
Static Code Verification Through
Process Models

Sebastiaan Joosten(B) and Marieke Huisman

University of Twente, Enschede, The Netherlands
sjcjoosten@gmail.com

Abstract. In this extended abstract, we combine two techniques for
program verification: one is Hoare-style static verification, and the other
is model checking of state transition systems. We relate the two tech-
niques semantically through the use of a ghost variable. Actions that
are performed by the program can be logged into this variable, build-
ing an event structure as its value. We require the event structure to
grow incrementally by construction, giving it behavior suitable for model
checking. Invariants specify a correspondence between the event struc-
ture and the program state. The combined power of model checking and
static code verification with separation logic based reasoning, gives a
new and intuitive way to do program verification. We describe our idea
in a tool-agnostic way: we do not give implementation details, nor do we
assume that the static verification tool to which our idea might apply is
implemented in a particular way.

1 Introduction

We recognise two powerful ways of reasoning about concurrent and distributed
programs: one can use concurrent separation logic and Hoare-style reasoning,
or one might see the program and its environment as a state transition system
and use model checking. For reasoning about concurrent and distributed sys-
tems, Hoare-style reasoning [7] has been applied successfully [5]. Using different
forms of transition systems to model concurrent and distributed systems goes
back a long way [9] and can often be a more intuitive method. Neither of these
approaches individually is a silver bullet for reasoning about concurrent and
distributed programs. Our contribution lies in presenting how to get both tech-
niques: We present a technique to describe program behavior through an event
structure, and use properties provable through model checking those descrip-
tions to verify the program using Hoare-style reasoning. Although we do not
know whether this combination actually strengthens the verification framework
(in the sense of being able to prove more properties), we do believe that the
combination makes the verification framework easier to use, by virtue of being
able to combine the two techniques as needed.

c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11246, pp. 343–354, 2018.
https://doi.org/10.1007/978-3-030-03424-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03424-5_23&domain=pdf
https://doi.org/10.1007/978-3-030-03424-5_23

344 S. Joosten and M. Huisman

As a running example, consider this pseudocode that uses a simple spinlock:

1 global boolean la ; // true if lock is available, thus not locked
2 void thread(){
3 // acquire lock
4 boolean success = false ;
5 while (! success){
6 success = compare and swap(la,true,false) ;
7 }
8 assert (la == false); // we have the lock
9 // release lock

10 la = true;
11 }

We will give invariants I that describe that la is set and unset as a lock and
unlock action is preformed. In particular, we focus on showing that the Hoare-
logic statement {I}compare and swap(l,true,false){I} is valid. We will use model
checking to show this.

The approach to verification of programs is as follows: we first tie the behavior
of the program to an event structure, by adding ghost code that builds the event
structure. For the example, this describes the lock and unlock events. This event
structure is then, through an invariant, constrained to a process that describes
allowed behaviors of the program. For the example, the process is one where locks
and unlocks alternate arbitrarily often. To automatically prove this invariant, we
use additional invariants that describe the relation of program variables to the
event structure. For the example, this ties the value of the variable la to the state
of the event structure. By using techniques from model checking, we can then
prove both invariants. This allows us to then use the invariants in a Hoare-logic
style proof.

The example is a typical concurrent program: the method of synchronisa-
tion, a compare and swap, assumes a single shared memory, and there are no send
and receive commands as one expects in distributed code. We present concur-
rent code for simplicity and presentation purposes. The principle to combine
reasoning about code with the use of transition systems directly generalizes to
distributed systems. Typical challenges one encounters with distributed systems,
like heterogeneity, faults in links or nodes, and dynamic topologies, are orthog-
onal to this paper. Existing solutions for dealing with faults [6] or dynamic
topologies [13] use abstract models, describing them in some form of transition
system. We therefore consider these challenges and solutions out of scope, but
highly relevant: proving the same properties at the code level requires making a
link between the abstract level and the actual code, which we demonstrate here.

This paper illustrates an idea on how to verify examples like the one men-
tioned above, rather than giving an implementation. We hope it is an inspiration
to authors of verification tools that apply Hoare-style reasoning. Indeed, we our-
selves intend to implement the ideas outlined here in Vercors [3], which is such
a tool. However, the best way to implement the idea varies widely from tool

Static Code Verification Through Process Models 345

to tool. We therefore consider it useful to describe the general idea in a paper
separate from its implementation details.

