
On the Scalability of Decentralized Energy
Management using Profile Steering

Gerwin Hoogsteen, Marco E. T. Gerards, Johann L. Hurink
University of Twente, Department of EEMCS

Enschede, the Netherlands
{g.hoogsteen, m.e.t.gerards, j.l.hurink}@utwente.nl

Abstract—Optimizing the use of flexibility, provided by e.g.
batteries and electric vehicles, provides opportunities for var-
ious stakeholders. Examples are aggregators acting on energy
markets, or energy cooperations willing to maximize their self-
consumption. However, with large numbers of devices that need
to be scheduled, the underlying optimization problem becomes
difficult. This paper investigates the scalability of a smart grid
optimization approach called Profile Steering. This approach uses
a hierarchical structure to perform distributed optimization. In
this paper, the approach is extended with methods to accept
multiple profiles at once and the possibility to prune children with
little flexibility. Simulation studies with almost 20,000 households
are carried out to evaluate the scalability of Profile Steering. The
results show that, with the presented improvements, the required
optimization time of Profile Steering scales linearly with the
number of children and a speedup factor of 56 is achieved with
1000 households. Furthermore, the approach scales well across
multiple computing processes.

Index Terms—decentralized control, smart grids, model pre-
dictive control, optimization

I. INTRODUCTION

Due to the depletion of fossil fuels and their impact on
global warming, more renewable energy sources (RES) are
present in distribution grids. Most RES produce electricity,
the share of electricity in the total energy demand is also
expected to rise [9], for which the existing infrastructure may
not provide enough distribution capacity. Another challenge is
that most renewable electricity is generated using intermittent
sources, resulting in increasing difficulties to balance supply
and demand. Decentralized energy management (DEM) can
exploit the locality of energy generation to relieve the stress
on the electricity network [7]. Furthermore, flexible loads (e.g.
batteries and electric vehicles) can be integrated in such a
system to match the demand with the supply.

To fully benefit from the potential of devices that can offer
flexibility to the distribution grid, a scalable (many devices
need to be controlled) and versatile (the cluster of devices is
heterogeneous) optimization and control method is required.
Centralized optimization methods in general do not scale well
with an increasing number of controllable devices. Iacovella et
al. [8] use a few tracer devices to reduce the complexity, which
accurately describe the flexibility of a larger group of devices.
Alternatively, Claessens et al. [1] use reinforced learning to
create an abstract model of the flexibility, which is used to

optimize the power profile of the connected devices. On the
other hand, transactive control and coordination [10] embraces
(distributed) local intelligent controllers in a hierarchical tree.
With a transactive energy methodology, such as double-sided
auctions, the processing and computation time scales with
the height of the tree instead of the number of devices. The
same degree of scalability is also applicable to distributed
optimization algorithms, such as Profile Steering [3], and
alternating direction of multipliers method (ADMM) [4], [14].

Scalability of DEM optimizations algorithms is becoming
increasingly important for e.g. aggregators to act on energy
markets. Hansen et al. [5] investigated this and their method
requires 113 minutes to solve a problem with 5555 customers
using a genetic algorithm based centralized optimization
method. Rivera et al. [11] have evaluated the performance
of ADMM under various circumstances. Significant reductions
in required computation time and memory usage are achieved
with a parallelized implementation compared to a sequential
implementation. Lastly, Toersche [12] shows signs that the com-
putation time with Profile Steering can be reduced significantly
by accepting multiple profiles per iteration.

In this paper, we further investigate the scalability of
Profile Steering using the DEMKit optimization and simulation
framework developed at the University of Twente [7]. Within
this tool, complete (micro)grids can be modelled in detail with
device, infrastructure and control objects. This paper presents
and evaluates solutions to significantly reduce the required
computation time of the Profile Steering heuristic. Further-
more, inherent parallelism is exploited and the scalability of
distributed optimization is evaluated by extending DEMKit
with multiprocessing support. The main contributions of this
paper to Profile Steering are:

• solutions to increase the computation efficiency,
• distributed energy optimization by exploiting parallelism,
• a scalability analysis with up to 19,200 households.

