Towards Reliable Concurrent Software M)

Check for
updates

Marieke Huisman and Sebastiaan J. C. Joosten

Abstract As the use of concurrent software is increasing, we urgently need
techniques to establish the correctness of such applications. Over the last years,
significant progress has been made in the area of software verification, making
verification techniques usable for realistic applications. However, much of this work
concentrates on sequential software, and a next step is necessary to apply these
results also on realistic concurrent software. In this paper, we outline a research
agenda to realise this goal. We argue that current techniques for verification of
concurrent software need to be further developed in multiple directions: extending
the class of properties that can be established, improving the level of automation
that is available for this kind of verification, and enlarging the class of concurrent
programs that can be verified.

1 Introduction

Software is everywhere! Every day we use and rely upon enormous amounts
of software, without even being aware of it [33]. This includes the obvious
applications, such as mobile phone apps and all kinds of office software, but also the
software in our cars, household equipment, airplanes etc. It has become impossible
to imagine what life would be like without software. What we are not aware of, is
how much software is actually safety-critical or business-critical, and how big the
risk is that one day software failures will bring this everyday life to a grinding halt. In
fact, all software contains errors that cause it to behave in unintended ways [32, 49].
Studies have shown that software applications have on average between 1 and
16 errors per 1000 lines of code, even when tested and deployed [58, 59], and
substantial research is needed to reduce this number and to make software that is
reliable under all circumstances, without compromising its performance.

M. Huisman - S. J. C. Joosten (D<)
University of Twente, Enschede, The Netherlands
e-mail: m.huisman@utwente.nl; s.j.c.joosten @utwente.nl

© Springer Nature Switzerland AG 2018 129
P. Miiller, I. Schaefer (eds.), Principled Software Development,
https://doi.org/10.1007/978-3-319-98047-8_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98047-8_9&domain=pdf
mailto:m.huisman@utwente.nl
mailto:s.j.c.joosten@utwente.nl
https://doi.org/10.1007/978-3-319-98047-8_9

130 M. Huisman and S. J. C. Joosten

A commonly used approach to improve software performance is the use of
concurrency and distribution. For many applications, a smart split into parallel
computations can lead to a significant increase in performance. Unfortunately,
parallel computations make it more difficult to guarantee reliability of the software.
The consequence is unsettling: the use of concurrent and distributed software is
widespread, because it provides efficiency and robustness, but the unpredictability
of its behaviour makes that errors can occur at unexpected, seemingly random
moments.

As we will see below, the quest for reliable software builds on a long history, and
significant progress has already been made. Nevertheless, ensuring reliability of effi-
cient concurrent and distributed software remains an open challenge. Ultimately, it is
our dream that program verification techniques are built into software development
environments. When a software developer writes a program, he explicitly writes
down the crucial desired properties about the program, as well as the assumptions
under which the different program components may be executed. Continuously,
an automatic check is applied to decide whether the desired properties are indeed
established, and whether the assumptions are respected. If this is not the case, this is
shown to the developer—with useful feedback on why the program does not behave
as intended.

This paper outlines a research agenda, discussing what we believe are the crucial
step towards reaching this goal. First, in Sect. 2 we will discuss the state-of-
the-art in verification of concurrent software, focusing in particular on deductive
verification techniques. In Sect. 3 we identify three main directions of research,
and discusses challenges and a possible approach for each of those directions. This
section discusses how abstract models can be combined with deductive verification
techniques to reason about global functional correctness properties of programs.
Section 4 discusses the need for and possible approaches to further increase the
level of automation in deductive verification. Finally, Sect. 5 sketches the steps
and chances that exist to adapt existing verification techniques to other concurrent
programming models.

2 State-of-the-Art in Verification of Concurrent Software

2.1 Software Correctness

The quest for software correctness is an old tale (see Fig. 1 for a historic overview).
Already in the sixties, in the early days of computing, Floyd and Hoare realised
that it is actually possible to prove that a program behaves as intended [30, 37].
Given a small code fragment, and a specification of what the fragment is supposed
to do, a collection of simple proof rules was devised, which can be used to establish
whether a program behaves as specified. By applying the proof rules, auxiliary
proof obligations in first-order logic are generated. If the proof obligations can be



Towards Reliable Concurrent Software 131

JACK
Dijkstra ESC/JGVGZ

LRP

FOREVER

1967 1976 2000 2010 2015

Fig. 1 Development of Sequential Software Verification

proven, we can conclude that the program satisfies its specification. This approach,
called Floyd-Hoare or Hoare logic, still forms the basis for many techniques to
reason about program behaviour (usually implemented using Dijkstra’s predicate
transformer semantics [24]).

For a long time, program verification remained a pen-and-paper activity. How-
ever, around the year 2000, several groups started working on the development
of tools to support this kind of verification [8-10, 20, 38, 50]. There are several
technical reasons behind the coordination of these developments:

* the emergence of Java meant that there was a popular and widely-used program-
ming language with a reasonably well-defined semantics, amenable to formal
reasoning;

* in addition, computing power had increased, which made it actually feasible to
build efficient tools to reason about non-trivial programs; and

* there was tremendous progress in automated verification technology for first-
order logic, which enabled automatic discharge of auxiliary proof obligations,
culminating in modern, very powerful SMT solvers.

Since then, work on these program verification tools has progressed, resulting
in tools such as OpenJML [21], CodeContracts [28, 47], and the most recent
versions of KeY [1], which are now being used in teaching, integrated in standard
development environments, and to verify or find bugs in non-trivial algorithms, such
as TIMsort [23].