As we are combining Hoare-style proofs and model checking, there is plenty
of related work to mention. We describe the work that is most closely related to
this paper: concurrent separation logic, model checking, and abstract models.

Concurrent Separation Logic. Hoare-style reasoning is proving a Hoare-triple
{P}S{Q} for the program S. The triple {P}S{Q} states that if {P} holds
before running S, then {Q} holds after the execution of S. Separation logic
gives a default notion of how the program can be composed: The frame-rule
states that if {P}S{Q} is proven, then also {R ∗ P}S{R ∗ Q} holds. Here R ∗
indicates that the environment in which S is run can be extended by a disjoint set
of properties R. In many practical examples, different threads work on different
memory, and concurrent separation logic gives a convenient way to reason about
such programs.

Concurrent separation logic can sometimes be adapted to new or uncon-
ventional synchronisation mechanisms as well. The thesis by Amighi nicely illus-
trates that some synchronisation mechanisms can fit into a separation-logic based
line of reasoning [2]. A clever encoding of the synchronisation primitives allows us
to reason about programs that use them. In some cases, one can even verify some
of the synchronisation mechanisms themselves. In contrast to Amighi’s thesis,
this work presents a uniform way to verify those synchronisation mechanisms, as
well as those for which verification has not been possible with techniques from
concurrent separation logic.

Model Checking. If a program is modeled as a state machine, model checking
can be used to establish which properties hold. Not all programs lend them-
selves to this: unbounded loops, recursion and weak-memory models pose chal-
lenges. Recent advances have made model checkers more powerful in these areas:
Komuravelli et al. show how to use SMT-based model checkers for the verifica-
tion of loops and recursion [8]. Model checking has been adapted to reason with
weak-memory models effectively [1,15]. Calcagno et al. use model checking in a
modular way, modeling the environment of a thread such that it can be used
as a specification of that thread later [4]. This work aims to bring these recent
improvements of model checkers to the static code verification domain.

Abstract Models. This paper generalizes previous work on abstract models as
proposed by Oortwijn et al. [10,11]. In the work of Oortwijn, the contract for a
method states which actions may or will be taken by that thread. We generalize
this by storing the associated actions in a ghost variable.

An important difference between our work and the work of Oortwijn is how
invariants are treated: in the work of Oortwijn et al. pre- and postconditions
are specified for actions. From these conditions, some invariants follow. We start
by specifying invariants, from which pre- and postconditions follow. In partic-
ular, we specify processes in the form of an invariant as well, simplifying their

346 S. Joosten and M. Huisman

presentation. Simultaneously, we potentially increase the applicability of verifi-
cation methods.

Contribution. We combine separation logic and model checking by adding a
ghost variable that expresses part of an event structure of the program. A ghost
variable is a specification-only variable, for the sake of static verification. It can
help describe the program state, but it should not exist at runtime. As such, ghost
variables aren’t allowed to influence the program flow. However, ghost variables
can be used to state invariants and properties of the program conveniently.

In contrast to conventional ghost variables, we introduce event structure
ghost variables in a way that it gives us additional properties. An event structure
is a partially ordered multiset of actions. Our event structure ghost variables can
only be updated by adding events at the end of the structure: events that are
added must be larger than some maximal element. This restriction means that
events are never removed, the structure never shrinks, and for each event, the
set of events preceding it is fixed throughout the program execution.

The power of introducing such a variable comes from its use in invariants. An
invariant is a property that must be satisfied initially, and is preserved by each
atomic action. Consequently, one assumes the invariant is satisfied before an
atomic action. For our lock example, we could describe that our event structure
must be a prefix of lock, unlock, lock, A model checker can then tell us that
if we are in a state in which lock just happened, the next action will be unlock.
Similarly, we can say that la is true if and only if the event structure is in the
language (lock unlock)∗. The combination of these invariants lets us reason about
attainable values of program variables.