The remainder of this paper is organized as follows. A brief
introduction to Profile Steering and its current shortcomings
is given in Section II. Solutions to increase the computational
efficiency are presented and evaluated in Section III, whereas
scalability using parallelism is analyzed in Section IV. Con-
clusions and directions for further speed and search-space
improvements are addressed in Section V.978-1-5386-4505-5/18/$31.00 © 2018 IEEE

17:00 24:00 6:00

0

20

40

60

Time [h]

Po
w

er
[k

W
]

~x ~xm

(a) Initial profiles

17:00 24:00 6:00
−60

−40

−20

0

Time [h]

~d ~p

(b) Incentive

17:00 24:00 6:00
−60

−40

−20

0

Time [h]

~pm

(c) EV desired

17:00 24:00 6:00

0

20

40

60

Time [h]

~̂xm

(d) EV candidate

17:00 24:00 6:00

0

20

40

60

Time [h]

new ~x ~p

(e) Parent controller

Fig. 1. Visual example of Profile Steering with an EV m arriving at 17:00 and leaving at 7:00 the next day and energy demand of 55 kWh. (a) The initial
power profile of the parent (~x) and greedy planning of the EV (~xm). (b) The parent controller sends out an incentive (~d), based on the desired profile (~p) to
the EV controller. (c) The EV controller produces a local desired profile (~pm) by adding ~xm. (d) The EV optimizes its profile based on the desired profile,
resulting in a (selected) candidate power profile (~̂xm). (e) Finally the profile at the parent is updated (new ~x), where the profile is flattened compared to (a).

II. PROFILE STEERING

This section gives a brief overview of Profile Steering as
presented in [3], followed by an analysis to identify the major
bottlenecks of this algorithm.

A. Algorithm

The Profile Steering algorithm (an example is given in Fig.
1) is a heuristic to schedule the energy profile of a cluster
of devices for an upcoming period of N time intervals using
a hierarchical structure of controllers. It does so by sending
an explicit desired profile (~p = [p1, . . . , pN]T) to lower level
controllers, which we refer to as children. These profiles express
exactly the energy profile that a cluster of children should attain
according to their higher level controller, which we refer to as
parent. The objective for the children is to follow this steering
signal by minimizing the distance between this desired profile
and the aggregated power profile ~x = [x1, . . . , xN]T , according
to some vector norm. In our case, we use the Euclidean
distance (i.e., minimize ||~x − ~p||2). A desired profile could
be a zero-profile (i.e. [0, . . . , 0]T) which expresses that balance
of production and consumption of energy is desired.

Initially, each child m ∈M receives this desired profile ~p
and minimizes the distance between this desired profile and
its own power profile ~xm = [xm,1, . . . , xm,N]T . The parent
controller receives all power profiles from connected children,
resulting in an initial aggregated power profile ~x =

∑
m∈M ~xm.

Then, iteratively, the parent controller sends out a difference
profile ~d = ~p − ~x. Each child obtains a local desired profile
~pm = ~d+ ~xm to find a new candidate power profile ~̂xm that
minimizes ||~xm−~pm||2. Each child calculates its improvement
em that is achieved by replacing the current power profile ~xm
by ~̂xm: em = ||~xm− ~pm||2−||~̂xm− ~pm||2, and communicates
the obtained improvement em back to the parent controller. The
parent controller selects the child with the largest improvement,
and may couple a (monetary) reward to this improvement to
attract participants. The chosen device m commits its own
candidate profile (i.e., ~xm becomes ~̂xm) and communicates its
changes, such that the parent can update ~x. With this method,
most information stays local to minimize communication
requirements. Subsequently, a new difference profile ~d is
obtained and the process is repeated until a maximum number

of iterations is reached or no significant improvement is made,
i.e. em < emin where emin is a positive value denoting the
minimum required improvement. The result of the algorithm
is a schedule ~xm = [xm,1, . . . , xm,N]T for each child m.

Note that the parent controller is agnostic about the details
of its children, as long as they communicate as described above.
Thus, a child could optimize the operation of a device (for
optimization algorithms under the aforementioned steering
signals see e.g. [13]). But, a child can also be another
node running Profile Steering, making it possible to form a
hierarchical (tree) structure, where each child performs several
iterations before returning the candidate profile. This does
require additional bookkeeping (see Chapter 4 of [7]).

