al.,, 2011). Xu et al.
(2014b) state that only 2% of the area affected by landslides
is located within unconsolidated deposits. However, landslides
smaller than 144 000 m? constitute about 50% of total area af-
fected by landslides. This implies that there were many bedrock
slides smaller than the observed cutoff value (<144 000 m?).
Figure 3 also shows 15 inventories having cutoff values larger
than 10*m?. As discussed above, classifying such landslides
as small soil failures is problematic.

An example from the other end of the spectrum is the Hyogo-
ken Nanbu inventory (Uchida et al., 2004), where the cutoff
point is 102 m? (Table I). Fukuoka et al. (1997) report that many
shallow debris slides and soil slides were triggered by this
earthquake. Similarly, Gerolymos (2008) states that most land-
slides originated within unsaturated soil. That is why, in this
case, the question is why a divergence from the power-law
up to the size of 100 m? is not observed. Therefore, although
Hypothesis 2 does probably account for some of the small-
landslide divergence, this explanation appears unable to con-
sistently explain the power-law divergence for each inventory
(Table I).

Hypothesis 3 argues that the distribution of soil moisture as-
sociated with river networks controls the geometry of land-
slides. This argument might not apply to earthquake-induced
landslides, however, where slides tend to be triggered preferen-
tially in upslope areas rather than along stream networks and
are strongly influenced by topographic amplification (Guzzetti
et al., 2002). Shallow landslides in upslope areas, which
account for a large proportion of all earthquake-triggered land-
slides (Keefer, 1984) are unlikely to be affected by soil-moisture
conditions related to river drainages far downslope. Also, the
landslide-affected area of some inventories (e.g., Harp and
Jibson, 1995, 1996) was arid, yet extensive seismically induced
landsliding still occurred.
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To more thoroughly examine Hypothesis 3, we analyze the
EQIL inventory database. In each inventory, we calculate the
drainage density of the study area, which is the sum of the
channel lengths per unit area (Carlston, 1963). To do that, we
first derive the river channel network using the r.stream.extract
module (Peter, 1994) of GRASS GIS (Neteler and Mitasova,
2013) and then calculate drainage density per square kilome-
ter. We use the Shuttle Radar Topography Mission (SRTM)
~30-m-resolution digital elevation model (NASA Jet Propulsion
Laboratory (JPL), 2013) in the analyses. We also use GRASS GIS
(Neteler and Mitasova, 2013) r.geomorphon code developed
by Jasiewicz and Stepinski (2013) to identify 10 landform clas-
ses (flat, summit, ridge, shoulder, spur, slope, hollow, footslope,
valley and depression). This algorithm calculates landforms
and associated geometry using pattern recognition. The algo-
rithm self-adapts to identify the most suitable spatial scale at
each location and check the visibility of the neighborhood to
assign one of the terrestrial forms. We mask flat regions and ex-
clude them for the estimation of drainage densities because the
river channel network algorithm gives errors in flat regions. We
compare the drainage densities to both rollover and cutoff
values (Figure S2) and see no relation between either of them.
These findings are not sufficient to reject the possible contribu-
tion of this approach to the divergence from power-law, but
they imply that other process (es) contribute to the divergence.

Hypothesis 4 associates the lack of small landslides with
physiographic limitations (slope length) and considers runout
zones as an integral part of landslides. However, as described
above, landslide deposits (runouts) bias the FAD of landslides,
and an ideal inventory would omit runout and only use the
source area to define the size of the landslide. Hypothesis 4
suggests that most regions have more areas where large land-
slides can occur than where small landslides can occur. Ac-
cording to this hypothesis, the upper parts of slopes should be
dominated by medium and large landslides, whereas the small
landslides should be observed at the lower parts of slopes or on
shorter slopes. To test this hypothesis, we analyze the 2015
Gorkha (Roback et al., 2017) inventory where the authors
mapped almost all of the source areas separately. We check
the size distribution of landslides for lower, middle and upper
parts of slopes. To do so, we use the various landforms that
we derive above for the entire landslide-affected area of the
Gorkha earthquake. We then categorize the obtained landform
classes based on their relative position along a slope. We group
the summit, ridge, and shoulder landform classes as observable
landforms occurring in the upper slope; we associate slope,
spur, and hollow with middle slopes. The other landforms, in-
cluding flat, footslope, and valley, are associated with lower
slopes. We calculate zonal statistics for all landslide source
polygons and identify the dominant landform category for each
landslide. We use the landform class with the most area inside
the landslide polygon to identify the dominant landform cate-
gory. Finally, we check the landslide size distributions for each
of the slope segments (Figure 6). Results show quite similar size
distributions in different slope segments. Landslides of all sizes
occur in each part of the slope. Therefore, the suggested phys-
iographic argument does not seem to explain why the FAD di-
verges from the negative power-law-distribution.