The contribution of this work is the description of an event structure ghost
variable, as well as an indication on how one might implement them into static
checkers and model checkers. By using a ghost variable, as in this work, we
naturally tie into existing verification paradigms.

Section 2 describes the event structure variable we introduce. Section 3
describes how such a variable can be related to a process. In Sect. 3.3 we give
ways in which to tie the variable in with a system talking about invariants. We
conclude in Sect. 4.

2 Using an Event Structure Variable

This section introduces event structures. The purpose of event structures is to
capture a program run at an abstraction level that fits reasoning about processes,
which we introduce later.

In what follows, we assume that a set of actions A is given. The purpose of
these actions is that they will correspond to program events, but this is left to
the modeler: Event structures capture actions as a partially ordered multiset of
actions (actions can occur multiple times). The ghost code describes how the
actions are added to the event structure. We proceed by defining what an event
structure is.

Static Code Verification Through Process Models 347

0

acquire 1 unset2

set3

release4

Fig. 1. An example event structure

Executions are modeled by an event structure (E, l,�), which is a set of
events E and a partial order on events �. Events are labeled by a set of actions.
The function l : E → 2A gives the set of labels for each event. If E ⊆ E′ for some
event structure (E′, l,�), we write lE and �E for l and � restricted to the set
E, such that (E, lE ,�E) is again an event structure. The idea of using an event
structure for reasoning about concurrent programs was introduced by Vaughan
Pratt in 1986 [12], and we incorporate it for use in a Hoare-style setting.

Figure 1 shows a possible event structure. The nodes indicate events, which
are numbered so we can talk about them later. An arrow from node e1 to e2

indicates e1 �e2, and the set of labels l(e) is written next to each node, omitting
the {} curly brackets. Arrows that follow from transitivity of � are not drawn.
The intuition behind an event structure is that � represents the order in which
events, and therefore actions, occur.

Construction. We construct event structures in one of three ways: Initialisation,
extending an existing structure by a single subsequent action, and by combining
parallel events. None of these operations removes anything from event structures,
so they grow monotonically, and only through subsequent events. In other words:
if e takes the value of an event structure (E′, l′,�′), then at any later point e
holds a value (E, l,�) such that E′ ⊆ E, lE′ = l′, �E′ = �′, and for an event
i ∈ E, i′ ∈ E′ such that i �∈ E′, we have i′ �� i. This monotonicity is important
for reasoning about event structure variables.

Initialisation. Initialisation happens through declaring a variable as an event
structure. The variable initializes to an event structure where the set of events
is the empty set (this uniquely defines l and � too). We use the following syntax
for this: var e = new EventStructure();.

Extension. If S = {s1, s2, . . . , sn} ⊆ A is a set of actions and e is a ghost variable
that holds the event structure (E, l,�), then e can be extended by an event with
labels S. Let t be a fresh event. We can think of t as a unique timestamp, or as a
counter that increases every time we use it. We ensure that t is larger than any
of the events in the structure to which we add it. Fresh means that for any two
sets of events E1 and E2 appearing in our program, any common events must

348 S. Joosten and M. Huisman

have been created at the same point in our program. In particular, freshness
implies t �∈ E. We define l′ : E ∪{t} → 2A by l′(t) = S and l′(i) = l(i) for i ∈ E.
We define �′ by t �′ i for i ∈ E ∪ {t}, and i �′ j ⇔ i � j for i, j ∈ E. Then the
new value of e after extending it with an event with labels S is (E ∪ {t}, l′,�′).
We use v.add(s1, s2, . . . , sn) ; as syntax for this.

Parallel events. To hand off an event structure to a forked thread, it is allowed
to make a copy of a ghost variable indicating an event structure v. We write
var w = v.copy(); for this. Any subsequent adding of events to v or w happens in
isolation from each other as described above.

Parallelism becomes visible in the thread structure when threads are joined
again, and we will use union to join the corresponding event structures. We
argue that the ordinary set union suffices: Let (E1, l1,�1) and (E2, l2,�2) be
events structures. Note that since we only added fresh events, we can define
l : E1 ∪ E2 → 2A by l(i) = l1(i) for i ∈ E1 and l(i) = l2(i) for i ∈ E2, as any
element i ∈ E1 ∩ E2 must have been created with the same labels: l1(i) = l2(i).
We write l1 ∪ l2 for l defined this way. Similarly, �1 ∪ �2 is again a poset by
similar reasoning about freshness. Consequently (E1 ∪ E2, l1 ∪ l2,�1 ∪ �2) is
again an event structure. We write v.union(w); to add the structure of w to v,
after which v holds the value as described above.