Despite the enormous progress that has been made, there are still many open
challenges in this area [35]. One important open challenge for program verification
is that it still requires a substantial level of expertise, in particular because of the
high number of auxiliary annotations that have to be provided to guide the proving
process (see for example the solutions to the VerifyThis program verification
challenges at http://www.verifythis.org).


http://www.verifythis.org

132 M. Huisman and S. J. C. Joosten
2.2 Verification of Concurrent Software

All techniques mentioned above focus on proving local safety properties of
sequential programs, i.e., with a single thread of execution, but cannot specify
or effectively prove properties on the global program behaviour of concurrent or
distributed software. Thus, extending program verification techniques to enable
reasoning about programs with multiple threads of execution is a necessary step
to ensure the reliability of realistic programs, see Fig. 2 for a historic overview.

Already in the 70s, Owicki and Gries proposed a technique to extend program
logic to reason about concurrent programs [60]. Their technique required anno-
tations for each atomic step in the program, and a proof that these annotations
could not be invalidated by any atomic step made by other program threads, thus
resulting in a non-modular verification technique with an exponential number of
proof obligations. In particular, if a verified program is extended with a new
thread, also the existing threads have to be reverified. In 1980, Jones proposed
a modular verification technique for concurrent programs, called rely-guarantee
reasoning [41]. In rely-guarantee reasoning the verifier explicitly specifies the steps
that are allowed for the environment, which requires thorough understanding of the
application at hand.

About 10 years ago, Concurrent Separation Logic (CSL) was invented [17, 53]
(Brookes and O’Hearn received the Godel prize 2016 for this achievement).
This was an important step for the verification of concurrent software, as it
enabled thread-modular verification. Originally, separation logic was proposed
as an extension of classical Hoare logic to reason about pointer programs, by
explicitly considering which memory locations are relevant for what part of the
program [54, 55]. This characteristic makes it also extremely suitable to reason
about concurrent programs: if we can prove that two threads work on disjoint parts
of the memory, then we know that they cannot interfere with each other.

The invention of concurrent separation logic led to a whole plethora of techniques
and logics to reason about concurrent software, focusing on different aspects,
see [18] for an overview.

Concurrent CSL Family Tree
Separation Logic

VeriFast

Owicki - Gries Viper

1975 1980 2007 2016

Fig. 2 Development of Concurrent Software Verification



Towards Reliable Concurrent Software 133

In one line of work, more and more advanced logics are proposed, grouped in the
CSL family tree [18]. This contains for example a combination of rely guarantee and
separation logic [67], (impredicative) concurrent abstract predicates [25, 66], TaDa
(a logic for time and data abstraction) [61, 62], fine-grained concurrent separation
logic [52, 63], a combination of monoids and invariants [44, 45], and reasoning
based on linearisation points [36, 68], with the aim of finding a generic logic,
which can be used to verify the behaviour of all concurrent programs. So far,
these approaches are still fairly theoretic, and require a high level of expertise.
Some of these logics are formalised in Coq, with suitable tactics to use them inside
Coq. Further, they are usually developed for relatively simple core programming
languages, and focus on small but intricate examples.

In another line of work, the focus is on developing practical techniques to reason
about commonly used programs, using various synchronisation methods, support
for dynamic thread creation, reentrant locks etc. This has been the focus of our
work on the VerCors tool set [3-5, 14], where we developed techniques (with
tool support) to reason about multi-threaded Java and OpenCL programs. This is
also the aim of the VeriFast tool, for verification of single- and multithreaded C
and Java programs [39, 65] and the Viper framework, which provides support for
separation logic-based reasoning for a low-level intermediate language [43, 51].
In particular, our VerCors tool is build on top of the Viper framework. Some of
the more theoretical results on verification of concurrent software are (partially)
integrated in these techniques.

By now, there is a plethora of logics to verify specific core properties about
concurrent software, such as that the program is free of data races. The next
challenge is to efficiently prove properties about the global functional behaviour
of a realistic concurrent program.

2.3 Concurrent Software in Industrial Practice

Because of high demands on software performance, industry is using concurrency
more and more in their daily practice. However, for many companies, reliability
of the software they develop is very important: if their software is misbehaving,
they risk losing the confidence of their customers. Therefore, we see that companies
are often quite conservative in their use of concurrency: they use well-known
programming patterns, reuse existing libraries as much as possible, and try to isolate
the concurrency-related aspects to a small part of their application.

Software developers need effective verification techniques to improve the quality
and reliability of their concurrent software. We believe that to develop these
techniques, the ultimate challenge is not in finding a logic that can reason about
all possible concurrent programs. Instead, the challenge is to develop techniques
that can be used efficiently on many common concurrent programming patterns,
and that can be used to detect bugs quickly and effectively, without requiring too
many user interventions, and without too many false positives. This conviction is



134 M. Huisman and S. J. C. Joosten

what drives our research: we aim at developing techniques that can help software
developers in their daily software development practice to improve the quality of
the software they are producing.

3 Abstraction Techniques for Functional Verification

One of the main open challenges for the verification of concurrent software that we
consider is how to to develop techniques to automatically verify global functional
correctness properties of concurrent and distributed software, i.e., to ensure that an
application has the expected behaviour and does not experience failures.

To reach this goal, we advocate an approach where a mathematical model of
a concurrent application is constructed, which provides an abstract view of the
program’s behaviour, leaving out details that are irrelevant for the properties being
checked, see Fig. 3. The main verification steps in this approach are

1. algorithmic verification over the mathematical model to reason about global
program behaviour, and

2. program logics to verify the formal connection between the software and its
mathematical model.

Typically, the basic building blocks of the abstract mathematical model are
actions, for which we can prove a correspondence between abstract actions and
concrete code fragments, which is then used to prove the formal connection between
the software and its mathematical model. Moreover, this has the advantage that if a
global property does not hold at the abstract level, the abstract-level counterexample
corresponds to a concrete candidate counterexample at the software level.

