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In remote sensing applications, leaf traits are often upscaled to canopy level using sunlit leaf
samples collected from the upper canopy. The implicit assumption is that the top of canopy
foliage material dominates canopy reflectance and the variability in leaf traits across the
canopy is very small. However, the effect of different approaches of upscaling leaf traits to
canopy level on model performance and estimation accuracy remains poorly understood.
This is especially important in short or sparse canopies where foliage material from the
lower canopy potentially contributes to the canopy reflectance. The principal aim of this
study is to examine the effect of different approaches when upscaling leaf traits to canopy
level on model performance and estimation accuracy using spectral measurements (in-situ
canopy hyperspectral and simulated Sentinel-2 data) in short woody vegetation. To achieve
this, we measured foliar nitrogen (N), leaf mass per area (LMA), foliar chlorophyll and
carbon together with leaf area index (LAI) at three vertical canopy layers (lower, middle
and upper) along the plant stem in a controlled laboratory environment. We then upscaled
the leaf traits to canopy level by multiplying leaf traits by LAI based on different
combinations of the three canopy layers. Concurrently, in-situ canopy reflectance was
measured using an ASD FieldSpec-3 Pro FR spectrometer, and the canopy traits were
related to in-situ spectral measurements using partial least square regression (PLSR). The
PLSRmodels were cross-validated based on repeated k-fold, and the normalized root mean
square errors (nRMSEcv) obtained from each upscaling approach were compared using
one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test. Results of the
study showed that leaf-to-canopy upscaling approaches that consider the contribution of
leaf traits from the exposed upper canopy layer together with the shaded middle canopy
layer yield significantly (p < 0.05) lower error (nRMSEcv < 0.2 for canopy N, LMA and
carbon) as well as high explained variance (R2 > 0.71) for both in-situ hyperspectral and
simulated Sentinel-2 data. The widely-used upscaling approach that considers only leaf
traits from the upper illuminated canopy layer yielded a relatively high error
(nRMSEcv>0.2) and lower explained variance (R

2 < 0.71) for canopy N, LMA and carbon.
In contrast, canopy chlorophyll upscaled based on leaf samples collected from the upper
canopy and total canopy LAI exhibited a more accurate relationship with spectral measure-
ments compared with other upscaling approaches. Results of this study demonstrate that
leaf to canopy upscaling approaches have a profound effect on canopy traits estimation for
both in-situ hyperspectral measurements and simulated Sentinel-2 data in short woody
vegetation. These findings have implications for field sampling protocols of leaf traits
measurement as well as upscaling leaf traits to canopy level especially in short and less
foliated vegetation where leaves from the lower canopy contribute to the canopy
reflectance.
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Introduction

Essential biodiversity variables (EBVs) such as leaf traits play a key role in ecosystem
structure, functioning and parameterization of dynamic biogeochemical models and nutri-
ent budget simulations (Scheiter, Langan, and Higgins 2013). For example, leaf chloro-
phyll content is a critical leaf trait in assessing plant physiological status (plant health and/
or phenological stage) as well as a plant’s photosynthetic capacity (Malenovský et al.
2013). Foliar nitrogen (N) is a key element in chlorophyll (~6% by weight) (Kokaly et al.
2009) and in enzymes responsible for carbon fixation i.e. ribulose-1.5-biphosphate (RuBP)
carboxylase and phenolyenolpyruvate (PEP) essential for photosynthesis in C3 and C4
plants, respectively (Schlemmer et al. 2013; Cho et al. 2013; Gibson 2008). In addition,
leaf mass per area (LMA) and carbon content mirror the plant economic spectrum with
regard to nutrients uptake, light harvesting and carbon sequestration (Poorter et al. 2009;
Martin and Thomas 2011). An improved understanding of leaf traits is critical in char-
acterizing, monitoring and simulating ecosystem biogeochemical fluxes over space and
time. In this regard, leaf traits are a critical component of ecosystem functional and
structural diversity – proxies of essential biodiversity variables (EBVs) (Skidmore et al.
2015). Therefore, estimating leaf traits improves the conservation and monitoring efforts of
EBVs fluxes towards the Aichi Biodiversity Targets (Pereira et al. 2013).

Remote sensing provides a cost-effective and practical means of estimating and
monitoring leaf traits for biodiversity conservation (Kissling et al. 2017). Field spectro-
scopy and satellite multispectral data such as Sentinel-2 are critical primary data
sources that can improve quantitative estimation and monitoring of foliar traits
(Chemura et al. 2018). Essentially, two modelling approaches [i.e. empirical (statisti-
cal) and physical models (radiative transfer models-RTM)] are employed to estimate
field measured leaf traits from spectral data. Empirical models explore parametric and
non-parametric statistical relationships between spectral data or indices and field
measured leaf traits using statistical techniques such as stepwise regression and partial
least squares regression (Verrelst et al. 2015). Physical models, on the other hand,
apply radiation transfer laws to explicitly simulate light absorption, transmittance and
scattering inside vegetation canopies by accounting for leaf traits content, canopy
structural properties and soil background (Yi et al. 2014; Croft et al. 2015).
Quantitative leaf traits that are related or matched to spectral measurements based on
these modelling approaches are often determined from leaf samples collected from
dominant and co-dominant species within sampling units (Homolová et al. 2013). The
leaf traits expressed either in mass (concentration) or area (content) based units are
then upscaled to the canopy level using two techniques, i.e. the direct extrapolation and
canopy integrated approaches (He and Mui 2010). The direct extrapolation approach
applies the relationship between leaf traits and reflectance or vegetation indices
observed at leaf level directly to the canopy level (Yoder and Pettigrew-Crosby
1995). The basic assumption of the direct extrapolation method is that trait content
or concentration of leaves across the vertical canopy profile is homogeneous (Peterson
et al. 1988). However, the direct extrapolation approach is not commonly used because
it does not account for canopy structure – a key variable that drives canopy reflectance
(Knyazikhin et al. 2013). The canopy integrated method on the other hand upscale leaf
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traits to canopy level by accounting for LAI or foliage biomass. The plant traits at
canopy level are then regressed against canopy reflectance measured using a field
spectroradiometer or airborne and satellite multispectral sensors. In both upscaling
approaches, leaf samples for determining traits are often collected from the sunlit
top-of-the canopy layer, especially in highly foliated forest canopies. The assumption
underlying this widely used approach is that the vertical variation in leaf traits across
the canopy is small and leaves at the top of the canopy dominate canopy reflectance
and thus represents the whole canopy (Thomas et al. 2008). However, in short woody
vegetation the foliage material across the vertical profile significantly contributes to the
canopy spectral signal (Roelofsen et al. 2013). This phenomenon complicates leaf
sampling protocols because “top of canopy” sampling becomes less valid. To this
end, establishing an ecologically meaningful canopy trait value that corresponds to
the overall canopy spectral signal is critical when estimating and mapping canopy
traits.