An Example Program. We show how to combine the constructions mentioned,
to create event structures through ghost code. The code below creates the event
structure of Fig. 1 as the final structure for v.

1 var v = new EventStructure();
2 v.add();
3 var w = v.copy();
4 w.add(acquire) ; v.add(unset);
5 v.union(w);
6 v.add(set) ; v.add(release) ;

Note that despite the suggestion of parallelism in the acquire and the unset

action, we did not actually use a parallel program to do so. However, changing
the execution order of w.add(acquire) ; and v.add(unset); would create a similar
event structure (equal up to isomorphism).

3 Relation to Processes

Our goal of using a ghost event structure variable is to constrain it by using a
class invariant. We introduce processes to constrain the event structures, as a
process describes the development of an event structure in an intuitive way.

For ghost variable v and a process P , the invariant inPrefix (v,P) ; will indicate
that at any time, the event structure e that is the value of v, e ∈ prefix (P) holds.
To explain what is meant by prefix (P), we introduce the language in which to
write P , in Sect. 3.1. We relate event structures to processes by defining what it
means for an event structure to be valid for a process, and define the function
prefix , in Sect. 3.2.

Static Code Verification Through Process Models 349

3.1 Processes

A process P is defined using process variables, actions, the empty process,
sequential and parallel composition, and nondeterministic choice. Process vari-
ables are written A,B, . . . ∈ P. We write a, acquire, . . . ∈ A to denote actions.
We write P,Q, . . . for processes. A process variable A is defined by stating a
declaration of the shape A = P , where P is an expression of the shape:

P ::= A | a | ε | P ·Q | P ‖ Q | P + Q

We require all process variables to be declared exactly once1. The precedence
of the operations is · over ‖ over + , so ((P ·Q) ‖ R) + S does not need any
parenthesis.

Here is an example of two process declarations:

B = (set + unset) ‖ B + ε;
C = acquire·B·release;

Process B models any number of arbitrarily ordered setting and unsetting
actions. Process C models a process in which such an arbitrary set of actions
happens between an acquire and a release.

3.2 Valid and Prefix Event Structures

We define validity to be able to relate event structures to processes. The defi-
nition will also be used to define a prefix. We inductively define what it means
for an event structure to be a valid structure for a process, given a context of
process variable declarations:

– If (E, l,�) is a valid event structure for the process P , and the process variable
A ∈ P is declared as A = P , then (E, l,�) is valid for A.

– Let (E, l,�) be an event structure with exactly one event: {e′} = E, and
l(e′) = a. Then (E, l,�) is valid for a.

– An event structure (E, l,�) for which ∀e ∈ E.l(e) = {}, is valid for ε.
– If (E, l,�) is an event structure, E1 ∪ E2 = E with E1 and E2 disjoint,

(E1, lE1 ,�E1
) is valid for P and (E2, lE2 ,�E2

) is valid for Q, then (E, l,�)
is valid for P ‖ Q. If additionally ∀e1 ∈ E1, e2 ∈ E2. e1�e2, then (E, l,�) is
valid for P ·Q.

– If (E, l,�) is an event structure that is valid for P , then (E, l,�) is valid for
P + Q, as well as for Q + P .

– Nothing else is a valid event structure for a process.

1 Because how validity is defined in the next section, a process defined as A = A
is equivalent to the process for which no event structures are valid, not even the
empty one.

350 S. Joosten and M. Huisman

We could extend the language for processes (say with hiding operations), as
well as the event structure (say with a conflict relation), as long as the model
checker we use to reason about validity of event structures supports the added
constructions.