Step 1: has property @apstract OvVer ac-

Mathematical model L
tions a; and ap

Step 2: actions a; and a, correspond to

action a . .
2 suitable code fragments

action a;

Software code Conclusion: code has property @concrete

Fig. 3 Using abstraction for the verification of concurrent and distributed software



Towards Reliable Concurrent Software 135

Within this approach, a software designer specifies the desired global properties
for a given application in terms of abstract actions. The software developer should
then specify how these abstract actions map to concrete program state: in which
states is the action allowed, and what will be its effect on the program state. Global
properties may be safety properties, e.g., an invariant relation between the values
of variables in different components, or a complicated protocol specifying correct
interface usage, but we believe that extensions of the approach to liveness and
progress properties are also possible.

To make this approach possible, we believe the following challenges should be
addressed:

1. identify a good abstraction theory,

2. extend the abstraction theory to reason about progress and liveness properties of
code, and

3. use the abstraction theory to guide the programmer to develop working code
through refinement.

We discuss these challenges in more detail, and discuss our first results in this
direction.

3.1 The Right Mathematical Model

The purpose of a good abstraction is that it reduces the verification effort in two
ways: it makes it easier for the software designer to reason about the essential
parts of his program, and automated verification methods can be used, because
the verification effort is used on a model that is smaller than the original program.
Moreover, the abstraction should support modular and compositional verification.

To find such a level of abstraction, we need to look at what currently hinders
verification. One problem is the large state space of a program, as we have to
consider all possible values of all program variables. Thus, a suitable abstraction
needs to be able to describe a reachable configuration of variables as a single
mathematical object.

Moreover, verification of concurrent software needs to consider all possible
interleavings of the threads. Thus, we need to find ways to group actions, in
particular also actions that do not occur inside atomic blocks of code. The theory of
linearisation points will be a good starting point [36, 68] for this, but it needs to be
further generalised, as abstract actions also could correspond to method calls, and
not just to memory writes.

Summarising, a good abstraction should have the following properties:

* it can accurately capture low-level implementation details,
e it is modular,

* it can abstract over a sequence of multiple actions, and

* it can abstract over a valuation of multiple variables.



136 M. Huisman and S. J. C. Joosten

When developing this abstraction theory, we use the logics in the CSL family
tree [18] as an important source of inspiration. In particular, the notion of views
has been advocated as a general framework that captures many commonalities in
the verification of concurrent software [26], and we believe it is important that our
basic abstraction theory can be described in terms of views. However, to further the
state of the art in program verification, we believe there are two more additional
requirements that should be considered, namely that the abstraction should be able
to reason about time-dependent properties, and it should facilitate reasoning in a
top-down manner, as will be motivated below.

3.2 Reasoning About Liveness and Progress

Most of program verification concerns the verification of safety properties: func-
tional correctness is interpreted as ensuring that under a certain precondition, the
postcondition will hold after executing some code. Checking that a postcondition
is not violated corresponds to verifying that variable assignments that violate
the postcondition are not reachable, which is a safety property. However, when
designing concurrent code, safety is only one issue software designers need to deal
with, they also need to make sure that their program will not deadlock, and will
eventually do the right thing.

The latter property is called progress: if an action is enabled, it will eventually
happen. Whether or not a progress property holds depends on a program scheduler,
which depends on hardware, firmware, drivers and software. We therefore need an
approach in which the assumptions about the scheduler can be made explicit.

We wish to use the abstraction theory to support reasoning about global liveness
properties. This means that the abstractions need to incorporate a notion that an
action must happen. This has been explored earlier by Larsen et al. who defined
modal transition systems as an extension of standard LTSs with must- and may-
transitions [6, 46].

Variant-based reasoning allows us to show that an action indeed will happen. As
the actions might happen in different parts of the program, using this variant-based
technique might not always be straightforward. We may develop a nested approach
for variant-based reasoning, where at the lowest level we show that individual
methods terminate, and at higher levels we show that a sequence of method calls
terminates (assuming that the method calls themselves terminate). In the rewriting
community there is a substantial amount of work on termination of rewrite systems,
some of which has been applied to sequential programming languages and transition
systems [16, 34, 42], and it should be investigated if and how these techniques can
be used in the context of concurrent software verification.



Towards Reliable Concurrent Software 137
3.3 Unification of Model and Code

Finally, we believe that if the abstraction theory is fully developed, it should also be
usable in the opposite direction: if we take an abstract model as a starting point, can
we use refinement to transform this into correct working code?

The basic refinement process can be divided into two phases. In the first phase,
the global property can be separated into properties about individual processes. This
might introduce some communication steps, and we need to resort here to the notion
of process of equivalence under hiding of actions. The big challenge in this step is
to decide how the property should be split. When verifying a concrete program, the
program code dictates how this should be done. But in this case, where we wish
to generate the program, we need other ways to do this. We plan to investigate
different possibilities, for example maximising parallelisation, where each thread
is responsible for an individual action, or even multiple threads execute the same
action, all in parallel; minimising parallelisation, and grouping sets of related
actions. For all these possibilities, different splitting strategies can be developed,
but typically some user intervention will be necessary here to indicate the intent of
the program.

In the second phase, we have process algebra terms that describe the behaviour
of an individual thread. The process algebra term itself describes the control flow
of the thread, and we will develop a technique to transform each process algebra
term into a sequence of program instructions. The abstraction typically defines
some variables, which model the synchronisation between the different threads and
are used to capture the effect of the actions. These variables should be mapped
into concrete program variables, and as a last step the actions are translated into
concrete program code, executing the action’s specified effect. Typically, the guards
will be fulfilled by construction, and do not have to be incorporated in the generated
program code.

In the long run, the results of these investigations might lead to a theory that
unifies models and programs and removes the borders between the two. This would
allow us to reason about systems where some components are already implemented,
and others are only specified by a model, which later might be refined into an
implementation.