The distribution of leaf trait content across vegetation canopies is complex and often varies
across the vertical canopy profile (Hirose, Werger, and van Rheenen 1989; Gara et al. 2018).
Plants often exhibit higher nutrient content in the upper canopy and on illuminated leaves that
receive increased radiation amounts (Chen et al. 1993; Weerasinghe et al. 2014). The variation
in leaf traits across the canopy vertical profile is an established plant physiological mechanism
designed to maintain an equilibrium between the RuBisCo-limited rate of carboxylation and
electron transport limited rate of carboxylation (Chen et al. 1993). Recent research onmultiple-
layer radiative transfer models (MRTM) have shown that the vertical heterogeneity in foliar
traits (LMA, chlorophyll and water) have a significant influence on simulated canopy reflec-
tance and subsequent retrieval of canopy traits especially in low to moderately foliated
canopies (Li and Wang 2013; Wang and Li 2013). Moreover, previous studies demonstrated
that canopies of similar foliage material (e.g., LAI or biomass) can yield significantly different
canopy reflectance across the whole spectrum (Darvishzadeh et al. 2008). This observation has
been linked to variation in confounding factors such as leaf trait heterogeneity within a canopy
(Luo et al. 2016; Li et al. 2013). Related studies have also demonstrated that the “big leaf”
(sunlit leaves only) upscaling approach underestimates canopy gross primary production by up
to 70 % in highly clumped forest stands compared to the “two leaf” (sunlit plus shaded leaves)
approach (Sprintsin et al. 2012). The “big leaf” approach does not account for the vertical
variability in leaf traits and assumes that a sunlit leaf in the upper canopy represent the whole
canopy, while the “two leaf” approach requires information on the vertical variability in leaf
traits based on both sunlit and shaded leaves (Mercado et al. 2006). Within the framework of
the “big leaf” and “two leaf” upscaling approaches, we explored different combinations of leaf
trait-LAI upscaling scenarios from three vertical (upper, middle and bottom) canopy layers in
short woody vegetation in a laboratory setup. To the best of our knowledge, the effect of these
upscaling conceptualizations are poorly understood and remain untested in canopy traits
estimation using in-situ hyperspectral measurements or simulated satellite data. To this end,
we, therefore hypothesize that leaf to canopy upscaling approaches have a significant effect on
the relationship between canopy traits and spectral measurements and subsequently estimation
accuracy of canopy traits.

The principal aim of this study is to evaluate the effect of different approaches of
upscaling leaf traits (foliar N, LMA, chlorophyll, and carbon) from leaf to canopy level
on model performance and estimation accuracy using spectral measurements (in-situ
canopy hyperspectral and simulated Sentinel-2 multispectral data) and partial least
squares regression. A number of upscaling approaches based on different LAI and leaf
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trait mathematical combinations were computed and used to calibrate a PLSR model,
with the intention of assessing the accuracy of canopy traits estimation. Prior to ascer-
taining the effect of upscaling approaches, we tested whether leaf traits significantly vary
across the canopy vertical profile.

2. Materials and methods

2.1. Species description

Four plant species of different leaf form and canopy structure, representing tropical and
temperate biomes, were used to evaluate the effect of leaf to canopy upscaling
approaches on model performance and estimation accuracy using in-situ hyperspectral
and simulated Sentinel-2 multispectral data. We selected the following plant species;
Camellia japonica (n = 24, mean height 83.71 ± 4.75 cm), Ficus benjamina (n = 24;
mean height 82.07 ± 4.27 cm), Chamaedorea elegans (n = 24; mean height
88.5 ± 4.75 cm) and Fatshedera lizei (n = 24; mean height 88.93 ± 1.53 cm). Further
description of the plant species used in this study can be found in Gara et al. (2018). All
the plants used in this study were purchased from a local nursery.