For l′ and �′ such that ({0, 1, 2, 3, 4}, l′,�′) is the event structure indicated
in Fig. 1, we get: The event structure ({3}, l′{3},�

′
{3}) is a valid event structure

for B. Consequently, the event structure ({0, 1, 3, 4}, l′{0,1,3,4},�
′
{0,1,3,4}) is a valid

event structure for C. However, ({0, 1, 2, 3, 4}, l′,�′) is not a valid event structure
for C. It is, however, a valid event structure for B ‖ C.

When reasoning about programs, we describe partial executions, which we
also relate to processes. A prefix encompasses this idea. A prefix is an event
structure that could be extended to become a valid event structure for a process
P : Let (E, l,�) be a valid event structure for P . Take E′ ⊆ E such that it is
upward closed with respect to �, that is: if e′ ∈ E′, e ∈ E and e�e′, then e ∈ E′.
Then (E′, lE′ ,�E′) is a prefix event structure for P . The set of all such prefixes is
written prefix (P). Similarly, the set of all valid event structures for P is written
valid(P).

3.3 Using Invariants

We use an invariant system to reason about the state of program variables in
relation to a ghost variable. The invariants we consider are checked after every
change to shared variables: In a valid program, all invariants hold before and
after every atomic action. This fine-grained level of invariants allows us to relate
processes to a program state. We illustrate this with an example of a lock.

In a program with a spinlock, a single boolean la indicates the availability
of the lock. If the lock is available, a thread may atomically compare and swap
la from true to false. That thread is then responsible for eventually releasing
the lock by setting it back to true. We can model the lock with a very simple
process:

L = ε + lock·unlock·L
We use a global variable p to keep track of our locking process. Code for obtaining
the lock could look like this (replacing lines 4 to 7):

1 boolean success = false ;
2 while (! success){
3 success
4 = (compare and swap(la,true,false)
5 /∗@ atomically {
6 if (\ result) {e.add(lock);}
7 } ∗@/
8) ;
9 }

Static Code Verification Through Process Models 351

Here the atomic compare and swap operation is executed as a single atomic
action together with our ghost code. The block starting with /∗@ and ending
with @∗/ is ghost code, and is to be ignored by a compiler, but is ‘virtually’ exe-
cuted in symbolic analysis of the code. We put extra brackets around this single
atomic action for clarity. This means no other threads can interleave between the
compare and swap and the ghost code on line 6. The \ result on line 6 refers to
the return value from the compare and swap operation. Note that we cannot use
success yet, as the write to success does not happen until after this atomic action.
A verifier checks that the expression preceding line 6 is indeed atomic, and the
code in line 6 is valid ghost code in that it does not change any non-ghost parts.

Now we wish to verify that this code actually maintains e ∈ prefix (L). That
is: the event structure in the variable e is a valid prefix of the process described
by L. For this code, that means we need to show that when e.add(lock) ; is
virtually executed, the value of e is such that adding an event with the label
lock preserves the invariant. The invariant guarantees that e is in the prefix of
L, but that does not suffice to prove what we need to show: The event structure
({0, 1}, λx.lock,≤) where ≤ is the standard order on natural numbers is not in
the prefix of L, but can be reached after e.add(lock) ; if the original value of e was
({0}, λx.lock,≤), which is in the prefix of L. This situation should not occur,
because of how la relates to e, but we have not made this explicit yet. We do so
in another invariant.

The invariant e ∈ valid(L) ⇔ la describes that la is true if and only if the
value of e is an event structure in L. As we do the atomic compare and swap, we
can prove that both invariants are maintained by case analysis: If the compare
and swap fails, la is unchanged and so is e. Since the invariants holds before
the compare and swap, it also does after it. For the other case, the compare and
swap succeeds. This means that before the atomic action, la was true. Therefore,
we must have been in an accepting state of L per our second invariant. We are
allowed to do the lock action from that state, which establishes e ∈ prefix (L).
Additionally, we will end up in a non-valid state of L by doing this action. As
la is false after the atomic action, we also established e ∈ valid(L) ⇔ la. This
shows that the two stated invariants are preserved. The reasoning required to
establish this, can be stated as an isolated model checking problem.

Note that our reuse of L in the invariant e ∈ valid(L) ⇔ la is a bit of a lucky
coincidence. The processes lock·unlock·L and lock + lock·unlock·L all have the
same prefixes as L, so we could have used them in the first invariant. However,
they differ in valid(L), so they would not be suitable for the invariant that
fixes la. In certain cases, one would need to write a separate process for different
invariants.