3.4 First Steps Towards a Solution

In our earlier work on abstract models [13, 56, 69], we have shown that it is possible
to use process algebra terms to describe the abstract control flow of a program.
This allow us to show that the program behaves according to a certain protocol (for
example preventing unwanted flow of information by ensuring that a send may never
occur after a receive) or that a variable evolves according to a particular pattern (for
example, a variable only increases, a queue never becomes empty etc.). The unique



138 M. Huisman and S. J. C. Joosten

characteristic of this approach is that we can prove the correspondence between
the abstract model and the program code using standard program logic, by linking
the actions that are the basic building blocks of the model to concrete program
statements.

Below, this approach is sketched on a very simple example. Suppose we have a
shared variable x protected by a lock 1ck, and we have two threads that manipulate
x: one thread multiplies x by 4, the other thread adds 4 to x. The specification
of the thread that performs the multiplication captures that the multiplication has
happened. For this we use the notion of history [13]: an abstraction of the actions
a thread has taken up-to now. If before the thread is executed, the history is equal
to H (written Hist(H)), then afterwards the action mult(4) is added at the end of
the history (P.a is notation for a process P, followed by action a). Similarly the
specification of the addition thread captures that the addition has happened. The
action annotation inside the method body indicates the concrete code fragment that
corresponds to this abstract action.

class Mult extends Thread { class Add extends Thread ({
//@ requires Hist(H); //@ requires Hist(H);
//@ ensures Hist(H. mult(4)); //@ ensures Hist(H.add(4));
public void run() { public void run() {
//@ action mult(4) { //@ action add(4) {
lock (1lck); lock (1lck);
X = X % 4; X = X + 4;
unlock (1ck); unlock (1ck);
//@ } //@ }

} }
} }

Next, we have action specifications that describe the effect of the actions mult
and add. Using program logic, we can prove that the action implementations (in the
thread bodies) indeed behave as specified.

//@ assume true;
//@ guarantee x == \old(x) * k;
action mult(k);

//@ assume true;
//@ guarantee x == \old(x) + k;
action add(k);

Suppose we have a main method, which starts the two threads and then waits for
them to terminate. For this main method we can specify and verify (using a history-
aware program logic) that it will execute the mult and the add action in any order
(where P + Q denotes a non-deterministic choice between P and Q and empty
denotes an empty history).



Towards Reliable Concurrent Software 139

//@ requires Hist(empty) & x == 0;
//@ ensures Hist(mult(4).add(4) + add(4). mult(4));
public void main(...) {
Thread tl = new Mult(); Thread t2 = new Add();
tl.fork (); t2.fork ();
tl.join (); t2.join();
}

From the history specification of the main method and the action specifications,
we can derive the possible values of variable x after termination of the main method,
i.e., X can be either 4 or 16.

This example is very simple, but the same approach can be used in many different
settings: for larger programs, non-terminating programs, distributed programs etc.
In particular, for non-terminating programs, an abstraction can be used to predict
the (abstract) behaviour, and correctness of the abstraction boils down to showing
that the program flow never moves out of the predicted behaviour [56, 69]. We have
used this approach to prove properties such as: in a concurrent queue, the order of
elements is preserved [2]; adherence to protocols that are commonly used to capture
essential security properties, such as ‘no send after receive’ [56]; and correctness of
an active object implementation using MPI operations [70]. Our own VerCors tool
set provides support to reason in this way, but also the VeriFast tool can reason about
histories (personal communication by Bart Jacobs, KU Leuven).

Note that an essential difference with other existing abstraction-based approaches
such as CEGAR and IC3 [15, 19, 48] is how the correctness of the abstraction
is proven. Usually, the relation between the original program and the abstract
program is proven as a meta-theorem, and one has to trust the implementation of
the algorithm that performs the abstractions (or check it manually), while in our
approach the program logic is used to prove correctness of the abstraction.

4 Automating the Verification Process

Another major challenge that we need to consider is how to automate the verification
process. At the moment, program verification requires many user annotations,
explicitly describing properties which are often obvious to developers. We believe
that many of the required annotations can be generated automatically, using a
combination of appropriate static analyses and smart heuristics. We advocate a very
pragmatic approach to annotation generation, where any technique that can be used
to reduce the annotation burden is applied, combined with a smart algorithm to
evaluate the usability of a generated annotation, removing any annotations that do
not help automation. This will lead to a framework where for a large subset of
non-trivial programs, we can automatically verify many common safety properties
(absence of null-pointer dereferencing, absence of array out of bounds indexing,
absence of data races etc.), and if we wish to verify more advanced functional



140 M. Huisman and S. J. C. Joosten

properties, the developer might have to provide a few crucial annotations, but does
not have to spell out in detail what happens at every point in the program (in
contrast to current program verification practice). However, it should be stressed
that with this approach, we will never be able to automatically verify correctness
of all programs; there will always be programs using unusual patterns, which need
additional manual annotations in order to be verified.

We believe that efficient annotation generation should build on existing static
analyses and heuristics [27, 29, 31, 40] extended with tailor-made new generation
techniques, aiming for an optimal verification result within a minimal amount of
time.

There is a plethora of tools and techniques available which can be used to derive
properties about the program state. However, many of these tools work on simple
idealised languages, and these results will have to be extended to a more realistic
programming setting. In particular, some approaches do not consider aliasing, which
is often essential for the correctness of a program.

Moreover, if we use any technique that is available, this might lead to an overload
of annotations, which can have a negative impact on verifiability. We thus need to
find an optimal balance in how and when to generate annotations automatically.
This will be an incremental process, where we use different analyses or heuristics
to generate annotations and then select those that help towards our goal. Some
of the generated annotations will need other auxiliary annotations to be verified
automatically, thus we need to find a suitable order in which to apply the annotation
generation algorithms. For example, if an analysis is sensitive to aliasing, we
might first want to use an analysis which can derive some annotations about when
two variables may or may not be aliased. Note that if we use unsound heuristics
to generate annotations, this may lead to conflicting annotations, which might
actually give a false impression of program correctness. Therefore, we also need to
investigate efficient ways to avoid conflicting annotations. In some cases, a syntactic
check will be sufficient to conclude that two annotations are not conflicting. Making
optimal use of these cases will help to make this conflict check efficient.