Hypothesis 5 associates the divergence from a power-law
with a lack of temporal resolution. However, there is only one
case study supporting this argument by monitoring rock-falls on
a slope (Williams et al., 2018). Validity of this hypothesis for
other types of landslide-events has not been checked so far.
Therefore, further analyses in other cases and developing a
conceptual understanding of this hypothesis are required.

In addition to the above-mentioned hypotheses aiming to ex-
plain the divergence from a power-law, there are some factors
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Figure 6. Landslide size distributions for different segments of a hill-
slope differentiated based on various landform groups. [Colour figure
can be viewed at wileyonlinelibrary.com]

controlling FADs of landslides. These factors are analyzed in
the following section.

Amalgamation due to lack of spatial resolution and
mapping preferences

Landslide inventories are created for different purposes and
thus both the spatial resolution of examined images and the
time invested in making an inventory vary. Figure 7 shows an
example of amalgamation for the 2015 Gorkha earthquake.
The number and boundaries of landslides in this area cannot
be determined in a strictly objective way (Figure 7(a)). Different
mapping preferences produce different landslide sizes and
numbers (Figure 7(b)—(d). In Figure 7(b)—(d), we map this area
using progressively more detailed approaches, and the result
is landslide counts that vary by almost a factor of 3. But all three
inventories would be considered valid. Figure 7(b) does not dif-
ferentiate coalescing landslides; the resulting inventory (Set 1)
contains 88 landslides. Figure 7(c) differentiates some of the co-
alesced landslides that show clear color differences; the
resulting landslide Set 2 contains 184 mapped landslides.
Figure 7(d) differentiates landslides as much as possible based
on both color and textural differences; the result is 253 mapped
landslides (Set 3). This shows that when higher resolution im-
ages are available, more detailed mapping is possible, and
even more landslides can be differentiated.

The same area was mapped by different authors; the resulting
landslide numbers are 19 (Kargel et al., 2016), 32 (Zhang et al.,
2016), 40 (Tanyas et al.,, 2018), 42 (Gnyawali and Adhikari,
2017), and 151 (Roback et al., 2017).

This example shows that the number of landslides mapped in
the same area by different people differed by almost an order of
magnitude, and our application of different mapping ap-
proaches yielded a difference of a factor of 3. Different map-
ping methods do not significantly affect the total landslide
area, but they have an important effect on the landslide FAD.
Figure 8 shows the FADs of the landslide sets created in this ex-
ample. From Set 1 to Set 3 the sizes of the biggest landslides de-
crease, and the rollover points shift toward smaller landslide
sizes because the number of small landslides increases. Simi-
larly, because we divide the amalgamated landslides into
smaller ones from Set 1 to Set 3, the ratio of small to large land-
slides increases, and therefore the corresponding power-law
exponents also increase.

Subjectivity of mapping procedure

To demonstrate the effect of subjectivity of mapping procedures
on the resulting FAD, we examine earthquakes for which
multiple inventories were produced and compare their FADs
(Figure S3). To provide comparable FADs from each earth-
quake, we trim the inventories to the same extent as the
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Figure 7. An example of an EQIL site near the town of Gumda (28.199°lat, 84.853°lon) from the 2015 Gorkha earthquake: (a) source photograph
showing landslides, (b) landslide delineation using maximum amalgamation, (c) landslide delineation using moderate amalgamation, and (d) detailed
landslide delineation separating landslides to the maximum extent possible (minimal amalgamation). [Colour figure can be viewed at

wileyonlinelibrary.com]

smallest one. As result, we examine landslides from different in-
ventories mapped for the same areal extent. We plot the FADs
using the landslides mapped for those areal extents and com-
pare the resulting total number of landslides, total landslide
areas (sums of polygon areas), power-law exponents, and roll-
over sizes (Figure S3). Figure 9 shows two examples of the ex-
plained comparison of the inventories provided for the 2010
Haiti and 2005 Kashmir earthquakes; Figure 10 shows the dif-
ferences between total number of landslides, total landslide
areas, power-law exponents, and rollover sizes for all cases.
For the same areal extent, the 2010 Haiti inventory of Harp
et al. (2016) includes 16 379 more landslides than the inven-
tory provided by Gorum et al. (2013). This is the largest differ-
ence observed in terms of the total number of landslides
(Figure 10). For the same areal extent, the difference in the total
mapped landslide area in these inventories is 16.9 km?. We

