
A Broader View on Verification:
From Static to Runtime and Back

(Track Summary)

Wolfgang Ahrendt1, Marieke Huisman2(B), Giles Reger3,
and Kristin Yvonne Rozier4

1 Chalmers University of Technology, Gothenburg, Sweden
2 University of Twente, Enschede, The Netherlands

m.huisman@utwente.nl
3 University of Manchester, Manchester, UK

4 Iowa State University, Ames, IA, USA

Abstract. When seeking to verify a computational system one can
either view the system as a static description of possible behaviours or a
dynamic collection of observed or actual behaviours. Historically, there
have been clear differences between the two approaches in terms of their
level of completeness, the associated costs, the kinds of specifications
considered, how and when they are applied, and so on. Recently there
has been a concentrated interest in the combination of static and run-
time (dynamic) techniques and this track (taking place as part of ISoLA
2018) aims to explore this combination further.

1 Motivation and Goals

Traditionally, program verification has been static in nature, e.g. it has sought
to verify that a program, given as a piece of code in a programming language,
satisfies a specification for all possible inputs to that program. This approach can
be traced back to the seminal work of Floyd and Hoare, which has grown into
the mature field of Deduction Software Verification [2,15]. Another successful
static approach is that of (Software) Model Checking [12] where the state space
of the program is searched looking for bad states (and trying to establish their
absence). Many other static analysis techniques make use of the source code of
a program to extract information or establish properties of interest. Conversely,
the fields of Runtime Verification [5] and Runtime Assertion Checking [11,13]
abstract a program as a set of behaviours observed at runtime, which significantly
restricts the coverage of verification whilst improving efficiency by focusing on
“real” behaviours.

Recently, there have been multiple proposals to combine static with runtime
verification techniques [1,17,18]. Results from static verification can be exploited
to reduce the overhead of runtime verification [3,4,7], while results from runtime
verification can be is used to fill “holes” left by static verification, where static
results are too costly, or impossible, to establish. Static results can moreover
c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11245, pp. 3–7, 2018.
https://doi.org/10.1007/978-3-030-03421-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03421-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-03421-4_1


4 W. Ahrendt et al.

increase confidence over what runtime verification can achieve alone. And run-
time analysis can learn information that can be used later for static analysis
(e.g., mining invariants, and detecting data structures) [21]. Finally, it has been
observed that the two approaches (static and runtime) tend to focus on different
kinds of specifications with static techniques often focussing on simpler state-
based properties and runtime techniques focussing on richer temporal properties.
This leads to a simple benefit from combination – a wider range of properties
can be checked. Significant progress has been made in these directions, but it is
also evident that the communities, targets, methods, and discussions in static
and runtime verification research are still too unrelated. There is even less of a
connection between early design-time verification techniques (e.g., model check-
ing), the intermediate (e.g., code analysis), and execution-time (e.g., runtime
monitoring) verification techniques in the system development cycle.

Within this track, we investigate what can be achieved in joint efforts of
the communities of verification techniques for different design stages, including
static and dynamic analyses, model checking, deductive verification, and runtime
verification. This track is a follow-up of the track Static and Runtime Verifica-
tion: Competitors or Friends?, organised during ISoLA 2016 [18]. That track
investigated the different ways in which static and runtime verification could
be combined, addressed questions such as which application areas could bene-
fit from combinations of static and dynamic analysis, which program properties
can be established using which technique, what artefacts can be carried forward
through different verification technologies, what is a good balance of guarantees
and user efforts in various application areas, and how we can integrate the vari-
ous techniques into the software, and hybrid/cyber-physical system development
process. We believe that the track in 2016 was a very good catalyst for the con-
nection of the different communities, and the formation of common agendas. At
the same time, it is clear that a one-time event would not be enough to fully
achieve and sustain the set goals.

The current track A Broader View on Verification: From Static to Runtime
and Back, at ISoLA 2018, continues and further develops the cross-community
endeavour for an integrated interplay of static and runtime techniques, with the
overall aim of building systems that are evidently well-functioning. The track
features eight contributions, by 24 authors in total, on three different topics:
application areas; classes of properties; and practical issues of combining static
and runtime techniques. We would like to thank all the authors for their con-
tributions to this track, in the form of the papers written, and in the form of
on-site discussions. We would also like to thank everyone who visited this track
at ISoLA, showed interest in the overall topic and the individual talks, and
participated in the discussions.