B. Computational Efficiency

The time required to finish one iteration of Profile Steering
depends on the time it takes for the children to obtain a
candidate profile and whether the children optimize their profile
sequentially or in parallel. In the sequential case the total
computational time is D = Dps +

∑
m∈M Dm, where Dps is

the time required by the Profile Steering algorithm to perform
calculations and bookkeeping, and Dm is the computation time
of child m ∈ M . In the parallel case, the computation time
depends on the worst case execution time among the children.
Hence D = Dps + max (D0, D1, . . . , Dm).

Assuming that all used processors are equal, Dm and Dps
can be translated directly into an amount of processing power.
In this case, for an iteration i, with Dm̄ being the selected
child, we can calculate which fraction of the computations is
used to improve the profile. The candidate profiles obtained by
all not selected children are discarded and hence their effort
remains unused, resulting in a computation efficiency ηi < 1.
If we now consider a situation where the children recursively
obtain a profile Dm by steering a group of grandchilden, the
computation efficiency to obtain such a profile is ηm̄ < 1. Thus,
the efficiency in terms of computation time is found using:

ηi =
Dps +Dm̄ηm̄

Dps +
∑
m∈M Dm

. (1)

Assume that the number of iterations grows linearly in M ,
we get a quadratic increase in computation time in a sequential
implementation. In the parallel case, the computation time and

number of processing units both increase linear with the number
of children. The resulting efficiency decreases considerably if
more layers are added to the control tree.

It is hard to give an exact figure for the total computation
time and efficiency as this heavily depends on the situation,
target profile and foremost the amount and type of considered
flexibility. From experience, with low emin ≤ 1, we found that
the number of children with sufficient flexibility approximates
the number of required iterations. The results in Section III
show that this is also the case in this paper.

III. IMPROVEMENTS TO PROFILE STEERING

The main bottleneck identified in Section II is the resulting
low efficiency due to accepting only one profile per iteration.
Furthermore, not all children are (always) able to provide
flexibility to the system, but still require computational time and
communication bandwidth. This section presents and evaluates
improvements (pseudocode of this approach is summarized in
Algorithm 1) to these problems.

A. Accepting Multiple Profiles

To reduce computation time, the number of accepted profiles
can be increased. Toersche [12] experimented with accepting
profiles by first sorting the children based on em. Then,
candidate profiles ~̂xm are accepted as long as they improve
the overall objective value. This method resulted in a decrease
from 380 to 65 iterations in a case with 400 households.

Instead of checking the improvement at the parent level
to avoid overshoots, we propose to distribute only a fraction
of the master problem to each child. This fraction depends
on the number of simultaneous commits (accepted candidate
profiles) in an iteration, denoted as µ. Thus in an iteration,
each child receives ~d = [d1µ ,

d2
µ , . . . ,

dN
µ]T as a steering signal.

This strategy allows a number of children to contribute to
the solution simultaneously with a reduced risk of (large)
overshoots. Now, equation (1) can be rewritten into:

ηi =
Dps +

∑
m̄∈M̄ Dm̄ηm̄

Dps +
∑
m∈M Dm

, (2)

where M̄ is the set of selected children in an iteration. With
µ = |M | all computational power is used (assuming ηm̄ = 1).

In each iteration, all children communicate their improvement
em to the parent controller. The parent sorts the children
in descending order based on their respective em value and
subsequently selects the top µ children to commit their profile.
As a large µ also includes a risk of overshoots, we propose
to reduce µ after each iteration, i.e. by dividing µ by a factor
β > 1. The number of simultaneous commits in iteration i ≥ 1
is now given by µi = max(1, bµi−1/βc).

With a fraction of the difference profile, the contribution em
that a child can make is reduced. Hence, there is a risk that
the Profile Steering algorithm might stop iterating too soon if
emin is not adapted to reflect this change. We propose to make
emin depend on µi and the number of controlled children M ,
i.e.:

Algorithm 1 Extended Profile Steering algorithm.
1: Request each child m ∈M to minimize ||~xm − ~p||2
2: ~x :=

∑M
m=1 ~xm . Total cluster consumption

3: k := 1
4: repeat
5: ~d := (~p− ~x)/µ . Difference profile
6: for m ∈M do . For each child M
7: ~pm := ~d+ ~xm
8: Find a candidate ~̂xm minimizing ||~xm − ~pm||2
9: Communicate em := ||~xm − ~pm||2 − ||~̂xm − ~pm||2