© 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

also calculate the total landslide area of completely overlap-
ping polygons of different inventories. The total landslide area
mapped by Gorum et al. (2013) is 5.9 km?, but 20% of those
landslides do not overlap with the polygons delineated by Harp
et al. (2016). Thus, in total, Harp et al. (2016) mapped about
18km? of coseismic landslides that Gorum et al. (2013) did
not. This means that in this case amalgamation is not the main
reason for the significant difference between these two invento-
ries. The inventories were produced using similar visual image-
interpretation approaches using detailed images (with a spatial
resolution of 0.6—-1 m), although Harp et al. (2016) did the map-
ping more carefully over a much longer time period than did
Gorum et al. (2013).

The difference between the FADs of the Haiti inventories
(Figure 9(c)) implies that a similar number of medium and large
landslides (>10° km?) were mapped in both studies, but Harp
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et al. (2016) mapped a large number of small landslides
(<10*km?) not mapped by Gorum et al. (2013). The FAD of
the Harp et al. (2016) inventory has a smaller rollover point
(~30m?) and larger power-law exponent (f=2.89) than the
Gorum et al. (2013) inventory (~100 m? and p=2.09). These re-
sults are consistent with Figure 8, but in this case the differences
cannot be attributed to amalgamation of coalescing or adjacent
landslides but the subjectivity of the mapping procedures.

We also analyzed three inventories from the 2005 Kashmir
earthquake (Figure 9(b) and 9(d)). The 2005 Kashmir invento-
ries yield the largest difference in total landslide area mapped
for the same areal extent (Figure 9(d)). The total landslide area
mapped by Basharat et al. (2016) is 33.6 km? (420%) larger
than the area mapped by Sato et al. (2007). The total landslide
area mapped by Sato et al. (2007) is 8.0 km?, and only 45% of
this landslide area overlaps with the polygons delineated by
Basharat et al. (2016). However, Sato et al. (2007) mapped
127 more landslides than did Basharat et al. (2016). These
two Kashmir inventories used a similar mapping method and
the same satellite imagery (SPOT 5). These two inventories
are quite different although they are from the same event, have
the same areal extent, and used the same mapping method.
Their FADs also are quite different, and the rollover point is
much smaller in the Sato et al. (2007) inventory (~760 m*) com-
pared with the Basharat et al. (2016) inventory (~8650 m2). In
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Variability in (a) total number of landslides, (b) total landslide area (c) B, and (d) rollover sizes for the events having multiple inventories.

To plot this figure, we trimmed the inventories to the same extent as the smallest one. [Colour figure can be viewed at wileyonlinelibrary.com]

contrast, however, the Basharat et al. (2016) inventory has a
higher power-law exponent (=3.01) than the Sato et al.
(2007) inventory (f=2.37).

Figure 9 shows that mapping preferences could cause a large
difference in FADs of landslides and related factors such as .
The largest difference between power-law exponents in the ex-
amined cases is the Haiti example with 0.80 (Figure 10). Con-
sidering the power-law exponent of the Haiti inventory of
Gorum et al. (2013) (B=2.09+0.80), the difference is 38% of
the calculated value. This shows that the uncertainty in B values
caused by mapping preferences can be as much as 38%. Korup

© 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

et al. (2012) state that minute numerical errors in model param-
eters of FADs can cause uncertainty greater than a factor of 2 in
erosion or mobilization rates. Thus, we can expect a large un-
certainty, for example, in denudation rate (Hovius et al.,
1997) because of this variance in f.