Finally, we would like to express our deep gratitude to the ISoLA organisers,
in particular Tiziana Margaria and Bernhard Steffen, for working so hard to
provide such a wonderful platform for our and other tracks, enabling lively and
creative interaction between individuals and communities, helping us all to not



A Broader View on Verification 5

forget the bigger picture of working for the development of systems that people
can rely on.

2 Contributions

2.1 Topic 1: Application Areas for Combining Static and Runtime
Verification

This topic is dedicated to different application areas of system development
exploiting static and dynamic techniques.

In Programming Safe Robotics Systems: Challenges, Advances, and Oppor-
tunities [14], Ankush Desai, Sanjit Seshia, and Shaz Qadeer present a program-
ming framework for building a safe robotics system. It consists of a high-level
programming language for implementing, specifying, and systematically testing
the reactive robotics software, as well as a runtime enforcement system ensuring
that assumptions made in the testing phase actually hold at runtime.

In Generating Component Interfaces by Integrating Static and Symbolic Anal-
ysis, Learning, and Runtime Monitoring [19], Falk Howar, Dimitra Giannako-
poulou, Malte Mues, and Jorge Navas present extensions to a tool for interface
generation that integrates interpolation and symbolic search. Also, they dis-
cuss how to use information from runtime monitoring to validate the generated
interfaces.

2.2 Topic 2: What are the Relevant Program Properties?

This topic is dedicated to the specific classes of program properties that deserve
particular attention when combining static and runtime verification.

In Monitoring Hyperproperties by Combining Static Analysis and Runtime
Verification [8], Borzoo Bonakdarpour, César Sánchez, and Gerardo Schneider
study the problem of runtime verifying temporal hyperproperties, in particu-
lar those that involve quantifier alternation. Starting from the observation that
virtually no ∀∃ property can be fully monitored at runtime, they propose a com-
bination of static analysis and runtime verification to manage the checking of
such formulas. In addition, they also discuss how the notion of hyperproperties
should be extended to also consider properties that relate three or more traces.

In Temporal Reasoning on Incomplete Paths [16], Dana Fisman and Hillel
Kugler explore semantics for temporal logics on paths that are incomplete in
different ways. They study incomplete ultimately periodic paths, segmentally
broken paths, and combinations thereof, and discuss whether systems biology
can benefit from the suggested extensions.

In A Framework for Quantitative Assessment of Partial Program Correct-
ness Proofs [6], Bernhard Beckert, Mihai Herda, Stefan Kobischke, and Mattias
Ulbrich introduce the concept of state-space coverage for partial proofs, which
estimates to what degree the proof covers the state space and the possible inputs
of a program. This concept brings together deductive verification techniques with
runtime techniques used to empirically estimate the coverage.



6 W. Ahrendt et al.

2.3 Topic 3: Putting Combinations of Static and Runtime
Verification into Practice

This topic is dedicated to practical (current and future) combinations of static
and runtime verification.

In Generating Inductive Shape Predicates for Runtime Checking and Formal
Verification [9], Jan H. Boockmann, Gerald Lüttgen, and Jan Tobias Mühlberg
show how memory safety predicates, statically inferred by a program compre-
hension tool, can be employed to generate runtime checks for securely commu-
nicating dynamic data structures across trust boundaries. They also explore to
what extent these predicates can be used within static program verifiers.

In Runtime Assertion Checking and Static Verification: Collaborative Part-
ners [20], Fonenantsoa Maurica, David Cok, and Julien Signoles discuss how to
achieve, on the architectural level, static and dynamic analysis systems featuring
a narrow semantic gap as well as similar levels of sound and complete checking.
They also describe designs and implementations that add new capabilities to
runtime assertion checking, bringing it closer to the feature coverage of static
verification.

In A Language-Independent Program Verification Framework [10], Chen and
Rosu describe an approach to language-independent deductive verification, using
the K semantics framework. They show how a program verifier as well as other,
also dynamic, language tools are generated automatically, from the semantics
description, correct-by-construction.

2.4 Panel Discussion

Inspired by the different talks and discussions, the final panel discussion aimed
for convergence on matters that lead the way forward, and concrete next steps
for the community to achieve the set goals.