2.2. Experimental setup

Since the plants purchased from the nursery were assumed to be pretreated with fertilizer,
we changed the pot-soil to a new homogenized mixture of seven parts of nutrient-poor
sand soil to two parts of fertile loamy soil. After changing the potting mix, we administered
three soil nitrogen treatments (high, medium and low) to the ninety-six (96) plants used in
this study. For the high (n = 32) and medium (n = 32) treatment groups, 2.9 g and 0.9 g per
pot were supplied respectively, while no fertilizer was applied to the low treatment
(n = 32). Further details on the experimental setup is provided in Gara et al. (2018)

2.3 Canopy spectral measurements

Canopy spectral reflectance from 350 to 2500 nm were measured in a controlled remote
sensing laboratory using an ASD FieldSpec-3 Pro FR spectrometer. The walls and ceiling
of the laboratory were coated with black material in order to minimize any ambient light
or reflection, thus minimizing the effect of diffuse radiation and lateral flux
(Darvishzadeh et al. 2009). Three pots of the same species and soil treatment were
used to form a canopy as shown in a schematic presentation in Figure 1A. In order to
create a canopy, the three pots were placed in fixed positions within a 60 cm by 60 cm
soil bed. A fiber optic probe with a field of view of 25° was mounted on a tripod at nadir
and positioned 90 cm above the soil bed, thus creating a field of view (FOV) with a
diameter of 40 cm on the soil surface. A halogen light bulb (235 W) positioned 1.2 m
from the canopy was used to supply illumination on the canopy. All canopy spectral
measurements were calibrated with a Spectralon white reference panel. The sensor’s
FOV was completely covered with foliage material; hence the effect of the background
soil was minimized. After each canopy spectral measurement, the soil bed was rotated
45° in order to average out the differences in canopy orientation and to minimize the
possible bidirectional reflectance distribution function (BRDF) effects (Darvishzadeh
et al. 2008, 2009). Consequently, the spectral reflectance of 32 canopies were measured.
To minimize noise in the canopy reflectance spectra, a moving second order Savitzky-
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Golay filter (Savitzky and Golay 1964) with a frame size of 11 was applied to each
sample reflectance spectra. Wavelengths before 400 nm and after 2200 nm were too
noisy and were thus removed from the dataset. Therefore, 1801 spectral bands were
retained for subsequent analysis.

The canopy reflectance spectra measured using the ASD spectroradiometer were
convolved to the spectral band configurations of Sentinel-2 multispectral instrument
based on the sensor spectral response function. To account for environmental and
instrument uncertainties in natural satellite operating system, we added a random
Gaussian (white) noise component of 20% to the convolved spectra (Verrelst et al.
2014; Richter et al. 2009). Sentinel-2 is a Multi-Spectral Instrument (MSI) operated by
the European Space Agency (ESA). The Multi-Spectral Instrument (MSI) on board
Sentinel-2 is composed of 13 spectral bands ranging from 400 to 2400 nm with a
grain size ranging from 10–60 m and a swath width of 290 km (European Space
Agency 2010; Hill 2013). The mission has two identical multispectral sensors
(Sentinel 2A and 2B) in orbit delivering a revisit time of three to five days
(Aschbacher and Milagro-Pérez 2012)

2.4 Determining LAI and leaf traits

After measuring canopy reflectance spectra, the canopy was divided into three vertical layers,
i.e. upper, middle and lower, as shown in Figure 1B. The three layers were determined based on
the height of a canopy along the stem. We divided the canopy into three layers for three
reasons. First, the plants used in this study were relatively short (mean height ~ 85 cm) in order
to clearly identify more than three canopy layers. Second, identifying less than three canopy
layers could have been insufficient to understand the effect of leaf traits vertical heterogeneity

Figure 1. Positioning of plant vessels in the field of view (A) and the demarcation of the three
canopy layers considered in the experiment (B).
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on canopy traits estimation. Finally, three canopy layers match forestry and agronomic
standards in reporting research in canopy layers (Whitehurst et al. 2013; Wilkes et al. 2016).
Foliage material belonging to each canopy layer were harvested. The LAI for each canopy
layer was measured as the cumulative leaf surface area of leaves making up a canopy layer
divided by the field of view. Care was taken to eliminate leaves outside the field of view. The
total surface area of the leaves were measured using a LI-3100C area meter. The calibration of
the LI-3100C area meter was routinely checked against a metal surface of known surface area.
Representative leaves (approximately 3 g) from foliage material of each canopy layer were
randomly sampled for leaf traits measurement. Leaf chlorophyll content (Cab μg/cm2) was
measured using a CCM-300 chlorophyll content meter (Opti-Sciences 2011). After measuring
chlorophyll, a digital scale at an accuracy of ~ 0.01 gwas used to determine the freshweight for
each sample. We also scanned the leaf surface area (LA cm2) of each sample using an AMH
350 area meter (ADC-BioScientific 2013). The samples were then oven-dried at 65 °C until at
constant weight was attained after approximately 72 hours after which dry weight was
measured. The leaf mass per area (LMA, g/cm2) was determined by dividing dry weight by
fresh leaf area.

After determining LMA, leaf samples were prepared for nitrogen and carbon analysis
by grinding them to a fine and homogeneous powder using a mortar and pestle to pass
through a 180 μm sieving and mesh screen. Approximately 2 mg of each sample powder
was placed in aluminium capsules for nitrogen and carbon analysis using the Perkin
Elmer 2400 CHNS/O Elemental Analyzer (Perkin-Elmer 2005). We duplicated 25% of
samples and ran an acetanilide standard after every ten to fifteen samples to constantly
monitor the system calibration and reliability. The nitrogen and carbon results from the
elemental analyzer were obtained on a dry mass ash-included basis (Meerdink et al.
2016). We therefore multiplied the mass-based nitrogen and carbon by LMA of each
sample to obtain area based nitrogen and carbon content (Wang et al. 2015).