Several studies have explored the relation between variations
in B with regional differences in structural geology, morphol-
ogy, hydrology and climate (Sugai et al., 1995; Densmore
et al., 1998; Dussauge-Peisser et al., 2002; Chen, 2009; Li
et al., 2011; Bennett et al., 2012; Hergarten, 2012). However,
the analyses presented above reveal that the uncertainties are
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likely too high to discriminate physical regional differences.
This is because regardless of these factors and despite the simi-
larities in terms of overall mapping methodology and images
used, differences in mapping skills, mapping criteria, thresholds
of minimum landslides that are mapped, and the time dedicated
to mapping might result in very different inventories. As a result,
FADs of landslides and related factors such as B are exposed to
an intrinsic noise caused by the subjectivity of the mapping pro-
cedure. Regrettably, quantifying the quality of the inventories
directly from FADs is impossible without re-mapping the land-
slides from the original imagery from which the inventories
were made. Thus, further standardization of landslide mapping
procedures and proper metadata of landslide inventories that
explain the mapping procedure and time investments are the
only ways to minimize this noise and potentially, one day, be
able to resolve the signal of regional differences.

Effect of distinguishing between landslide sources
and deposits on FAD shape

Some inventories distinguish landslide sources from deposits, at
least for larger landslides. The FADs and rollover points in such
inventories differ somewhat from those of inventories where
landslides are mapped as a single polygon without differentiat-
ing erosion and accumulation areas. In the 2004 Mid-Niigata
(GSI of Japan, 2005) inventory, large and small landslides are
defined separately, and for the large landslides the sources
and deposits were mapped separately. For the 2004 Mid-
Niigata (GSI of Japan, 2005) and the 2015 Gorkha inventories
(Roback et al., 2017), we divide the landslides into two sets.
In Set 1, the sources and deposits of landslides are considered
together; in Set 2 the deposits of large landslides are ignored,
and we only consider the source areas (Figure 11).

The exclusion of landslide deposits in Set-2 decreases the
size of individual landslides and shifts the position of the entire
FAD toward smaller sizes. The rollover points also shift from
3850m? to 1700 m? (Figure 11(a)) and from 210 m? to 30 m?
(Figure 11(b)) in the Mid-Niigata and the Gorkha inventories,
respectively.

Figure 11 shows significant differences between FADs from
source-only inventories and those constructed using entire
landslide polygons. However, a rollover in the FAD is present
even when landslide deposits are excluded.

We also check numerically the validity of a power-law fit for
both versions of the Mid-Niigata and the Gorkha inventories.
Results show that in both cases size distributions of landslide
source areas have significantly larger P-values (better fits) than
size distributions considering sources and deposits of landslides
together (Figure 11). In the Mid-Niigata case, both versions of
the inventory have P-values larger than 0.1, whereas the P-value
of Set 1 for the 2015 Gorkha earthquake is 0. This shows that the
Roback et al. (2017) Gorkha inventory that includes deposits
does not fit a power-law. However, for the same inventory, the
exclusion of landslide deposits yields a good power-law fit with
a P-value of 1. These findings show that differentiation of source
and deposit areas strongly affects the resultant FAD.

Discussion

Several hypotheses have been proposed for the causes of the
deviation from a power-law relation for smaller landslides.
Our findings show that each hypothesis helps us to grasp a part
of the phenomenon but no single existing explanation accounts
for the deviation and rollover in all cases, and different factors
contribute to explain the causes of the rollover in different
cases. Especially, lack of spatial image resolution and details
of the underlying failure process as proposed in previously pub-
lished studies clearly contribute to the divergence from the
power-law. Additionally, lack of temporal resolution also is a
considerable factor because identifying each individual land-
slide event that actually occurred is impeded by lack of tempo-
ral resolution. We approach this issue within the context of
successive slope failure, as described below.

A proposed explanation for the divergence from the
power-law: Successive slope failure

A single mapped landslide polygon can be the result of succes-
sive episodes of movement and enlargement. Frattini and
Crosta (2013) referred to this issue and stated that even for ac-
curate inventories of single events, many smaller landslides
can be undetectable because of reworking during the event
by larger coalescent landslides. For example, earthquake shak-
ing can cause part of a slope to collapse, which creates a scarp
and a runout zone. The scarp itself can be unstable and further
fail and expand afterward; this produces an additional
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FADs for different subsets of (a) the 2004 Mid-Niigata (GSI of Japan, 2005), and (b) the Gorkha (Roback et al., 2017) EQIL inventories.

