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Abstract. The design of a concurrent incremental combined static/dynamic 
attribute evaluator is presented. The static part is an incremental version of 
the ordered attribute evaluation scheme. The dynamic part is an incremental 
version of the dynamic evaluation scheme. 

To remove the restriction that every transformation of an attributed 
syntax tree should immediately be followed by a reevaluation of the tree, 
criteria have been formulated which permit a delay in calling the 
reevaluator. These criteria allow multiple asynchronous tree transformations 
and multiple asynchronous reevaluations. Transformation and reevaluation 
processes are distributed over regions of the tree. Each region is either in its 
transformation phase or in its reevaluation phase. Different regions can be in 
different phases at the same time. 

1. Parallel compilation 

Compilers are among the tools most heavily used by programmers. Therefore, the speed of 
compilation may have a great impact on programmer productivity. One way to speed up 
compilation is the application of parallelism. Other techniques to reduce compile time are 
incremental compilation and separate compilation of program modules. Parallel compilation 
can make both of these techniques faster. As paraUel processing technology advances, 
concurrency becomes an attractive vehicle by which compilation speed may be increased. 

Any practical investigations in concurrent compilation have naturally been driven by the 
multiprocessing hardware available at the time. Early efforts were aimed at the application of 
vector processing techniques, while more recent research has been directed towards more 
coarsely grained parallel compiler designs. The easiest way in which to transform a 
sequential compiler into a concurrent compiler is to run the compiler phases as separate 
processes in a pipeline, and to have them communicate through shared data structures. This 
approach has two limitations. First, the degree of  concurrency is limited by the number of 
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stages in the pipeline. Second, the overaU speed of compilation is constrained by the speed of 
the slowest stage. 

Instead of determining which phases of the compilation process can be carried out 
concurrently, one may construct a compiler which splits the source program into segments 

which are then compiled concurrently. These segments would typically be well-defined 
syntactic constructs, such as procedure bodies or statement lists. Lipkie [16] was probably 

the first to suggest a combination of pipelining and concurrent processing of program 

segments. He proposed the division of the source program at procedure boundaries and to 
instantiate a pipeline for each procedure. Frankel [8] extended a one-pass recursive descent 
Pascal compiler to translate procedures concurrently. Whenever a compiler instance 

encounters a child scope while compiling a parent scope, it creates a new instance to compile 

the child scope and skips to the end of the child scope by matching delimiters. Vandevoorde 

[23] constructed a concurrent C compiler that consists of a two stage pipeline. The first stage 

performs extended lexical analysis for the second stage, which does the parsing, semantic 

analysis and code generation. The second stage is able to process units as small as simple 

statements concurrently. To dynamically restrict unproductive concurrency, a scheduling 

strategy is used which favours serial execution when parallel execution is unproductive and 

favours coarser grains of parallelism over freer ones. Seshadri et al. [20, 21, 22] used a 

similar approach to build parallel Modula 2+ compilers to run on a distributed system. They 

do not restrict themselves to the parallel compilation of statements, but they investigate the 

concurrent processing of declarations as well. The latter introduces what they call the 

"doesn't know yet" problem: the compiler may attempt to access a variable before its 

declaration has been processed. 

Theoretical research in the field of parallel compilation has dealt mainly with its best 

understood area, namely parsing regular and context-free grammars. Attribute grammars 

have proved to be a useful formalism for specifying the context-sensitive syntax and the 

semantics of programming languages, as well as for implementing editors, compilers, 

translator writing systems and compiler generators. Therefore, the theoretical investigation 

into parallel attribute evaluation also deserves attention. 

The rest of this paper is devoted to parallel attribute evaluation, and in particular, parallel 

incremental attribute evaluation. In Section 2 we recall the notions static and dynamic 

attribute evaluation, and further distinguish between non-incremental and incremental 

evaluation, and between scquentiai and parallel evaluation. In Section 3 we consider possible 

distributions of attributes over processes. In Section 4 we summaxize the parallel evaluation 

strategies that arc known from the literature. Conditional trcc transformations are defined in 

Section 5 to motivate incremental attribute cvaiuation. In Section 6 we present a new 

approach to concurrent incremental attribute evaluation, which combines both static and 

dynamic evaluation strategies. In Section 7 we extend our approach to multiple asynchronous 

tree transformations, and formulate criteria which permit a delay in calling the reevaiuator. 