2.5 Upscaling leaf traits to canopy level

Using the LAI of each canopy layer, we explored different approaches for upscaling
foliar nitrogen, LMA, chlorophyll and carbon to canopy level as described in Table 1. It
is important to note that although the study aimed to assess five primary upscaling
approaches (i.e., A-E, Table 1), we also used several secondary upscaling approaches (F-
L) to explore the relative effect of each layer on the spectral signal observed at the top of
the canopy, even if these secondary approaches are not necessarily practical in terms of
field sampling. For example, upscaling option F requires measuring LAI of the top and
bottom canopy layers, which is a challenge especially in environments characterized by
tall trees. However, such an upscaling approach assists in assessing the contribution of
the middle layer.

2.6 Statistical analysis

The effect of different leaf to canopy upscaling approaches on canopy traits estimation
were assessed using partial least squares regression (PLSR) and validated using repeated
k-fold cross validation. In this study we used PLSR for the following reasons; 1) it is
more stable and suitable for high dimensional and collinear datasets such as a hyper-
spectral dataset (Wold, Sjöström, and Eriksson 2001); 2) it reduces model overfitting by
decomposing spectral data into non-collinear latent variables especially when the number
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of predictor variables is more than the number of observations (Carrascal, Galván, and
Gordo 2009); 3) it provides an opportunity to generate an error matrix for the internal
validation subset (Wakeling and Morris 1993; Kuhn 2008); 4) it is computationally fast
and statistically efficient and is widely used in leaf traits estimation using spectral data
(Ramoelo et al. 2011; Neinavaz et al. 2016; Roelofsen et al. 2013; Serbin et al. 2014;
Shiklomanov et al. 2016; Ullah et al. 2014).

PLSR projects the explanatory variables (canopy reflectance spectra) into new orthogo-
nal latent variables that explain the most variance in the original predictors (Geladi and
Kowalski 1986). The dependent variable (canopy traits) is then regressed against the optimal
number of latent variables (Wold, Sjöström, and Eriksson 2001). The number of latent
factors selected for the PLSR model was determined by minimizing the cross validated
root mean square error (RMSECV) generated from the repeated k-fold cross validation. In
order to avoid overfitting and maintain model parsimony, we restricted the number of latent
factors to a maximum of 10% (three) of the sample size i.e. 32 canopies (Bian et al. 2010;
Wold, Sjöström, and Eriksson 2001; Marcoulides and Saunders 2006). Repeated k-fold cross
validation was used to proficiently exploit on our small dataset (n = 32). Five folds repeated
20 times (100 iterations) were used in the cross validation procedure. The repeated k-fold
cross validation procedure iteratively splits the data set (n = 32) into five semi-equal
partitions or blocks randomly. At each iteration, k-1 partitions were used to train the PLSR
model while the left out partition were used for validation. This process was repeated
iteratively k times (100 times in our case) until all the partitions were used for validation
as well for calibration. In order to minimize bias on the estimate based on the composition of
samples making up each partition the resampling procedure of the dataset was repeated
twenty times. In the end, a total of 100 model runs were performed for each canopy trait.

The cross validated R2
cv, and normalized RMSE (nRMSEcv = RMSEcv/range) between

the predicted and measured canopy trait values were used to evaluate the performance of
each PLSR model for each leaf to canopy upscaling approach. For canopy chlorophyll
content modelling we used canopy reflectance spectra within the visible and red edge region
(400-790nm) as this spectral region is sensitive to variation in chlorophyll content (Kumar
et al. 2001). However, for the other canopy traits (N, LMA and carbon) we used the whole
spectrum (400-2200nm) as these traits do not have a defined spectral feature and are related
to other compounds distributed across the whole spectrum (Curran 1989).

To evaluate the effect of different leaf to canopy upscaling approaches on canopy traits
estimation, we compared the mean nRMSEcv of the 100 model runs for each upscaling
approach using one-way ANOVA with the upscaling approach as a fixed factor. We then
used Tukey’s HSD post hoc test to perform a pairwise comparison of the upscaling
approaches. Prior to the PLSR modelling process, independent variables (spectra) and
dependent (leaf traits) variables were mean-centered. All PLSR analyses were performed
in R 3.3.3 for Windows using the classification and regression (caret) package (Kuhn 2008).

3. Results

3.1 Exploratory data analysis of foliar traits and in-situ hyperspectral data across the
canopy vertical profile

Foliar N, chlorophyll and carbon content significantly (p < 0.05) increased from the
lower to the upper canopy layer, while the LAI of the middle canopy layer was
significantly (p < 0.05) higher compared to LAI of the lower and upper canopy layers
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(Figure 2). LMA generally increased from lower to upper layers. However, LMA did not
significantly (p > 0.05) vary across the three canopy layers.

Table 2 shows the descriptive statistics of the four canopy traits based on the different
leaf to canopy upscaling approaches described in Table 1. Canopy N (F = 6.21, p = 0.00),
canopy LMA (F = 10.24, p = 0.00), canopy chlorophyll (F = 16.5, p = 0.00), canopy
carbon (F = 13.48, p = 0.00) significantly varied across the upscaling approaches based
on a one-way ANOVA test. Moreover, the range of canopy traits computed from each of
the upscaling approaches were different (Table 2). For example, the canopy traits based
on top of canopy trait content (upscaling approach C – in bold, Table 2) had a limited
range compared to the range of the other primary upscaling approaches especially for
canopy N, LMA and carbon. The range of canopy traits could potentially affect the
strength of the relationship between canopy spectral measurements and canopy traits.
The mean canopy spectral reflectance flanked by the standard deviation for the thirty-two
canopies is shown in Figure 3. Increased variations in the canopy spectral reflectance can
be observed in the NIR (750 −1350 nm) and SWIR (1400–1850 nm)