10: end for

11: Sort M descending based on em
12: j := 1
13: while j ≤ µ do
14: ~x := ~x+ ~̂xj − ~xj . Update the total consumption
15: ~xj := ~̂xj . Update the profile of child j
16: j := j + 1
17: end while
18: emin,i := (Memin)/

√
µ

19: if Use child pruning then
20: Sort M ascending based on em
21: j := 1
22: while j ≤ µ ∧ ej < emin/

√
µ do

23: Remove j from M
24: j := j + 1
25: end while
26: end if
27: µ := min(|M |,max(1, bµ/βc)
28: k := k + 1
29: until ∀em < emin,i ∨ k > kmax ∨ |M | = 0

emin,i =
Memin√
µi

. (3)

In terms of fairness, choosing µ0 = M ensures that candidate
profiles of all children are accepted at least once. From a
technical point of view this approach spreads the problem
better over the children, especially in the first iterations. This
generally results in reduced local peaks and an improved power
quality [7]. From a computational complexity point of view, the
addition of sorting the children does increase the complexity.
However the number of children is generally low, limiting the
size of the sorting problem.

B. Pruning Inflexible Children

Another observation is that some devices lack (significant)
flexibility, as surveyed in [2]. For these devices the probability
that they provide sufficient contribution to the problem (i.e.
a significant em) to be selected is small. The approach is
extended with the option to automatically prune the pool of
considered children based on the last contribution. A child is
removed from the pool of children for the current optimization
process if the improvement em < emin√

µi
.

devices

HEMS1

devices

HEMS2

devices

HEMSM

root controller

Fig. 2. Overview of the structure with M Profile Steering instances (HEMS),
communicating with one root controller and household devices.

However, note that the above decision is made based on the
last improvement, which depends on the received difference
profile ~d. As the difference profiles change, children with little
flexibility may contribute significant improvements in later
iterations. With the proposed method of pruning, these children
may be pruned too early, which limits the solution that can be
found. All children are added to the pool again at the start of
a new run of the Profile Steering algorithm.

C. Evaluation Method

To evaluate the proposed improvements to Profile Steering,
a synthetic model of a neighbourhood with 100 houses
is generated using the profile generator from [6]. In this
neighbourhood, 50% of the households are equipped with solar
panels and all households have a smart dishwasher. Significant
flexibility in this neighbourhood is provided by batteries (25%
penetration, 2, 5 or 12 kWh capacity, maximum power of
3700 W), Plug-In Hybrid Electric Vehicles (25% penetration,
12 kWh capacity, maximum power of 3700 W), and Full
Electric Vehicles (25% penetration, 60 kWh capacity, maximum
power of 7400 W). In total, 61 of the 100 households have
significant flexibility to offer to the system. In all simulations,
the objective of the root controller is:

minimize ||~p− ~x||2,

where ~p = [0, 0, . . . , 0]T . The interval length is set to 15
minutes and a total of two days is optimized (192 intervals).
Within the case studies, we compare the results of the first day
(96 intervals), where the optimization of a second day is used
to prevent the algorithm from exhausting too much flexibility
(which would result in worse results the next day). The other
parameters are emin = 1 and β = 2.

The configuration of these households is loaded into the
DEMKit optimization and simulation software (written in
Python) [7]. The optimizations and simulations are executed
on an Intel Core-i7 5820K clocked at 4 GHz (6 cores, 12
threads) with 16 GB RAM. Multiple simulations are run
to evaluate the performance and scalability of the proposed
improvements. Each household in the model is equipped with
a Home Energy Management System (HEMS) that runs the
Profile Steering algorithm. The devices of one household are
linked to their respective HEMS as children. Furthermore,
there is one root controller, also running the Profile Steering

0 100 200 300

100

105

110

Iterations

O
bj

.v
al

ue

100 200 300

400 500

(a) Multiple problem sizes for PS

1 3 5 7 9 11

100

105

110

Iterations

PS PSM
PSMH PSMP

(b) improved PS*

Fig. 3. Convergence of the original Profile Steering algorithm for different
number of houses (a), and for 100 households with the presented improvements
(b). Note that the objective value is based on 192 intervals.

algorithm, to optimize the cluster of households (see Fig. 2).
Four variants of Profile Steering are compared:
• PS: The original Profile Steering concept,
• PSM: Profile Steering with multiple commits (III-A),
• PSMP: PSM with pruning (III-B) enabled on each level,
• PSMH: PSM with pruning (III-B) enabled at the HEMS.