This requires a different view of the correctness of attribute values of a syntax tree. The use 
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of approximat¢ attribute values, as defined in [4], allows multiple 

transformations and multiple asynchronous reevaluations. 

asynchronous tree 

2. Attribute evaluation strategies 

An attribute evaluator computes the values of  all attribute instances attached to a syntax tree. 
The constraint that an evaluation rule can only be executed when the values of  its arguments 

are available, naturally leads to the concept of dependency graphs. For every syntax tree T a 
dependency graph D(T) can be deemed by taking the attribute instances of T as its vertices. 
The directed arc (a, b) is contained in the graph if and only if attribute instance b depends on 
attribute instance a, i.e. if a is an argument in the evaluation rule for b. Thus, the existence of 
arc (a, b) indicates that the value of a must be available before b can be computed. We 
restrict our attention to attribute grammars for which dependency graphs are acyclic. 

2.1 Static and dynamic evaluators 

Traditional (i.e., sequential) attribute evaluation methods can be divided into two categories: 
dynamic and static evaluation. Given a source program and its associated syntax tree T, a 

dynamic evaluator constructs the dependency graph D(T) and performs a topological sort of 

the nodes in D(T) to determine the evaluation order of the attribute instances in T. A static 
evaluator does not construct the dependency graph. Instead, the evaluation order is based on 

the dependencies between the attribute occurrences in the productions of the attribute 

grammar. As a result, a static evaluator can be used for any tree of  the grammar. The 
evaluation order of a dynamic evaluator is determined at attribute evaluation time, whereas 

the evaluation order of a static evaluator is determined at evaluator generation time. On 
sequential machines, static evaluators are preferred because they are more efficient in time 

and space. Dynamic evaluators, however, have a higher potential for concurrency. 

2.2 Non-incremental and incremental evaluators 

We can also distinguish between non-incremental and incremental attribute evaluators. A 

non-incremental attribute evaluator computes the attribute instances attached to the nodes of 

an invariant syntax tree only once. A tree transformation may invalidate attribute instances, 

not only in the restructured part of the tree but (because of long reaching attribute 
dependencies) also elsewhere in the tree. To make the attribution of the tree correct again, a 

reevaluator must be activated. However, a repeated computation of  all the attribute instances 

after each transformation is inefficient and should be avoided. The only attribute instances 

subject to reevaluation are the attribute instances having an incorrect value and the attribute 
instances directly depending on these attribute instances. Algorithms exist that work 
optimally in the number of visits to tree nodes and in the number of recomputations. 

Evaluators employing such algorithms are called incremental evaluators. 
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2.3 Sequential and parallel evaluators 

Yet another distinction is between sequential and parallel evaluators. For a given syntax tree 
T the evaluation order of its attribute instances is only restricted by the partial order induced 

by the associated dependency graph D(T). A sequential attribute evaluator completely 

serializes this order. In a parallel attribute evaluator the partial order does not have to be 

serializr,.d. Instead, attribute computations are allocated to evaluation processes. As in the 

case of sequential evaluators, the way in which this is done can be determined at evaluator 

generation time or at attribute evaluation time. 

3. Distributions of attributes over processes 

Attribute instances of a syntax tree can be distributed over processes in several ways. Kuiper 

[15] distinguishes between tree-based distributions, attribute-based distributions and a 

combination of these two distributions, called combined distributions. 
A distribution is called tree-based if all attribute instances attached to the same tree node 

are assigned to the same evaluation process. Generally, the tree is divided into connected 
parts, called regions. Each evaluation process evaluates attribute instances in a region of the 

tree. To define a region it suffices to define which node is the common ancestor of the nodes 
in the region. Criteria to select common ancestors are the production applied at a node 

(production-based distribution) and the nonterminal labelling a node (nonterminal-based 
distribution). Furthermore, nested and non-nested distributions earl be distinguished. In the 
case of nested distributions the production or the nonterminal is the only selection criterion. 
In the case of non-nested distributions an additional criterion has to be taken into account, 
namely that a node is selected if and only if none of its ancestors is selected. 

A distribution is called attribute-based if a process is allocated to all instances of an 
attribute or to all instances of an attribute occurrence. An example of an attribute based 
distribution is the association of a process with each evaluation pass of a multi-pass 

evaluator. 
A combined distribution is the result of a tree-based distribution followed by an attribute- 

base distribution. The tree is divided into regions according to the tree-based distribution, and 
then for each region, processes are allocated to attribute instances according to the attribute 

based distribution. 