3.4 Limitations and Extensions

We illustrate a limitation of our approach by the same example of a lock. This
time, we focus on the release of the lock, rather than the acquire. We could use the
same solution as for the lock, but there is a subtlety: While an acquire requires
a compare and swap operation, a release can be done with the unconditional

352 S. Joosten and M. Huisman

assignment la=true;. Our approach can be extended in several ways, which we
will sketch now. We end this section by briefly discussing which option would be
the best choice to implement in an existing tool.

The invariant we need to prove the unconditional release preserves the invari-
ant is as follows: Only the thread or process that acquired the lock is allowed
to release it. We can state this invariant in terms of permissions: every thread
can do a lock action, after which it obtains permission to do an unlock action.
Another way to state this invariant is in terms of a rely-guarantee invariant: all
threads must guarantee to do a lock before any unlock. Finally, we could change
the definition of our process to a thread-oriented version, making explicit which
thread does the lock in the process.

Using Permissions. For using permissions, we assign permissions to actions. This
ties in nicely to verification tools that already use permissions. The idea is to
introduce a new permission (or resource), which we call can unlock. In an imple-
mentation, the permission itself can be left undefined, or the write permission
to an arbitrary heap location can stand in its place. We will give this permission
to the thread that can perform an unlock action, which means we will need to
prove that at most one thread can get that permission.

In this solution, add pre- and postconditions to e.add(lock) and e.add(unlock):
As a postcondition for e, you gain the permission can unlock. The permission
can unlock is a precondition to adding the unlock event to e. Aside from the
invariants, adding a lock event to e has no preconditions, and adding the unlock
has no postconditions. It follows from e ∈ prefix (L) (by model checking L) that
the number of outstanding can unlock permissions is at most one. Crucially, this
means that at most one thread has the can unlock permission. This should allow
us to prove that no unlock events are added to e as long as we hold can unlock.

Using rely-guarantee. Using a rely-guarantee mechanism, we state that every
thread, and therefore also the environment of a single thread, must do a lock
before an unlock. Together with the invariant e ∈ prefix (L), this means that the
environment of some thread cannot do an unlock after our thread performed a
lock. For this approach to work one needs to tie the execution of threads to that
of method calls: When a thread is forked, it gets assigned a process that acts as its
contract. Assigning a process to a forked thread as a method is worked out under
the name ‘abstract models’ as currently implemented in the tool Vercors [11].
A similar principle might be usable to also state properties about the envi-
ronment of a thread. Indeed, the combination of using separation logic and
rely/guarantee based reasoning has been proposed by Vafeiadis et al. [14].

Thread-Specific Event Structures. Finally, one could add a ghost event structure
variable t(n) for each thread n. For each of these variables, we have t(n) ∈
prefix(L). Each thread n gets exclusive access to t(n). Additionally, we add an
invariant that states that e is an interleaving of all t(n). This solution works the
same way as the solution of using permissions, with the difference that having
write access to a t(n) that contains a lock event here takes the role of having the

Static Code Verification Through Process Models 353

can unlock permission. Again, the invariants collectively guarantee that only one
thread at a time has this permission.

This solution seems to be really close to what we described in this paper
so far. The main addition is to be able to express the composition of a set of
thread-specific variables t(n). We can use the union command, which does this for
two variables. However, we need to compose an unbounded number of variables,
rather than two as with union. This seemingly small detail hinders the use of
model checkers at the place where we intend to use them.

Future Directions. In this section, we described three ways to verify correctness
of the unlock. Each has its own benefits: there is a clear path for the imple-
mentation of the first solution, the second solution seems to best match existing
literature, and the third solution seems to constitute the smallest change in the
language of existing tools. We do not know whether the most convenient solution
is among these three, or which of these would be the best for a tool user. We
hope to discuss these directions with the participants of ISoLA 2018.

4 Conclusions and Future Work

We described the use of a new kind of ghost variable to help verify programs
in an intuitive way. This gives us a way to reason about programs as if they
were state machines, in a way that allows us to choose the abstraction level
ourselves. Invariants allow us to tie programs into program variables, such that
the reasoning also helps us to state properties about the program based on that
reasoning.