These approaches are all simulated using a single thread and
multiple cluster sizes, ranging from 100 to 1000 households
in steps of 100 households. To achieve a large number of
households, we duplicate the original cluster of 100 households.
To compare between simulations with different cluster sizes,
we scale down all results to a per household average.

D. Sequential Simulation Results

Numerical results of the simulation studies with the sequen-
tial implementations are given in Table I. From these numbers
it is clear that the original Profile Steering approach results in
a quadratically increasing optimization time as the number
of households (M) increases, resulting in an optimization
time of almost 52 minutes for 1000 households. With the
presented improvements, linear scaling is obtained with an
average optimization time of 56 ms per household. For a
case of 1000 households, this results in a speedup factor of
almost 56. The effect of pruning is negligible in most situations
w.r.t. optimization time. However, pruning (PSMP) does effect
the obtained average objective value per household (|| ~p−~x|M | ||2),
which is similar across the other (PS, PSM and PSMH) cases.

The addition of accepting multiple candidate profiles per
iteration (PSM) significantly improves the convergence speed of
the algorithm as shown in Fig. 3. The original approach requires
approximately one iteration per household with significant
flexibility. Accepting multiple profiles results in a reduced and
steady number of iterations which is unaffected by the number
of households. On the other hand, the number of accepted
candidate profiles is increased by a factor of 2.3 on average,
increasing the amount of required communication. Lastly, we
also observe the effect of more flattened local profiles across
the cluster of households. Fig. 4 shows that the PSM approach
reduces the peaks of individual households in comparison with
the PS case.

TABLE I
NUMERICAL RESULTS OF THE SEQUENTIAL PROFILE STEERING IMPLEMENTATION FOR 96 OF 192 INTERVALS

iterations accepted profiles objective value optimization time [s]
M PS PSM PSMH PSMP PS PSM PSMH PSMP PS PSM PSMH PSMP PS PSM PSMH PSMP

100 66 7 9 11 66 156 158 160 46.61 46.59 46.63 46.84 28 6 6 5
200 131 7 8 9 131 314 315 316 46.61 46.59 46.64 46.86 111 12 11 10
300 193 7 8 9 193 470 472 473 46.61 46.59 46.64 46.86 238 18 18 15
400 262 7 8 9 262 629 632 633 46.61 46.61 46.64 46.86 451 23 23 22
500 330 7 7 8 330 785 785 788 46.61 46.61 46.65 46.85 753 29 27 26
600 417 7 7 8 417 943 943 947 46.63 46.61 46.65 46.85 1150 36 33 32
700 491 6 7 8 491 1089 1099 1104 46.61 46.62 46.65 46.85 1553 38 39 37
800 558 6 7 8 558 1247 1259 1265 46.63 46.62 46.65 46.86 2077 43 45 44
900 636 6 7 8 636 1402 1416 1423 46.61 46.62 46.65 46.85 2609 49 52 48

1000 706 6 7 8 706 1558 1573 1580 46.62 46.62 46.65 46.86 3177 57 57 57

IV. EXPLOITING PARALLELISM

The Profile Steering approach is developed with decen-
tralized control in mind. The hierarchical setup allows the
distribution of the difference profile over multiple processes to
work on the optimization problem in parallel. In this case, the
parent communicates the difference profile to all children and
waits for all the children to return their obtained improvement
em. To test the performance of a distributed Profile Steering
algorithm, we extended DEMKit with network communication
and a communication protocol. The Zero Messaging Queue
networking (ZMQ) library is used to make these processes
communicate with each other. The developed communication
protocol allows multiple DEMKit instances, running in separate
processes, to interact with each other in a similar fashion as used
in the single threaded implementation. This results in a modular

1 16 32 48 64 80 96

−3

0

3

6

9

Interval

Po
w

er
[k

W
]

Mean Min and max 5-th and 95-th percentiles

(a) PS

1 16 32 48 64 80 96

−3

0

3

6

9

Interval

Po
w

er
[k

W
]

Mean Min and max 5-th and 95-th percentiles

(b) PSM

Fig. 4. Optimized profile with PS (a) and PSM (b), indicating that PSM
reduces the extreme peaks. Where Mean indicated the scheduled average
household consumption, Min and Max indicate the minimum and maximum
power consumption of one house respectively, and the 5-th and 95-th percentiles
indicate the spread for the majority of households.

structure where DEMKit configurations can be decomposed into
multiple smaller configurations. Hence, servers, workstations
or a cluster of low-power embedded systems can be targeted.