4. Parallel attribute evaluation 

For a given syntax tree the evaluation order of its attribute instances is only restricted by the 

partial order induced by its dependency graph. Therefore, an evaluator which completely 

exploits the potential for concurrency should be based on partial orders only. Parallelizing the 

dynamic evaluation scheme is straightforward. Each evaluator builds the dependency graph 
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for its region, marking attribute instances to be computed in other regions as unavailable. 
Next, the evaiuator does a topological sort of its attribute instances, and starts evaluation. An 
evaluator may have to wait for attribute instances from other regions. When they become 
available, the dependency graph is updated accordingly. Additionally, each of the evaluators 
has m make attribute instances available to other evaluators. Although this method achieves a 
high degree of concurrency, one must realize that the analysis of dependency graphs as part 
of the attribute evaluation process to detect possible parallelism may require more time than 
it saves. Instead, the analysis of an attribute grammar at evaluator generation time to detect 
potential parallelism can be more elaborate and more time consuming because it is performed 
only once for the grammar and can be applied to any syntax tree. 

Unfortunately, all known static evaluation stTategies completely serialize the evaluation 
process by introducing additional dependencies. Sequential thought patterns seem to hinder 
people in inventing parallel static evaluation methods. The thesis of Schell [19] includes a 
modest start to a theoretical investigation into parallel tree-walk evaluation. Whenever 
possible, nodes are visited concurrently by assigning separate processes to traverse subtrees 
rooted at the same node. These processes are forked in a top-down descent of the derivation 
tree. Kuiper [15] presents an algorithm that analyses attribute grammars in order to statically 
(i.e., at evaluator generation time) detect independent computations. He also presents a 
method that increases the amount of potential parallelism by removing attribute dependencies 
and thus cutting linear chains at the cost of adding extra attributes. To date, however, no 
parallel static attribute evaluation classes have been invented. 

The dilemma is that, on one side, static evaluators are efficient but hard to parallelize, and 
on the other side, parallel dynamic evaluators are easy to construct but impractical to use. To 
solve this dilemma, BOhm and Zwaenepoel [6] designed a combined static/dynamic evaluator 
which tries to combine the potential for concurrency of dynamic evaluators with the 
sequential efficiency of static evaluators. Their static evaluation method is the ordered 
attribute grammar scheme [13], and their dynamic evaluation method is based on the 
availability of attribute instances in the polynomial sort of the dependency graph. 

The structure of their parallel compiler is roughly as follows. The sequential parser builds 
the syntax tree, divides it into non-nested "bottom" subtrees, and a remaining "top" tree, and 
sends them to the attribute evaluators. The attribute evaluators then proceed with the actual 
translation by evaluating attribute instances belonging to the symbols in their region, 
transmitting values of shared attribute instances as necessary. Dynamic evaluation is applied 
to the top tree, whereas all bottom subtrees are evaluated entirely statically. The distribution 
is such that the vast majority of attribute instances is evaluated statically. The children of 
each tree node N of the top tree are inspected to see if any of them should be handled by a 
static evaluator. If  so, the (transitive) inherited-to-synthesized dependencies between the 
child's attribute instances (as precomputed by the static evaluator) are entered into the 
dynamic dependency graph, as are the dependencies induced by the evaluation rules 
associated with the production applied at N. When the tree construction is completed, 
evaluation starts in topological order, as for dynamic evaluators. When all predecessors for a 
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statically evaluated attribute instance become available, the appropriate static visit procedure 
is invoked. In reverse, a static evaluator may activate the dynamic evaluator. To every static 
subtree evaluator a process is assigned. One could assign several processes to the dynamic 
top tree evaluator (e.g., one process to every attribute instance that is ready for evaluation), 
but one process suffices if it can keep the majority of the static evaluators busy in parallel 
with its own activities. 

In both the static and the dynamic evaluator each attribute instance is computed once, and 
only after its arguments have received their correct value. The same holds for the combined 
static/dynamic evaluator. Hence, it is guaranteed that the value of every attribute instance is 
correct after the completion of the evaluation process. 

In what precedes we assumed the syntax tree remains unchanged as far as attribute 
evaluation is concerned. In the following sections we consider the problem of attributed 
syntax trees which may change during the compilation process. Therefore, we first describe 
the concept of attributed tree transformations and then present a design for a parallel 
incremental evaluator. 

Although we will discuss incremental attribute evaluation in the context of optimizing tree 
transformations, our method can be applied to any syntax tree with incorrect attribute values. 
Hence, our incremental evaluator works for incremental editing as well. 