Larger dots indicate rollover points. [Colour figure can be viewed at wileyonlinelibrary.com]
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landslide above the first one, but this subsequent landslide
will be mapped as part of the original failure. This process
can occur in succession during a later part of the shaking of
the mainshock or as a result of aftershocks, subsequent
rainfall, or progressive failure owing to weakened soil material
and changes in the slope stress field. Thus, what we observe as
a single landslide polygon is a snapshot of the geometry of an
accumulation of successive sliding events at the time the
imagery was collected; the slope will continue to evolve
indefinitely as it adapts to the new conditions (Figure S4).
Therefore, the inverse-cascade model (see Supplementary
material), which is the qualitative explanation provided for
the fractal distribution of landslides (Malamud and Turcotte,
2006), should be valid for the formation of mapped individual
landslides. As we described above, the inverse-cascade model
suggests that slope instability begins at a location and spreads
to surrounding metastable areas. The landslide population
formed as a result of this process has a fractal size distribution.
As the inverse-cascade model is applied to slopes shaken
by earthquakes, we call this sliding process successive
slope failure.

Successive slope failure encompasses processes such as pro-
gressive and retrogressive failures, which are specific mecha-
nisms that can contribute to successive slope failure (Figure
S5). Progressive slope failure is a common mode of failure that
occurs in cohesive materials such as clays (Bjerrum, 1967). In
progressive slope failure, after the initiation of the first land-
slide, the scarp is in a metastable condition, and a second slide
begins to mobilize from the scarp area sometime after the initial
slide (Bjerrum, 1967). This can continue to cascade upslope
through the progressive propagation of a shear surface along
which shear strength is reduced from peak to residual values.
This occurs because shear strength is not constant along a po-
tential failure surface in cohesive materials; the strength
changes from peak to residual (Bjerrum, 1967). Thus, spatial
and temporal strength heterogeneities are the cause of progres-
sive failures. Successive slope failure applies more generally
than progressive failure because successive slope failure occurs
in different types of soil and rock. For example, Terzaghi (1962)
described rock masses generally as media having discontinu-
ous joints differing in persistence. Intact rock bridges occur be-
tween these discontinuous joints. Failures begin with the failure
of an individual rock bridge and keep occurring successively as
the shear strength of each individual bridge is exceeded.
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Eberhardt et al. (2004) modeled the rock-mass strength degra-
dation in natural rock slopes based on the conceptual frame-
work of Terzaghi (1962). They show that stresses ahead of the
shear plane increase and subsequent intact rock bridges fail
in a consecutive manner until the surface of failure extends to
the point where kinematic release becomes possible.

Successive slope failure also can occur as a result of retro-
gressive failure, which refers to a specific failure geometry
wherein a failure zone migrates upslope (Cruden and Varnes,
1996). However, successive slope failure is much more general
than retrogressive failure; it can involve destabilization of
slopes laterally, upslope, downslope, or by several mechanisms
and geometries. It is simply the process of an initial slope failure
destabilizing surrounding areas.

Samia et al. (2017) investigated the same concept from an-
other point of view. They examined the landslide path depen-
dency using a multi-temporal landslide inventory from Italy.
They concluded that earlier landslides affect the susceptibility
of future landslides; larger and rounder landslides are more
likely to cause follow-up failures.

Successive slope failure might not apply to landslides in mas-
sive rocks where failure commonly is controlled by discontinu-
ities such as faults, fractures, shear zones, bedding planes and
joints (Hoek and Brown, 1997). Such discontinuities isolate
the landslide mass from the rest of the slope. Therefore, for
rock-falls, having a frequency-size distribution without rollover
is understandable in some cases (Malamud et al., 2004). Even
in this situation, however, landslide margins are likely to pro-
duce smaller, continuing failures as the disturbed topography
seeks equilibrium. For example, Williams et al. (2018) showed
a rollover in frequency-size distribution of rock-falls if mapping
is conducted using a low temporal resolution.

The interpretation of the proposed explanation

The successive-slope-failure hypothesis, which extends the ar-
gument raised for rock-falls in Hypothesis 5 (Barlow et al.,
2012; Williams et al., 2018) provides a conceptual model to
explain the power-law divergence. Figure 12 presents this hy-
pothesis schematically in terms of FAD; landslide numbers ob-
served at different size bins are shown. Figure 12(a) shows a
theoretical FAD assuming that all EQIL triggered during the
event are detected and that landslide FADs across all size
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Observed distribution