Lastly, if an annotation cannot be verified, we have to investigate how to provide
the most suitable feedback. It is important to distinguish between the two following
cases:

1. a counterexample exists, which thus means that the annotation is incorrect. In
this case, either the annotation is removed, or if a counterexample exists for the
property the developer wanted to show for the program, the counterexample has
to be presented to the user. In that case, it is important that the counterexample
is intelligible, and helps the developer to understand why the program does not
have the intended behaviour, and how to fix this.

2. there is not sufficient information to prove the annotation. In this case, the
annotation might still be kept as a candidate annotation, because when more
annotations are generated, it might become possible to prove it. An intelligent
strategy will be needed to keep potentially interesting annotations (for example,
if the annotation would help to prove the globally desired property, it is
potentially interesting), while ignoring others.



Towards Reliable Concurrent Software 141

5 Verification of Programs Using Different Concurrency
Paradigms

To support software developers in practice, verification techniques need to support
different programming languages, and different concurrency paradigms. Most work
on the verification of concurrent software focuses on shared memory concurrency
with heterogeneous threading, as can be found, e.g., in Java or C. In this model,
all threads have access to a shared memory, and all threads execute their own
program code. However, in practice there are many other concurrency models in use
(and there is also more and more hardware that supports these concurrency models
directly). Therefore, we need to investigate how our verification approaches can be
used for these other concurrency models as well.

In particular, we believe that it is important to investigate how to reason about
programs written using the structured parallel programming model (or vector-based
programming), where all threads execute the same instructions, as this model is
growing in popularity. Recently, we have shown how the verification techniques for
Java’s shared-memory concurrency can be adapted in a straightforward manner to
GPUs (including atomic update instructions) [11, 12]. On GPUs, there is a shared
memory, but all threads execute the same program instructions (but operate on a
disjoint part of the memory). It turns out that this restricted setting has a positive
impact on verification: the same verification techniques can be used, and verification
actually gets simpler. Because of the simpler concurrency paradigm, reasoning
about many functional properties can be done without the need for abstraction,
because the behaviour of all the other threads is more predictable. However, to
reason about the interaction of the vector program in interaction with the host
program, which invokes the vector program (the kernel), we are again back to the
heterogeneous setting, and the abstraction theory can be used to give an abstract
specification of the behaviour of the vector program. We believe that this direction
should be explored further, as typical GPU programs are usually quite low-level,
which makes them more error-prone. Thus, there is a high need to further develop
automated techniques to reason about such applications.

It is also interesting to look at how these programs are developed. One
commonly-used approach is that a developer writes a sequential program and
gives compiler hints about possible parallelisations [7]. When this approach is
used, a programmer is greatly helped by automated verification of these compiler
directives. For basic compiler directives, we developed verification techniques to
prove the correctness of these parallelisations, i.e., to prove that if the program
is parallelised, its behaviour will be equivalent to the behaviour of the sequential
program [11, 22], but this approach is still in its early stages, and needs to be
developed further, allowing for more advanced compilation patterns.

Further, we believe that a promising line of work is to combine these techniques,
in such a way that one can automatically transform a verified sequential program
with annotations into an annotated vector program, which will be directly verifiable.
We believe this idea can also be used for other compiler optimisations. For example,



142 M. Huisman and S. J. C. Joosten

vector programs written in OpenCL (a platform-independent programming lan-
guage for GPUs) can be executed both on CPUs and GPUs, but experiments have
shown that to optimise performance, the data format should be different [64]. This
idea can be defined as a standard compiler transformation, that transforms not only
the program, but also the correctness annotations, such that the result is a (hopefully)
verifiable program again. Instead of proving correctness of the transformation, both
the program and the annotations are transformed, such that after the transformation
the resulting program with annotations can be reverified.

Another interesting paradigm that deserves more attention is the area of dis-
tributed software, where we need techniques to reason about programs without
shared memory. One particular instance of these are distributed programs, but there
are also concurrency paradigms, such as the message-box concurrency model of
Scala, where each parallel computation works on its own memory. We have shown
that reasoning about distributed programs using the message passing interface (MPI)
builds on the same principles [57] as reasoning about shared memory concurrency,
but here the abstraction plays an even more important role, because it models
the communication between the different computations. By adding a notion of
synchronisation to the actions, we can model the communication. By defining
variations in the action synchronisation, it should be possible to model other
distributed programming models, such as the actor model, as well as the Scala
concurrency model (on a single computer, with instantaneous send and receive),
or variations of the MPI model, where the sending of messages can take time,
and messages can bypass each other. It would even be possible to use this kind
of reasoning at a lower level, for example to prove the correctness of an MPI
implementation, where we take into account that messages might be lost.

6 Concurrent Software in 10 Years

As we have seen, over the last years, there has been enormous progress in
the area of program verification, and in particular concerning the verification of
concurrent software. By now, the theory behind verification of concurrent software
is reasonably well understood, even though there are still open ends, but a large step
is still needed to make the results usable for all programmers, in their every-day
software development.

In this paper, we discussed some challenges that need to be addressed to achieve
this, and we also outlined possible approaches to tackle them. In the coming years,
we plan to develop techniques to address these questions, which should lead to
a situation where software verification techniques will be an integral part of the
software development practice, also for highly complicated concurrent software.