3.2 Effect of upscaling approach on model prediction using in-situ canopy
hyperspectral measurements

Figure 4 shows prediction accuracies (nRMSEcv) of the twelve upscaling approaches for
canopy N, LMA, chlorophyll and carbon based on the repeated k-fold PLSR modelling
for both in-situ hyperspectral measurements and simulated Sentinel-2 multispectral data.
An analysis of the primary upscaling approaches indicate that upscaling approach A

Figure 2. Variation in leaf traits and LAI across the canopy vertical profile.
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(mean leaf traits across the three canopy layers × total canopy LAI), B (mean traits of the
top two canopy layers × total canopy LAI), D (leaf traits weighted by the LAI of each
canopy layer) and E (leaf traits weighted by the LAI of the top two canopy layers)
consistently yielded higher retrieval accuracy (nRMSEcv < 0.2) and higher explained
variance (Table 3) compared to upscaling approach C (upper of the canopy traits × total
canopy LAI; nRMSEcv = 0.23, 0.22, and 0.22 for canopy N, LMA and carbon, respec-
tively). It is worthwhile to note that upscaling approach “A” exhibited relatively higher

Figure 3. The mean and standard deviation of canopy spectral reflectance for the thirty-two
canopies used for analysis.

Figure 4. Prediction accuracies (nRMSEcv) of each upscaling approach for the four traits. The
boxplots are based on the repeated k-fold cross validation PLSR 100 iterations.
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model stability based on the limited range of the yielded nRMSEcv. A Tukey HSD post
hoc test demonstrated that the nRMSEcv distribution obtained from upscaling approach C
(leaf traits of the upper canopy layer × total canopy LAI) was significantly (p < 0.05)
higher compared to the nRMSEcv obtained from the other primary upscaling approaches
especially for canopy N, LMA and canopy carbon (Figure 5). The nRMSEcv generated
from upscaling approaches A, B, D and E for canopy N, LMA and carbon were not
significantly (p > 0.05) different from each other demonstrating that they yield compar-
able retrieval accuracies and ultimately outperformed upscaling approach C.

By contrast, canopy chlorophyll content exhibited a different pattern compared to the
other canopy traits estimation models. Canopy chlorophyll content upscaled based on
leaf samples collected from the upper canopy and total canopy LAI (upscaling approach
C) exhibited a better relationship (R2

CV = 0.68, nRMSEcv = 0.24) against in-situ canopy
hyperspectral measurements compared to other canopy chlorophyll upscaling approaches
(Figure 4, Table 3). It is important to note that although upscaling approach C produced a
higher retrieval accuracy in canopy chlorophyll estimation; it yielded comparable pre-
diction errors to other primary upscaling approaches i.e. the generated (nRMSEcv) were
not statistically different (p > 0.05, Figure 5). Although there were no statistical differ-
ences in the generated nRMSEcv among the canopy chlorophyll estimations, it is worth-
while to note that all leaf to canopy upscaling approaches generated high errors
(nRMSEcv >0.23) compared to canopy N, LMA and carbon using in-situ hyperspectral
measurements.

Upscaling approaches that included both LAI or traits of the middle layer (i.e. A, B,
D, E, G, I and L) yielded low nRMSEcv especially for canopy N, LMA and carbon.
Although the middle canopy layer demonstrated a strong influence on retrieval accuracy
of canopy traits, a combination of the middle and upper canopy layers (upscaling
approach R2

cv: A = 0.78, B = 0.76, D = 0.79 and E = 0.73) generally outperforms the
combination of middle and bottom canopy layer (R2

cv: G = 0.74, L = 0.7) for canopy N
estimations (Table 3) using hyperspectral measurements. However, upscaling approaches
that excludes the middle canopy layer yielded lower explained variance e.g. (R2

cv:
F = 0.64, K = 0.62). We observed that upscaling approach B (mean traits of the top

Table 3. Performance of PLSR reflectance models based on in-situ hyperspectral measurements.

Canopy N Canopy LMA Canopy chlorophyll Canopy Carbon

Upscaling approach nlv R2
cv±SD nlv R2

cv±SD nlv R2
cv±SD nlv R2

cv±SD

A 2 0.78 ± 0.15 2 0.66 ± 0.18 2 0.65 ± 0.27 3 0.76 ± 0.11
B 2 0.76 ± 0.16 2 0.65 ± 0.19 2 0.64 ± 0.28 3 0.77 ± 0.12
C 2 0.60 ± 0.22 2 0.58 ± 0.17 2 0.68 ± 0.25 2 0.71 ± 0.14
D 2 0.79 ± 0.15 2 0.67 ± 0.17 2 0.64 ± 0.27 3 0.79 ± 0.14
E 2 0.73 ± 0.14 2 0.63 ± 0.16 3 0.57 ± 0.28 3 0.74 ± 0.1
F 2 0.64 ± 0.18 2 0.6 ± 0.21 2 0.61 ± 0.3 3 0.76 ± 0.17
G 2 0.74 ± 0.2 2 0.65 ± 0.22 2 0.64 ± 0.26 3 0.78 ± 0.18
H 2 0.57 ± 0.24 2 0.48 ± 0.2 2 0.38 ± 0.27 2 0.64 ± 0.2
I 2 0.68 ± 0.16 2 0.63 ± 0.24 2 0.56 ± 0.25 3 0.74 ± 0.16
J 2 0.49 ± 0.23 1 0.51 ± 0.29 2 0.5 ± 0.26 3 0.66 ± 0.24
K 2 0.62 ± 0.19 2 0.54 ± 0.16 2 0.64 ± 0.23 3 0.62 ± 0.11
L 2 0.7 ± 0.16 2 0.6 ± 0.16 2 0.6 ± 0.27 3 0.72 ± 0.15

nlv: number of latent variables, SD standard deviation
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Figure 5. Pairwise comparison of the upscaling approaches based on the Tukey’s HSD post hoc
test. Values in each cell indicate the p-value of each pairwise comparison. White and black cells
represent significant and non-significant pairwise comparison, respectively (α = 0.05).