A. Multiprocessing Results

To test the scalability of Profile Steering using a multipro-
cessing setup we use different numbers of clusters. In this
case there is one root controller, running in its own process,
that controls a number of M clusters. Each of these clusters
run in a separate DEMKit process and contains a group of
100 households, including a cluster controller running Profile
Steering that is connected with the root controller (see Fig.
5). For this simulation we use the same system, settings and
households as presented in Section III-C, except for emin = 100.
Each cluster has a random selection of households from a list
containing copies of the households previously introduced.
Two simulations are run, one with the PSM approach from
Section III-C, and a variation PSM* which has a fixed number
of kmax = d

√
Me iterations. The latter approach is used to

compare the objective value with more iterations.
Table II presents numerical results of the multiprocessing

simulation. The PSM approach requires 2 iterations before the
stopping conditions are met, except for M = 4 and M = 6
which required 3 iterations. The low number of iterations
required at the root controller is explained by the fact that the
flexibility in each cluster of 100 households can be expected
to be heterogeneous, which already results in a near optimal
solution after the first iteration. Hence, high in the tree, only
few iterations are required to share some flexibility between
clusters. Using more iterations (PSM*) does not significantly
improve the results, but adds computation time.

For PSM, the required optimization time is generally around
12 ms per house when all 12 threads are filled. For the
considered cluster sizes, the optimization time scales linearly
with the number of households (or clusters) when all processing
cores are used. A speedup factor of 3.4 is obtained when
comparing the distributed to the sequential implementation
with 800 households. We note that the initialization phase
requires significant time in both cases. Each cluster required
approximately 75 MB of RAM (no swap memory was used).

process1 process2 processM

HEMS1,1 HEMS1,100

cluster1

HEMS2,1 HEMS2,100

cluster2

HEMSM,1 HEMSM,100

clusterM

root controller

Fig. 5. Overview of the structure with M clusters of 100 households, running
in separate processes, communicating with one root controller.

V. CONCLUSIONS AND FUTURE WORK

The scalability of the Profile Steering algorithm is analyzed
in this paper. A significant increase in efficiency is achieved
using the presented technique of splitting the problem in a way
such that multiple profiles can be accepted per iteration, and
the possibility to prune children with little flexibility. The latter
is not useful on a higher level, however. Simulation results
show that, for a scheduling problem with similar flexibility,
this results in a linearly scaling computational time with the
number of children while the obtained results remains similar.
Furthermore, it is demonstrated that inherent parallelism scales
well over multiple processes. With the presented improvements,
Profile Steering can be used to analyze both small (e.g.
microgrids) and large systems (e.g. large aggregator portfolios).

Despite these significant improvements to Profile Steering,
there remain directions for future work. One observation
is that not all children have significant flexibility, thus it
may be beneficial to communicate a larger portion of the
problem to all children, such that the children propose a nearly
optimal solution in earlier iterations. However, this requires
more knowledge of the available flexibility per time interval.
Another option for improvements lays in the field of clustering
techniques. By organizing the clusters differently, e.g. based on
flexibility, easier or more balanced problems may be formulated
that can be optimized more efficiently with Profile Steering.
Especially with large flexibility portfolios of aggregators this
could be beneficial.

On the other hand, with larger hierarchical trees, different
objectives for lower level clusters may arise due to e.g. local
constraints or local generation. Local objectives should be
introduced in Profile Steering to also benefit from locally
generated energy, where a trade-off between local and global
objectives can be made. This way, device specific costs, such
as battery wearing, may also be incorporated. Such future
research should also include incentive schemes that specify
how participants can benefit from offering flexibility.

ACKNOWLEDGMENT

The authors thank Dutch national program TKI iDeego
(project ORTEP) and RVO for their support.