When verification is an integral part of software development, developing code
that is formally correct will be deemed easier than developing code without
formal verification. If correctness is built into the software compile chain, checking
correctness and occasionally getting verification errors will be as commonplace



Towards Reliable Concurrent Software 143

as

dealing with type checking errors. In ten years, writing code without static

verification might be seen as this obscure workaround that can be okay to use if
you really know what you are doing. Using automated verification will be as normal
as structured programming and static type checking is now.

Acknowledgement This work is supported by the NWO VICI 639.023.710 Mercedes project.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Wolfgang Ahrendt et al. Deductive Software Verification — The KeY Book Vol. 10001. Lecture
Notes in Computer Science. Springer International Publishing, 2016. 1SBN: 9783319498126.
A. Amighi, S. Blom, and M. Huisman. “VerCors: A Layered Approach to Practical Verification
of Concurrent Software”. In: PDP 2016, pp. 495-503.

Afshin Amighi et al. “Verification of Concurrent Systems with VerCors”. In: Formal Methods
for Executable Software Models 14th International School on Formal Methods for the Design
of Computer Communication, and Software Systems, SFM 2014, Bertinoro, Italy June 16-20,
2014, Advanced Lectures 2014, pp. 172-216.

. A. Amighi et al. “Permission-based separation logic for multithreaded Java programs”. In:

LMCS 11.1 (2015).

. A. Amighi et al. “The VerCors Project: Setting Up Basecamp”. In: Programming Languages

meets Program Verification (PLPV 2012) ACM Press, 2012, pp. 71-82. https://doi.org/10.
1145/2103776.2103785

. A. Antonik et al. “20 years of modal and mixed specifications”. In: Bulletin of the EATCS 95

(2008), pp. 94-129.

. R. Baghdadi et al. “PENCIL: Towards a Platform-Neutral Compute Intermediate Language for

DSLs”. In: CoRR abs/1302.5586 (2013).

. G. Barthe et al. “JACK: A Tool for Validation of Security and Behaviour of Java Applications”.

In: Formal Methods for Components and Objects (FMCO 2006) Vol. 4709. LNCS. Springer,
2007, pp. 152-174.

. B. Beckert, R. Hihnle, and P.H. Schmitt, eds. Verification of Object-Oriented Software: The

KeY Approach Vol. 4334. LNCS. Springer, 2007.

J. van den Berg and B. Jacobs. “The LOOP compiler for Java and JML". In: Tools and
Algorithms for the Construction and Analysis of Systems Ed. by T. Margaria and W. Yi. Vol.
2031. LNCS. Springer, 2001, pp. 299-312.

S. Blom, S. Darabi, and M. Huisman. “Verification of loop parallelisations”. In: FASE Vol.
9033. LNCS. Springer, 2015, pp. 202-217.

S. Blom, M. Huisman, and M. MihelVi¢ “Specification and Verification of GPGPU programs”.
In: Science of Computer Programming 95 (3 2014), pp. 376-388. 1SSN: 0167-6423.

S. Blom, M. Huisman, and M. Zaharieva-Stojanovski. “History-based verification of functional
behaviour of concurrent programs”. In: SEFM. Vol. 9276. LNCS. Springer, 2015, pp. 84-98.
S. Blom et al “The VerCors Tool Set: Verification of Parallel and Concurrent Software”. In:
iFM Vol. 10510. LNCS. Springer, 2017, pp. 102-110.

A.R. Bradley. “SAT-Based Model Checking without Unrolling”. In: Verification, Model
Checking and Abstract Interpretation (VM CAI) LNCS. Springer, 2011.

Marc Brockschmidt et al. “Certifying safety and termination proofs for integer transition
systems”. In: International Conference on Automated Deduction Springer. 2017, pp. 454—471.
S. Brookes. “A Semantics for Concurrent Separation Logic”. In: Theoretical Computer Science
375.1-3 (2007), pp. 227-270.

Steve Brookes and Peter O’Hearn. “Concurrent Separation Logic”. In: ACM SIGLOG News
3.3 (2016), pp. 47-65.


https://doi.org/10.1145/ 2103776.2103785
https://doi.org/10.1145/ 2103776.2103785

144

19.

20.

21

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33

34.

35.

36.

37.

38.

39.

M. Huisman and S. J. C. Joosten

E. Clarke et al. “Counterexample-Guided Abstraction Refinement”. In: Computer-Aided
Verification (CAV) Vol. 1855. LNCS. Springer, 2000.

D. Cok and J. R. Kiniry. “ESC/Java2: Uniting ESC/Java and JML: Progress and issues in
building and using ESC/Java2 and a report on a case study involving the use of ESC/Java2 to
verify portions of an Internet voting tally system”. In: Proceedings, Construction and Analysis
of Safe Secure and Interoperable Smart devices (CASSIS’04) Workshop Ed. by G. Barthe et al.
Vol. 3362. LNCS. Springer, 2005, pp. 108—-128.

. David Cok. “OpenJML: Software verification for Java 7 using JML, OpenJDK, and Eclipse”.

In: Ist Workshop on Formal Integrated Development Environment, (F-IDE) Ed. by Catherine
Dubois, Dimitra Giannakopoulou, and Dominique Méry. Vol. 149. EPTCS. 2014, pp. 79-92.
https://doi.org/10.4204/EPTCS.149.8. URL: http://dx.doi.org/10.4204/EPTCS.149.8

S. Darabi, S.C.C. Blom, and M. Huisman. “A Verification Technique for Deterministic Parallel
Programs”. In: NASA Formal Methods (NFM) Ed. by C. Barrett, M. Davies, and T. Kahsai.
Vol. 10227. LNCS. 2017, pp. 247-264.

S. De Gouw et al. “OpenJDK’s java.utils.Collection.sort() is broken: The good, the bad and the
worst case”. In: Proc. 27th Intl. Conf on Computer Aided Verification (CAV), San Francisco
Ed. by D. Kroening and C. Pasareanu. Vol. 9206. LNCS. Springer, July 2015, pp. 273-289.
Edsger W. Dijkstra. A Discipline of Programming Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1976.