566 T.W. Gara et al.



two layers × total canopy LAI), K (mean traits of the top and bottom layers × total
canopy LAI) and L (mean traits of the middle and bottom layers × total canopy LAI), –
all computed based on total canopy LAI, yielded different explained variance (R2

cv:
B = 0.65, K = 0.64 and L = 0.7) and prediction errors (nRMSEcv: B = 0.2, K = 0.19 and
L = 0.17) for canopy LMA estimations. A similar pattern can also be observed regarding
the relationship between canopy N or carbon and in-situ hyperspectral measurements.
For practical purposes, this implies that leaf traits and LAI of the top two canopy layers
are key and contribute significantly to canopy spectral reflectance.

3.3 Effect of upscaling approach on model prediction using simulated sentinel 2data

Generally, upscaling option C yielded the lowest retrieval accuracy for canopy N
(nRMSEcv = 0.23), LMA (nRMSEcv = 0.22) and C (nRMSEcv = 0.21) compared to the
other primary upscaling approaches (A, B, D and E) (see Figure 4) using simulated
Sentinel-2 dataset. The nRMSEcv generated from upscaling approach C were significantly
(p < 0.05) different from nRMSEcv generated the other primary upscaling approaches (A,
B, D and E) in canopy N, LMA and carbon estimations (Figure 5). No significant
difference (p > 0.05) in nRMSEcv were observed between upscaling options A, B, D
and E implying they yield comparable results for canopy N, LMA and carbon estimations.
The generated R2

cv, confirmed that upscaling approaches A, B, D and E outperformed
upscaling approach C for canopy N, LMA and carbon estimations (Table 4). In contrast,
upscaling approach C yielded the highest retrieval accuracy for canopy chlorophyll
estimation compared to upscaling approaches A, B, D and E. On average, upscaling
approach C yielded the lowest nRMSE (nRMSEcv = 0.17; Figure 4) and highest R2

(R2
cv = 0.62; Table 4) compared to other upscaling options for canopy chlorophyll

estimation. However, the generated nRMSEcv were not statistically significantly different
(p > 0.05) between upscaling approach C and the other primary upscaling approaches i.e.
A, B, D and E (Figure 5).

Similar to the results observed for canopy trait estimation using in-situ hyperspectral
measurements, functional attributes (leaf traits and LAI) of the top two canopy layers

Table 4. Performance of PLSR reflectance models calibrated based simulated Sentinel-2.

Canopy N Canopy LMA Canopy chlorophyll Canopy Carbon

Upscaling approach nlv R2
cv±SD nlv R2

cv±SD nlv R2
cv±SD nlv R2

cv±SD

A 3 0.73 ± 0.15 3 0.62 ± 0.17 3 0.59 ± 0.24 2 0.73 ± 0.19
B 3 0.73 ± 0.16 3 0.62 ± 0.19 3 0.56 ± 0.28 2 0.73 ± 0.15
C 3 0.53 ± 0.2 3 0.53 ± 0.21 3 0.62 ± 0.2 2 0.67 ± 0.17
D 3 0.71 ± 0.18 3 0.59 ± 0.23 3 0.57 ± 0.23 2 0.75 ± 0.18
E 3 0.68 ± 0.16 2 0.57 ± 0.21 3 0.5 ± 0.24 2 0.70 ± 0.15
F 2 0.52 ± 0.27 3 0.51 ± 0.27 3 0.55 ± 0.24 2 0.7 ± 0.18
G 3 0.67 ± 0.24 3 0.59 ± 0.25 3 0.57 ± 0.24 2 0.75 ± 0.16
H 3 0.49 ± 0.22 2 0.43 ± 0.25 3 0.35 ± 0.26 2 0.6 ± 0.19
I 3 0.64 ± 0.17 3 0.57 ± 0.21 3 0.5 ± 0.27 2 0.71 ± 0.18
J 2 0.39 ± 0.32 2 0.36 ± 0.26 3 0.42 ± 0.25 2 0.61 ± 0.25
K 3 0.6 ± 0.17 3 0.5 ± 0.2 3 0.57 ± 0.25 2 0.52 ± 0.18
L 3 0.70 ± 0.15 3 0.56 ± 0.19 3 0.53 ± 0.27 3 0.66 ± 0.15

nlv: number of latent variables, SD standard deviation
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imposed a strong influence on canopy N, LMA and carbon estimations using simulated
Sentinel-2 data. For example, upscaling approach I (leaf traits and LAI of the middle
canopy layer) outperformed upscaling approaches H (leaf traits and LAI of the top
canopy layer) and J (leaf traits of the bottom canopy layer and × LAI of the bottom
canopy layer) for canopy N, LMA and carbon estimation (Figure 4). For canopy
chlorophyll estimation upscaling approach H (nRMSEcv = 0.18) outperformed upscaling
approach I (nRMSEcv = 0.23) demonstrating that the top layer imposes a strong influence
on canopy chlorophyll estimation from simulated Sentinel-2 data (Figure 4).