TABLE II
NUMERICAL RESULTS OF THE DISTRIBUTED IMPLEMENTATION FOR 96 OF

THE 192 SCHEDULED INTERVALS

objective optimization time per
value time [s] house [ms]

M Houses PSM PSM* PSM PSM* PSM PSM*

1 100 46.59 46.59 6.3 5.5 63.5 55.3
2 200 46.64 46.63 7.1 6.4 35.7 31.8
4 400 46.62 46.63 8.3 7.7 20.7 19.4
6 600 46.64 46.65 10.9 8.1 18.1 13.4
8 800 46.63 46.63 12.7 12.5 15.9 15.7

12 1200 46.64 46.63 15.8 17.6 13.1 14.6
16 1600 46.63 46.62 19.4 22.8 12.1 14.3
24 2400 46.62 46.62 28.8 33.6 12.0 14.0
32 3200 46.63 46.62 37.7 48.2 11.8 15.1
48 4800 46.62 46.61 54.4 74.8 11.3 15.6
64 6400 46.63 46.61 74.2 111.7 11.6 17.5
96 9600 46.63 46.62 112.4 180.0 11.7 18.8

128 12800 46.63 46.61 151.4 265.5 11.8 20.7
192 19200 46.63 46.62 223.3 438.8 11.6 22.9

REFERENCES

[1] B. J. Claessens, S. Vandael, F. Ruelens, and M. Hommelberg, “Self-
learning demand side management for a heterogeneous cluster of devices
with binary control actions,” in 2012 3rd IEEE PES Innovative Smart
Grid Technologies Europe (ISGT Europe), October 2012, pp. 1–8.

[2] M. E. T. Gerards and J. L. Hurink, “On the value of device flexibility
in smart grid applications,” in 2017 IEEE Manchester PowerTech, June
2017, pp. 1–6.

[3] M. E. T. Gerards, H. A. Toersche, G. Hoogsteen, T. van der Klauw, J. L.
Hurink, and G. J. M. Smit, “Demand side management using profile
steering,” in PowerTech, 2015 IEEE Eindhoven, June 2015, pp. 1–6.

[4] R. Halvgaard, L. Vandenberghe, N. K. Poulsen, H. Madsen, and J. B.
Jørgensen, “Distributed Model Predictive Control for Smart Energy
Systems,” IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1675–
1682, May 2016.

[5] T. M. Hansen, R. Roche, S. Suryanarayanan, A. A. Maciejewski, and
H. J. Siegel, “Heuristic Optimization for an Aggregator-Based Resource
Allocation in the Smart Grid,” IEEE Transactions on Smart Grid, vol. 6,
no. 4, pp. 1785–1794, July 2015.

[6] G. Hoogsteen, A. Molderink, J. L. Hurink, and G. J. M. Smit,
“Generation of flexible domestic load profiles to evaluate demand side
management approaches,” in 2016 IEEE International Energy Conference
(ENERGYCON), April 2016, pp. 1–6.

[7] G. Hoogsteen, “A Cyber-Physical Systems Perspective on Decentralized
Energy Management,” Ph.D. dissertation, University of Twente, December
2017.

[8] S. Iacovella, F. Ruelens, P. Vingerhoets, B. J. Claessens, and G. Decon-
inck, “Cluster Control of Heterogeneous Thermostatically Controlled
Loads Using Tracer Devices,” IEEE Transactions on Smart Grid, vol. 8,
no. 2, pp. 528–536, March 2017.

[9] International Energy Agency (IEA), “World Energy Outlook, Executive
Summary,” Tech. Rep., 2016.

[10] K. Kok and S. Widergren, “A Society of Devices: Integrating Intelligent
Distributed Resources with Transactive Energy,” IEEE Power and Energy
Magazine, vol. 14, no. 3, pp. 34–45, May 2016.

[11] J. Rivera, C. Goebel, and H. A. Jacobsen, “Distributed Convex Opti-
mization for Electric Vehicle Aggregators,” IEEE Transactions on Smart
Grid, vol. 8, no. 4, pp. 1852–1863, July 2017.

[12] H. A. Toersche, “Effective and efficient coordination of flexibility in
smart grids,” Ph.D. dissertation, University of Twente, October 2016,
ISBN 978-90-365-4197-8.

[13] T. van der Klauw, “Decentralized Energy Management with Profile
Steering - Resource Allocation Problems in Energy Management,” Ph.D.
dissertation, University of Twente, May 2017.

[14] M. G. Vayá, G. Andersson, and S. Boyd, “Decentralized control of plug-
in electric vehicles under driving uncertainty,” in IEEE PES Innovative
Smart Grid Technologies, Europe, October 2014, pp. 1–6.