T. Dinsdale- Young et al. “Concurrent Abstract Predicates”. In: ECOOP Ed. by Theo D’Hondt.
Vol. 6183. LNCS. Springer, 2010, pp. 504-528.

T. Dinsdale-Young et al. “Views: Compositional Reasoning for Concurrent Programs”. In:
POPL’13 ACM, 2013, pp. 287-300.

J. Dohrau et al. “Permission Inference for Array Programs”. In: Computer Aided Verification
(CAV) LNCS. Springer, 2018.

Manuel Fahndrich et al. “Integrating a Set of Contract Checking Tools into Visual Studio”.
In: Proceedings of the 2012 Second International Workshop on Developing Tools as Plug-
ins (TOPI) 1EEE, June 2012. URL: https://wwwmicrosoftcom/en-us/research/publication/
integrating-a-set-of-contract-checking- tools-into-visual-studio/.

P. Ferrara and P. Miiller. “Automatic inference of access permissions”. In: Proceedings of the
13th International Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI 2012) LNCS. Springer, 2012, pp. 202-218.

R. W. Floyd. “Assigning Meanings to Programs”. In: Proceedings Symposium on Applied
Mathematics 19 (1967), pp. 19-31.

J.P. Galeotti et al. “Inferring Loop Invariants by Mutation, Dynamic Analysis, and Static
Checking”. In: IEEE Transactions on Software Engineering 41 (10 2015), pp. 1019-1037.
Archana Ganapathi and David A. Patterson. “Crash Data Collection: A Windows Case Study.”
In: Dependable Systems and Networks (DSN) IEEE Computer Society, Aug. 1, 2005, pp. 280—
285. ISBN: 0-7695-2282-3.

. Michiel van Genuchten and Les Hatton. “Metrics with Impact”. In: IEEE Software 30 (4 July

2013), pp. 99-101.

Jirgen Giesl et al. “Proving termination of programs automatically with AProVE”. In:
International Joint Conference on Automated Reasoning Springer. 2014, pp. 184-191.

R. Héhnle and M. Huisman. “Deductive Software Verification: From Pen-and-Paper Proofs to
Industrial Tools”. In: Computing and Software Science Vol. 10000. LNCS. 2018.

Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis. “Modular Verification of Concurrency-
Aware Linearizability”. In: Symposium on Distributed Computing (DISC) Springer, 2015.

C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Communications of the
ACM 12.10 (Oct. 1969), pp. 576-580, 583. URL.: http://doi.acmorg/10.1145/363235.363259.
Marieke Huisman. “Reasoning about Java Programs in higher order logic with PVS and
Isabelle”. IPA Dissertation Series, 2001-03. University of Nijmegen, Holland, Feb 2001. URL:
ftp://ftpsop.inria.fr/lemme/Marieke. Huisman/thesis.ps.gz

B. Jacobs and F. Piessens. The VeriFast program verifier Tech. rep. CW520. Katholieke
Universiteit Leuven, 2008.


https://doi.org/10.4204/EPTCS.149.8
http://dx.doi.org/10.4204/EPTCS.149.8
https://wwwmicrosoftcom/en-us/research/publication/integrating-a-set-of-contract-checking-tools-into-visual-studio/
https://wwwmicrosoftcom/en-us/research/publication/integrating-a-set-of-contract-checking-tools-into-visual-studio/
http://doi.acmorg/10.1145/363235.363259
ftp://ftpsop.inria.fr/lemme/Marieke.Huisman/thesis.ps.gz

Towards Reliable Concurrent Software 145

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

M. Janota. “Assertion-based Loop Invariant Generation”. In: Ist International Workshop on
Invariant Generation (WING) 2007.

Cliff B. Jones. “Tentative Steps Toward a Development Method for Interfering Programs”. In:
5.4 (1983), pp. 596-619.

Sebastiaan JC Joosten, René Thiemann, and Akihisa Yamada. “CeTA—Certifying Termination
and Complexity Proofs in 2016”. In: 15th International Workshop on Termination Ed. by Aart
Middeldorp and René Thiemann. 2016.

U. Juhasz et al. Viper: A Verification Infrastructure for Permission-Based Reasoning Tech. rep.
ETH Zurich, 2014.

R. Jung et al. “Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning”.
In: Principles of Programming Languages (POPL) 2015.

R. Krebbers et al. “The Essence of Higher-Order Concurrent Separation Logic”. In: ESOP Vol.
10201. LNCS. Springer, 2017, pp. 696-723.

K.G. Larsen and B. Thomsen. “A modal process logic”. In: Logic in Computer Science (LICS)
IEEE Computer Society, 1988, pp. 203-210.

Francesco Logozzo. “Practical verification for the working programmer with CodeContracts
and Abstract Interpretation”. In: Verification, Model Checking and Abstract Interpretation
(VMCAI) Springer, 2011.

A. Malkis, A. Podelski, and A. Rybalchenko. “Thread-Modular Counterexample-Guided
Abstraction Refinement”. In: Static Analysis (SAS) Vol. 6337. LNCS. Springer, 2010.
Rivalino Matias et al. “An Empirical Exploratory Study on Operating System Reliability”. In:
29th Annual ACM Symposium on Applied Computing (SAC) Gyeongju, Republic of Korea:
ACM, 2014, pp. 1523-1528. ISBN: 978-1-4503-2469-4. https://doi.org/10.1145/2554850.
2555021

Jorg Meyer and Arnd Poetzsch-Heffter. “An Architecture for Interactive Program Provers”. In:
Tools and Algorithms for Construction and Analysis of Systems, 6th International Conference
TACAS 2000 Ed. by Susanne Graf and Michael 1. Schwartzbach. Vol. 1785. Lecture Notes in
Computer Science. Springer, 2000, pp. 63-77.