4. Discussion

This study set out to examine the effect of different approaches of upscaling foliar N,
LMA, chlorophyll and carbon from leaf to canopy level on model performance and
estimation accuracy using in-situ canopy hyperspectral measurements and simulated
Sentinel-2 data. Results of this study demonstrate that leaf to canopy upscaling
approaches have a profound effect on the estimation of canopy traits. In comparison to
other upscaling approaches the widely-used product of top of canopy traits and total
canopy LAI (upscaling approach C) consistently underperformed (nRMSEcv >0.2) com-
pared to other primary upscaling approaches (nRMSEcv <0.2) that consider the contribu-
tion of leaf traits content from the shaded middle and lower canopy layers (Figure 4).
This demonstrates that functional attributes (LAI and leaf traits) of the top canopy layer
did not completely control the spectral reflectance observed by the sensor. Upscaling
approaches that include functional attributes of the top and middle canopy layers
(upscaling approaches B, E) significantly, (p < 0.05) improved the estimation accuracies
of the canopy traits (Figure 5). However, upscaling approaches that considered functional
attributes of the three layers (upscaling approach A and D) yielded comparable results to
upscaling approaches that considered traits of the top two layers (upscaling B and E;
Figures 4 and 5). The inclusion of functional attributes (leaf traits and LAI) of the lower
canopy layer did not significantly improve the estimation accuracy of canopy traits. This
demonstrates that canopy reflectance observed by a sensor is not necessarily generated
by the entire canopy. The obscured foliage material of the lower canopy contributed less
to the canopy spectral signal (Roelofsen et al. 2013). This observation can be linked to
the problem of saturation in reflectance and vegetation indices with increasing amount of
vegetation (Mutanga and Skidmore 2004; Prabhakara, Hively, and McCarty 2015).
Saturation occurs when spectral reflectance or indices reach an asymptotic level beyond
which any further increase in vegetation biomass or LAI does not result in a significant
change on the spectral signal or index (Liang et al. 2015). This problem may lead to
inaccurate and underestimation of canopy traits in high LAI or biomass environments
(Thenkabail, Smith, and De Pauw 2000).

In contrast to observations made on canopy N, LMA and carbon, canopy chlorophyll
estimations exhibited an improved relationship with upscaling approach C (leaf traits of
the top canopy layer and total LAI) (Figure 4). Upscaling approach C yielded the highest
R2

cv and lowest nRMSEcv in canopy chlorophyll estimations for both in-situ hyperspec-
tral measurements (R2

cv = 0.68 and nRMSEcv = 0.24) and simulated Sentinel-2 data
(R2

cv = 0.62 and nRMSEcv = 0.17). The top layer proved to have a strong influence on
canopy chlorophyll estimation for both spectral datasets. This observation concurs with
previous studies (Verrelst et al. 2010; Gitelson et al. 2005) that demonstrate that canopy
reflectance (especially in the visible spectrum) is strongly influenced by chlorophyll
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content of the upper canopy layer due to strong chlorophyll sensitivity within the visible
spectrum. However, the explained variance and model accuracy generated from upscal-
ing approach C for canopy chlorophyll estimations for both spectral datasets were not
significantly different (p > 0.05) from the other primary upscaling approaches that
consider the contribution of the exposed top canopy layer together with the shaded
middle and bottom layers (Figure 5). In this regard, estimation of both dry matter related
traits (i.e. N, LMA and carbon) and leaf pigments such as chlorophyll need to consider
the vertical variation in leaf traits for improved prediction and mapping of these traits at
landscape and regional landscapes. It is important to note that a number of studies report
a wide range of explained variances in leaf traits estimation ranging from as low as 46%
for canopy N (Ramoelo et al. 2015) to as high as 92% for canopy chlorophyll (Clevers
and Gitelson 2013) using in-situ hyperspectral measurements and simulatedSentinel-2
multispectral data. Most of these studies do not generally provide detailed description of
how the leaf traits were upscaled to canopy level. Our results suggest that the approach
used to upscale foliar traits from leaf-to-canopy level is a potential source of uncertainty
in canopy trait estimation especially in less foliated vegetation biomes where foliage
material from the lower canopy contributes to the canopy reflectance.

To understand the relative influence of leaf traits and LAI for each canopy layer on model
performance and estimation accuracy, different upscaling combinations of foliar traits and LAI
were explored (Table 1). Our results indicate that the middle layer had a key effect on the
estimation of N, LMA and carbon from in-situ canopy hyperspectral measurements and
simulated Sentinel-2 data. Leaf to canopy upscaling approaches that excluded functional
attributes of the middle layer (e.g. upscaling approaches F, H and J) resulted in low explained
variance (R2

cv = 0.6, 0.48 and 0.51) and estimation accuracy (nRMSEcv = 0.2, 0.21 and 0.27),
compared to upscaling approaches such as G and I (R2

cv = 0.65 and 0.63 and nRMSEcv = 0.15,
0.16 respectively) that included functional attributes of the middle layer in canopy LMA
estimation using in-situ hyperspectral measurements (Figure 4, Tables 3 and 4). A similar
pattern was also observed in canopy N; carbon model estimations using either in-situ hyper-
spectral measurements or simulated Sentinel-2 data (Figure 4). This observation can be
ascribed to the high LAI values of the middle layer (Figure 2), which ultimately controlled
canopy radiation dynamics (Wang and Li 2013).