Fifth bin
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Schematic drawing showing the number of landslides of different sizes in different theoretical situations. (a) Theoretical FAD of landslides

if all individual landslides were mapped perfectly. (b) Smaller landslides are amalgamated or mapped inside larger ones. For example, 900 small land-
slides in the first bin are merged into larger ones; 100 landslides into the second bin; 150 into the third bin; etc. (c) The resulting observed FAD with
rollover. The numbers shown in ovals and parallelograms indicate the initial/final and transferred number of landslides, respectively. The numbers
of landslides transferred from smaller bins to larger ones are not equal to each other because multiple small landslides merged together and formed
fewer larger landslides. The given landslide numbers are partially arbitrary; both the numbers of landslides in each bin and the numbers of landslides
transferred from smaller bins to larger ones have a decreasing trend from small to larger landslide sizes. [Colour figure can be viewed at

wileyonlinelibrary.com]
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ranges follow a pure power-law behavior. However, in prac-
tice, larger landslides are mapped because many smaller ones
that occur at the initiation of sliding are incorporated into larger
ones or are mapped together into amalgamated polygons
(Figure 12(b)). Additionally, some of the smaller landslides are
superimposed by larger ones. Therefore, some landslides could
not be mapped into their correct size bins, and they are trans-
ferred into a larger landslide bin. This causes identification of
more large landslides because the smaller slides merge into
larger ones. This also causes identification of fewer total land-
slides, particularly in the smaller size range, than theoretically
expected based on the power-law distribution assumption; this,
in turn, causes the divergence from the power-law distribution
(Figure 12(c)). Without conducting a continuous monitoring,
capturing the effect of this misclassification on small landslide
bins is not possible. Thus, the misclassification of landslide size
bins might or might not cause a distinctive decrease in small
landslide bins. If it is distinctive, a rollover and positive
power-law decay for smaller landslide sizes emerges (Fig-
ure 12(c)). This is observed in most of the inventories presented
in this study (Figure 2). If the effect of unmapped small land-
slides is less distinct, landslide FADs still diverge from a
power-law distribution but do not show a rollover point.
Figure 2(h) shows such an unusual trend in the FADs for the
Coalinga (Harp and Keefer, 1990), Guatemala (Harp et al.,
1981), and Lushan (Xu et al., 2015) inventories. This likely re-
flects the complicated interplays between mapping methodol-
ogy, landslide amalgamation, and the successive-landslide-
formation process on the final FAD.

This explanation implies that neither divergence from the
negative power-law distribution of medium and large land-
slides nor a positive power-law distribution for landslides
smaller than the rollover point are attributable to the incom-
pleteness of an inventory; both of these characteristics can oc-
cur in complete landslide inventories. In our proposed
explanation, some of the small landslides that could not be
mapped in the correct size bins are included in the larger bins;
therefore, an inventory with a rollover can be relatively com-
plete in terms of total mobilized landslide area.

Our proposed explanation suggests that neither the rollover
nor cutoff points indicate the exact lower landslide size at
which the inventory can be assumed to be complete (Van
Den Eeckhaut et al.,, 2007; Parker et al., 2015). Because we
generally do not know the minimum landslide size where map-
ping is nearly complete, the rollover point can be used as an
upper-bound estimate of that value.

The proposed explanation also suggests that mapping many
medium and large landslides should inevitability cause mis-
classification of a relatively large number of small landslides,
and this leads to a shift in both rollover and cutoff values to-
wards larger sizes (see Figure 12). To test this argument, we ar-
bitrarily select three landslide sizes of 1000 m?, 2500 m?, and
5000 m? as the thresholds between small and medium land-
slides, and we correlate both the rollover and cutoff points with
the percentages of landslides having areas greater than
1000 m?, 2500 m?, and 5000 m? (Figure S6). The results con-
firm our argument and show that in an inventory that includes
a relatively large number of large landslides both the rollover
and cutoff values shift toward larger sizes compared with in-
ventories having relatively few large landslides. This finding
provides evidence to support our hypothesis about the cause
of FAD rollover.

Additionally, as presented above, the findings of Barlow et al.
(2012) and Williams et al. (2018) derived for rock-falls also sup-
port our conceptual model to explain the power-law diver-
gence. However, this conceptual model still needs to be
proven by high temporal resolution slope monitoring.

© 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

Conclusions

This study examines the factors controlling the FADs of land-
slide inventories and provides an alternative explanation for
the deviation from power-law scaling observed in the FADs
by analyzing 45 EQIL inventories. All existing rollover explana-
tions described above provide a partial understanding of why
landslide FADs do not follow the power-law theory for small
landslides. Although not all explanations contribute to each
case, each inventory probably involves some combination of
the proposed explanations.