P. Miiller, M. Schwerhoff and A.J. Summers. “Viper A Verification Infrastructure for
Permission-Based Reasoning”. In: VMCAI 2016.

Aleksandar Nanevski et al. “Communicating State Transition Systems for Fine-Grained
Concurrent Resources” In: European Symposium on Programming (ESOP) 2014, pp. 290-310.
P. W. O’Hearn, J. Reynolds, and H. Yang. “Local Reasoning about Programs that Alter Data
Structures”. In: Computer Science Logic Ed. by L. Fribourg. Vol. 2142. LNCS. Paris: Springer,
2001, pp. 1-19. https://doi.org/10.1007/3540448020_1

P. W. O’Hearn, H. Yang, and J. C. Reynolds. “Separation and Information Hiding”. In:
Principles of Programming Languages Venice, Italy: ACM Press, 2004, pp. 268-280.

Peter W. O’Hearn. “Resources, concurrency and local reasoning”. In: 375.1-3 (2007), pp. 271-
307. ISSN: 0304-3975. http://dx.doi.org/10.1016/j.tcs.2006.12.035.

W. Oortwijn, S. Blom, and M. Huisman. “Future-based Static Analysis of Message Passing
Programs”. In: PLACES 2016, pp. 65-72.

W. Oortwijn et al. “An Abstraction Technique for Describing Concurrent Program Be-
haviour”. In: VSTTE Vol. 10712. LNCS. 2017, pp. 191-209.

Thomas J. Ostrand and Elaine J. Weyuker. “The Distribution of Faults in a Large Industrial
Software System”. In: 2002 ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA) Roma, Italy: ACM, 2002, pp. 55-64. ISBN: 1-58113-562-9. https://doi.org/
10.1145/566172.566181

Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. “Where the Bugs Are”. In: 2004
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISTTA). Boston,
Massachusetts, USA: ACM, 2004, pp. 86-96. ISBN: 1-58113-820-2. https://doi.org/10.1145/
1007512.1007524

S. Owicki and D. Gries. “An Axiomatic Proof Technique for Parallel Programs”. In: Acta
Informatica Journal 6 (1975), pp. 319-340. https://doi.org/10.1007/BF00268134


https://doi.org/10.1145/2554850.2555021
https://doi.org/10.1145/2554850.2555021
https://doi.org/10.1007/3540448020_1
http://dx.doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/566172.566181
https://doi.org/10.1145/566172.566181
https://doi.org/10.1145/ 1007512.1007524
https://doi.org/10.1145/ 1007512.1007524
https://doi.org/10.1007/BF00268134

146 M. Huisman and S. J. C. Joosten

61. P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. “Steps in Modular Specifications for

62.

63.

64.

65.

66.

67.

68.

69.

70

Concurrent Modules”. In: Mathematical Foundations of Programming Semantics (MFPS).
2015.

P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. “TaDA: A Logic for Time and Data
Abstraction”. In: European Conference on Object-Oriented Programming (ECOOP) LNCS.
Springer, 2014.

I. Sergey, A. Nanevski, and A. Banerjee. “Specifying and Verifying Concurrent Algorithms
with Histories and Subjectivity”. In: ESOP Vol. 9032. LNCS. Springer, 2015, pp. 333-358.

J. Shen. “Efficient High Performance Computing on Heterogeneous Platforms”. PhD thesis.
Technical University of Delft, 2015.

Jan Smans, Bart Jacobs, and Frank Piessens. “VeriFast for Java: A Tutorial”. In: Aliasing in
Object-Oriented Programming Ed. by Dave Clarke, Tobias Wrigstad, and James Noble. Vol.
7850. LNCS. Springer, 2013.

K. Svendsen and L. Birkedal. “Impredicative Concurrent Abstract Predicates”. In: ESOP Vol.
8410. LNCS. Springer, 2014, pp. 149-168.

V. Vafeiadis and M.J. Parkinson. “A Marriage of Rely/Guarantee and Separation Logic”. In:
CONCUR Ed. by Luis Caires and Vasco Thudichum Vasconcelos. Vol. 4703. LNCS. Springer,
2007, pp. 256-271.

Viktor Vafeiadis. “Automatically Proving Linearizability”. In: Computer Aided Verification Ed.
by Tayssir Touili, Byron Cook, and Paul Jackson. Vol. 6174. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2010, pp. 450-464. 1SBN: 978-3-642-14294-9. https://doi.
org/10.1007/978-3-642-14295-6_4. URL.: http://dxdoiorg/10.1007/978-3-642-142956_40.
M. Zaharieva-Stojanovski. “Closer to Reliable Software: Verifying Functional Behaviour of
Concurrent Programs”. PhD thesis. University of Twente, 2015. https://doi.org/10.3990/1.
9789036539241.

. J. Zeilstra. “Reasoning about Active Object Programs”. MA thesis. University of Twente, 2016.


https://doi.org/10.1007/978-3-642-14295-6_4
https://doi.org/10.1007/978-3-642-14295-6_4
http://dxdoiorg/10.1007/978-3-642-142956_40
https://doi.org/10.3990/1.9789036539241
https://doi.org/10.3990/1.9789036539241

	Towards Reliable Concurrent Software
	1 Introduction
	2 State-of-the-Art in Verification of Concurrent Software
	2.1 Software Correctness
	2.2 Verification of Concurrent Software
	2.3 Concurrent Software in Industrial Practice

	3 Abstraction Techniques for Functional Verification
	3.1 The Right Mathematical Model
	3.2 Reasoning About Liveness and Progress
	3.3 Unification of Model and Code
	3.4 First Steps Towards a Solution

	4 Automating the Verification Process
	5 Verification of Programs Using Different Concurrency Paradigms
	6 Concurrent Software in 10 Years
	References