Results of this study also indicated the effect of leaf traits vertical heterogeneity on
canopy traits estimation from spectral data. This was shown when different combination
of leaf traits from the three canopy layers were explored whilst LAI remained invariant.
For example, upscaling approach B (mean traits of the top two layers × total canopy
LAI), K (mean traits of the top and bottom layers × total canopy LAI) and L (mean traits
of the middle and bottom layers × total canopy LAI) were all computed based on total
canopy LAI, however they generated different explained variances and nRMSEcv for N,
LMA and carbon. For instance, upscaling approaches B, K and L yielded R2

cv of 0.76,
0.62 and 0.7 for in-situ hyperspectral measurements and 0.73, 0.6 and 0.7 for a simulated
Sentinel-2 dataset for canopy N prediction models. The average of leaf traits of the top
and middle canopy layers (B) resulted in a higher R2

cv (0.76 and 0.73 for in-situ
hyperspectral and simulated Sentinel-2 data), while the combination of the middle and
bottom (upscaling approach L) resulted in explained variance dropping by 6% and 3%
respectively for in-situ hyperspectral and simulated Sentinel 2 respectively. However, the
exclusion of the leaf traits content of the middle layer (upscaling approach K) resulted in
a further decrease in explained variance by 8 and 10% for in-situ hyperspectral and
simulated Sentinel 2, respectively. A similar pattern can also be observed for canopy
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LMA or carbon for both in-situ hyperspectral measurements and simulated Sentinel-2
data. This result indicate that leaf traits of the top and middle canopy layers together with
their respective LAI drive canopy reflectance observed by the sensor. This result con-
forms to Wang and Li’s (2013) observation that the vertical heterogeneity in leaf
chlorophyll, water and dry matter content variation have a significant effect on simulated
canopy reflectance. This observation is also in agreement with Luo et al. (2016) who
demonstrated that the top three layers of ~ 2 meters high wetland reeds were key in
canopy N prediction using vegetation indices computed from in-situ hyperspectral
measurements. In this regard, the vertical variation in both LAI and leaf traits have an
effect on the relationship between canopy reflectance and the canopy traits. This imply
that large uncertainties can be presented in canopy parameter estimations if information
on the vertical variation of key traits is not incorporated in the modelling approach.
However, as LAI is often measured as total canopy LAI (Peng et al. 2017), significant
consideration should, therefore be placed on leaf traits that vary across the canopy.

Results obtained in this study are similar to observations of earlier studies (Mercado
et al. 2006; Coble et al. 2016; Sprintsin et al. 2012) that reported that the “big leaf”
approach underestimates quantification of total canopy processes such as total canopy
photosynthesis and gross primary productivity compared to the “two leaf” approach. The
“big leaf” approach assumes that unshaded, sunlit leaves in the upper canopy represents
the whole canopy metabolic processes, while the “two leaf” approach accounts for
canopy metabolic processes based on both sunlit and shaded leaves. Sprintsin et al.
(2012) observed that gross primary production models calibrated based on the big leaf
upscaling approach consistently yielded low explained variance and accuracy in gross
primary productivity modelling across different vegetation biomes against flux tower
measurements. Their study demonstrated that the exclusion of the photosynthetic con-
tribution of the shaded leaves could underestimate canopy gross photosynthesis produc-
tivity by over 70% in highly clumped vegetation stands. In light of this background, the
“big leaf” is closely related to upscaling approach C that only considered leaf traits of the
upper layer. The “two leaf” approach closely resemble the other primary upscaling
approaches (A, B, D and E) that factor in the contribution of foliage material from
both the exposed upper layers and the shaded lower layers. This observation demonstrate
that canopy reflectance observed by a sensor constitutes contribution of all foliage
material within the canopy. .

Importantly, our study examines the effect of upscaling leaf traits from the leaf to
canopy level using in-situ canopy hyperspectral and simulated Sentinel 2 data. Results
obtained in this study can be tested in forests or woodlands where foliage from the lower
canopy contributes to canopy reflectance. Partitioning the total canopy LAI into sunlit
and shaded layers following methods such as those proposed by Chen et al. (1999) and
subsequently collecting leaf samples from both sunlit and shaded layers are critical in
examining the contribution of each canopy layer in canopy trait estimations. Hence, the
effect of separating LAI and leaf samples into sunlit and shaded on canopy traits
estimation using airborne or satellite data need further investigation.

5. Conclusion

In this study, we evaluated the effect of different approaches of upscaling leaf traits to the
canopy level on the accuracy of estimation of canopy N, LMA, chlorophyll and carbon
from in-situ hyperspectral measurements and simulated Sentinel-2 reflectance data.
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Through a robust sampling procedure, we determined leaf traits from different vertical
canopy positions and applied various weighted averages to examine how various canopy
components impact the estimation of canopy traits from in-situ canopy hyperspectral and
simulated Sentinel 2 data. Based on the results we conclude that:

(i) Leaf-to-canopy upscaling approaches yield significantly different canopy traits
values. The range (max-min) of the canopy traits varies depending on the
upscaling approach used.

(ii) Leaf-to-canopy upscaling approaches that consider the contribution of both the
exposed upper canopy leaves together with the shaded lower canopy leaves
results in improved prediction of canopy nitrogen, LMA and carbon from both
in-situ canopy hyperspectral measurements and simulated Sentinel-2 data.
However, the same pattern does not hold true for canopy chlorophyll.

(iii) The widely used upscaling approach that considers leaf traits from the exposed
top of the canopy yields a better accuracy for canopy chlorophyll estimation
from in-situ canopy hyperspectral measurements. However, the prediction errors
obtained among the canopy chlorophyll upscaling approaches were not signifi-
cantly different (p > 0.05).

We therefore, conclude that sampling methods that intend to use remote sensing mea-
surements to upscale leaf traits, especially dry matter related leaf traits, need to account
for the vertical heterogeneity in leaf traits across plant canopies for improved canopy
traits estimation and mapping. As this study was conducted in the laboratory setup with
relatively short shrubs, it is important to ascertain whether similar results can be obtained
in high-foliated forests using airborne or satellite spectral measurements.
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