References

1. Aceto, L., Francalanza, A., Ingolfsdottir, A.: Proceedings First Workshop on Pre-
and Post-Deployment Verification Techniques. ArXiv e-prints, May 2016

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification-The KeY Book: From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

3. Ahrendt, W., Chimento, J.M., Pace, G.J., Schneider, G.: Verifying data- and
control-oriented properties combining static and runtime verification: theory and
tools. Form. Methods Syst. Des. 51(1), 200–265 (2017). https://doi.org/10.1007/
s10703-017-0274-y

4. Ahrendt, W., Pace, G.J., Schneider, G.: StaRVOOrS — episode II - strengthen
and distribute the force. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9952, pp. 402–415. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47166-2 28

5. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/s10703-017-0274-y
https://doi.org/10.1007/s10703-017-0274-y
https://doi.org/10.1007/978-3-319-47166-2_28
https://doi.org/10.1007/978-3-319-47166-2_28
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1


A Broader View on Verification 7

6. Beckert, B., Herda, M., Kobischke, S., Ulbrich, M.: Towards a notion of coverage for
incomplete program-correctness proofs. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11245, pp. 53–63. Springer, Cham (2018)

7. Bodden, E., Lam, P., Hendren, L.J.: Partially evaluating finite-state runtime mon-
itors ahead of time. ACM Trans. Program. Lang. Syst. 34(2), 7:1–7:52 (2012).
https://doi.org/10.1145/2220365.2220366

8. Bonakdarpour, B., Sánchez, C., Schneider, G.: Monitoring hyperproperties by com-
bining static analysis and runtime verification. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018. LNCS, vol. 11245, pp. 8–27. Springer, Cham (2018)

9. Boockmann, J.H., Lüttgen, G., Mühlberg, J.T.: Generating inductive shape pred-
icates for runtime checking and formal verification. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2018. LNCS, vol. 11245, pp. 64–74. Springer, Cham (2018)

10. Chen, X., Rosu, G.: A language-independent program verification framework.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 92–102.
Springer, Cham (2018)

11. Cheon, Y., Leavens, G.T.: A Runtime Assertion Checker for the Java Modeling
Language (JML) (2002)

12. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.P.: Handbook of Model Check-
ing. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-10575-8

13. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion check-
ing in software development. ACM SIGSOFT Softw. Eng. Notes 31(3), 25–37
(2006)

14. Desai, A., Seshia, S., Qadeer, S.: Programming safe robotics systems: challenges,
advances, and opportunities. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS,
vol. 11245, pp. 103–119. Springer, Cham (2018)

15. Filliâtre, J.C.: Deductive software verification. Int. J. Softw. Tools Technol. Transf.
13(5), 397 (2011). https://doi.org/10.1007/s10009-011-0211-0

16. Fisman, D., Kugler, H.: Temporal reasoning on incomplete paths. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 28–52. Springer, Cham
(2018)

17. Francalanza, A., Pace, G.J.: Proceedings Second International Workshop on Pre-
and Post-Deployment Verification Techniques. ArXiv e-prints, August 2017

18. Gurov, D., Havelund, K., Huisman, M., Monahan, R.: Static and runtime verifica-
tion, competitors or friends? (Track Summary). In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 397–401. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47166-2 27

19. Howar, F., Giannakopoulou, D., Mues, M., Navas, J.: Generating component inter-
faces by integrating static and symbolic analysis, learning, and runtime monitoring.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 120–136.
Springer, Cham (2018)

20. Maurica, F., Cok, D., Signoles, J.: Runtime assertion checking and static verifica-
tion: collaborative partners. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS,
vol. 11245, pp. 75–91. Springer, Cham (2018)

21. Rupprecht, T., Chen, X., White, D.H., Boockmann, J.H., Lüttgen, G., Bos, H.:
DSIbin: identifying dynamic data structures in C/C++ binaries. In: Rosu, G.,
Penta, M.D., Nguyen, T.N. (eds.) Proceedings of the 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2017, Urbana, IL,
USA, 30 October–3 November 2017, pp. 331–341. IEEE Computer Society (2017)

https://doi.org/10.1145/2220365.2220366
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/s10009-011-0211-0
https://doi.org/10.1007/978-3-319-47166-2_27
https://doi.org/10.1007/978-3-319-47166-2_27

	A Broader View on Verification: From Static to Runtime and Back (Track Summary)
	1 Motivation and Goals
	2 Contributions
	2.1 Topic 1: Application Areas for Combining Static and Runtime Verification
	2.2 Topic 2: What are the Relevant Program Properties?
	2.3 Topic 3: Putting Combinations of Static and Runtime Verification into Practice
	2.4 Panel Discussion

	References