We propose an additional explanation: successive slope fail-
ure, in which smaller slides sequentially destabilize surround-
ing slopes and merge to form larger slides that are detectable
after the earthquake.

Studies by Barlow et al. (2012) and Williams et al. (2018)
demonstrate the importance of temporal resolution on rock-fall
FADs and provide observational support for our hypothesis. We
use this argument and present a theoretical background with all
findings obtained from 45 EQIL inventories showing that the
actual number of coalesced landslides within each landslide
polygon is unknown because we lack the necessary time reso-
lution of observations used for mapping. This means that low
time resolution, a mapping artifact, is one of the reasons for
the divergence from the power-law. Therefore, the divergence
from a power-law does not necessarily imply incompleteness
of an inventory.

Additionally, we show that mapping methodology, amal-
gamation of coalescing landslides due to the quality and reso-
lution of the imagery, the level of expertise of mappers, and
undifferentiated landslide source and deposit areas causes in-
trinsic noise in landslide FADs. These factors contribute in var-
ious combinations to determine the FAD shape, which is
defined by the power-law exponent, cutoff point, and rollover.
That is why the shape of a FAD, and thus B, can vary signifi-
cantly because of the complicated interplay between the given
factors. The uncertainty in B values caused by these factors can
be as much as 38% (e.g. p=2.09+0.80 in Haiti inventory of
Gorum et al. (2013)). A 38% uncertainty can cause substantial
errors in prediction of erosion rates (Korup et al., 2012) and
landslide hazard assesments (Guzzetti et al., 2005) because of
the resulting divergence in both landslide-event magnitude
and probabilities of landslide size.

Based on these findings, our analyses lead to four main con-
clusions. First, the rollover point generally is at a larger land-
slide area than the lower limit of completely mapped
landslide size of the inventory. Second, various mapping tech-
niques can yield different total numbers of landslides, and thus
the number of landslides is a subjective measure. Third, the
FAD-based completeness evaluation of Malamud et al. (2004)
needs to be revised. Finally, inventories that depict landslide
source areas separately from depositional areas yield more
physically meaningful FADs for EQIL inventories.

The highlighted uncertainty in FADs of landslides implies that
the power-law derived from a low-quality inventory does not de-
scribe landslides very well. This shows the need for a standard
mapping methodology to be able to obtain more consistent and
quantitative information about landslides from FAD comparisons.
Working with compatible inventories can help in modeling FADs
of EQIL inventories more accurately. Such a FAD model also can
help better quantify landslide event inventories and provide a rea-
sonable basis to evaluate the completeness of inventories. Reli-
able FADs of EQIL also can help improve our knowledge
regarding landscape evolution processes.
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Figure S1. Estimated number for theoretically missing land-
slides in each inventory (Inventory IDs listed in Table 1).
Figure S2. Graphs showing the relation between (a) the rollover
and (b) the cutoff values in relation to drainage density of land-
slide effected areas in each inventory.

Figure S3. FADs of inventories produced for the same earth-
quakes with the extent of the corresponding inventories’
mapped areas and the trimmed versions of them for the com-
mon areas. TLA: Total landslide area (km2), TNL: Total number
of landslides, OAI: Overlapping areas of inventories. *Because
the inventory of Xu et al. (2015) is a point-based inventory, the
overlapping area for this inventory set cannot be calculated.
Figure S4. Schematic drawing showing different hypothetical
stages of the landslide initiation process: (a) small slides are trig-
gered making a initiating larger landslide that will be formed in
the next stage; (b) a larger slide is triggered, and it decreases the
stability of entire slope; tension cracks and some other new
small slides form; (c) slides of various sizes are triggered; they
coalesce and form a larger body, but the overall slope remains
unstable; and (d) many other slides are triggered, which cover
the previously triggered landslides; they form an even larger fi-
nal landslide geometry, until the slope reaches a stable state.
Dashed black lines represent the final landslide geometry; red
lines show newly triggered landslides in each stage; and blue
lines show tension cracks.

Figure S5. Schematic drawing showing (a) progressive and (b)
retrogressive failure. In both sections, 1 refers to initial failure
and 2 shows the slope after movement of the surface rupture
(adapted from (Cruden, 1993)).

Figure S6. Relation between the percentage of landslide popu-
lation having areas larger than 1,000m2, 2,500 m2, and
5,000 m2 and the location of the rollover and cutoff points.
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