We believe the ideas in this paper can be implemented by combining model
checking and existing static verification tools, but have not yet worked out all
necessary details on how to do so. Details on how to do this in Vercors remain
future work. We hope this paper inspires readers to come up with different ways
of implementing these ideas in other tools as well.

A future direction of research is to determine whether we can use this app-
roach to verify properties that can only be stated on a process level, like the
linearizability of methods. Linearizability is an important property for high per-
formance libraries. To prove it, one would associate each method of a certain
class with a single action. We would like to be able to assert that regardless of
how we call these methods in instance of that class, the event structure vari-
able registers each of those actions exactly once, sequentially. Furthermore, the
sequential execution of the corresponding methods should give the same state for
the instance. A proof of linearizability of a set of methods allows us to treat those
methods as atomic actions themselves, giving an extra opportunity of making
proofs more modular.

354 S. Joosten and M. Huisman

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 28

2. Amighi, A.: Specification and verification of synchronisation classes in Java: a
practical approach. Ph.D. thesis, University of Twente (2018)

3. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 9

4. Calcagno, C., Parkinson, M., Vafeiadis, V.: Modular safety checking for fine-grained
concurrency. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 233–
248. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2 15

5. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of distributed
systems: component reasoning for concurrent objects. J. Logic Algebraic Pro-
gram. 81(3), 227–256 (2012). https://doi.org/10.1016/j.jlap.2012.01.003, The 22nd
Nordic Workshop on Programming Theory (NWPT 2010)

6. Fisman, D., Kupferman, O., Lustig, Y.: On verifying fault tolerance of distributed
protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems, pp. 315–331. Springer, Heidelberg (2008)

7. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978). https://doi.org/10.1145/359576.359585

8. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. CoRR abs/1405.4028 (2014). http://arxiv.org/abs/1405.4028

9. Lamport, L., Owicki, S.: Proving liveness properties of concurrent programs. ACM
Trans. Program. Lang. Syst. 4(3), 455–495 (1982). https://www.microsoft.com/
en-us/research/publication/proving-liveness-properties-concurrent-programs/

10. Oortwijn, W., Blom, S., Huisman, M.: Future-based static analysis of message
passing programs. In: PLACES, pp. 65–72 (2016)

11. Oortwijn, W., Blom, S., Gurov, D., Huisman, M., Zaharieva-Stojanovski, M.: An
abstraction technique for describing concurrent program behaviour. In: Paskevich,
A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712, pp. 191–209. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72308-2 12

12. Pratt, V.: Modeling concurrency with partial orders. Int. J. Parallel Program.
15(1), 33–71 (1986). https://doi.org/10.1007/BF01379149

13. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundam. Inf. 63(4), 385–410 (2004). http://dl.acm.
org/citation.cfm?id=2370686.2370691

14. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 18

15. Vafeiadis, V.: Formal reasoning about the C11 weak memory model. In: Proceed-
ings of the 2015 Conference on Certified Programs and Proofs, pp. 1–2. ACM
(2015)

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-319-06410-9_9
https://doi.org/10.1007/978-3-540-74061-2_15
https://doi.org/10.1016/j.jlap.2012.01.003
https://doi.org/10.1145/359576.359585
http://arxiv.org/abs/1405.4028
https://www.microsoft.com/en-us/research/publication/proving-liveness-properties-concurrent-programs/
https://www.microsoft.com/en-us/research/publication/proving-liveness-properties-concurrent-programs/
https://doi.org/10.1007/978-3-319-72308-2_12
https://doi.org/10.1007/BF01379149
http://dl.acm.org/citation.cfm?id=2370686.2370691
http://dl.acm.org/citation.cfm?id=2370686.2370691
https://doi.org/10.1007/978-3-540-74407-8_18

	Static Code Verification Through Process Models
	1 Introduction
	2 Using an Event Structure Variable
	3 Relation to Processes
	3.1 Processes
	3.2 Valid and Prefix Event Structures
	3.3 Using Invariants
	3.4 Limitations and Extensions

	4 Conclusions and Future Work
	References