5. Conditional  tree transformations 

Both compiler optimizations and (context-sensitive) syntax-directed editing can be described 
by tree transformations. To specify optimizing tree transformations the classical attribute 
grammar framework has to be extended with conditional tree transformation rules, where 
predicates on attribute values (carrying context information) may enable the application of a 
transformation (see e.g. [24]). We restrict ourselves to tree transformations which preserve 
the syntax, i.e., all intermediate trees are syntax trees in the same context-free grammar. A 
tree transformation rule consists of an input tree template itt, and an output tree template ott 

(for reasons of simplicity we assume that itt and ott have equally labelled roots). Context 
conditions can be expressed by enabling conditions which are predicates on attribute 
instances of itt. 

The set of attribute instances of a tree template can be naturally partitioned into three 
disjoint subsets of input, output and inner attribute instances. The input attribute instances 

are the inherited attribute instances of the root and the synthesized attribute instances of the 
leaves; the output attribute instances are the synthesized attribute instances of the root and 
the inherited attribute instances of the leaves; the inner attribute instances are the attribute 
instances of the inner nodes. 

The inner and output attribute instances of oft are completely determined by the input 
attribute instances of ott and the ordinary evaluation rules associated with the productions 
applied in ott. It is assumed that corresponding input attribute instances of itt and ott keep 
their values. Explicit evaluation rules are needed, however, for the synthesized attribute 
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instances associated with the terminal nodes (i.e., the nodes labelled by terminal symbols) of 

ott for which no corresponding node exists in itt, We propose these attribute instances 

(normally set by the parser!) to be defined by lexical evaluation rules in terms of attribute 

instances of itt. 
We denote a conditional tree transformation rule by tr: (itt, ott, cond, eval), where itt and 

ott are the input and the output tree template, cond is the enabling condition and eval is the 

set of  lexical evaluation rules. 
A conditional tree transformation rule tr: (itt, ott, cond, eval) is applicable to a subtree IT  

of  an attributed derivation tree T1, if itt is an instance of IT  and the evaluation of cond yields 

true. The application of tr consists of the creation of an instance OT of ott (in which the 
correspondence between subtrees and variables, established b y / T  and itt, is maintained) and 
the replacement of IT  by OT. Moreover, it is assumed that the inner and the output attribute 
instances of ott are given the value unknown, and that the values of the synthesized attribute 
instances associated with the new terminal nodes of ott are computed using the rules 
specified by eval. Such an attributed derivation tree T2 may contain incorrect attribute values 

everywhere in T2, because of long-reaching attribute dependencies. A tree transformation 
may even cause the values of the input attribute instances of ott to be incorrect. To make the 
attribution of the tree correct again (which is generally needed in order to be able to test the 
predicates of subsequent tree transformations), a reevaluator should be activated, which 
works optimally in the number of  visits to tree nodes and in the number of recomputations. 
By optimal we mean that, whenever possible, unnecessary reevaluations and superfluous 

visits to subtrees are avoided. The parallelization of  such an incremental evaluator is outlined 

in the next section. 

6. Parallel incremental attribute evaluation 

The concurrent incremental evaluator we propose, is an incremental version of the combined 

static/dynamic evaluator of Btihm and Zwaenepoel [6]. The static part is an incremental 

version of the ordered attribute evaluation scheme [13]. The dynamic part is based on the 
reevaluation scheme of Reps, Teitelbaum and Demers [18]. For reasons of simplicity we 

assume that every tree transformation takes place in a region of the syntax tree which is 

processed either entirely statically or entirely dynamically. For example, we could let the 
reevaluation process start in a subtree which is evaluated entirely statically. The incremental 

static evaluator may compute a different value for a synthesized attribute instance of  the root 

of  the subtree, which is shared with the dynamic evaluator. This results in the activation of 

the incremental dynamic evaluator. From now on the cooperation of evaluation processes of  

the incremental evaluator proceeds in a similar way as in the non-incremental combined 

static/dynamic evaluator. As for the non-incremental evaluator, this may lead to a renewed 
activation of the static evaluator which started the reevaluation process, 
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6.1 Incremental static evaluation 

In this section we sketch the incremental static evaluator, which is an incremental version of 
the ordered evaluator. Because the visit strategy for ordered attribute grammars [13] is used, 

the recomputation of each attribute instance is considered once, and only after its argument 

values have been reconsidered. Hence, the value of  every attribute instance is guaranteed 
correct after the completion of  the reevaluation process. The reevaluator works optimally in 

the sense that subtrees are skipped whenever possible, and the only attribute instances subject 

to reevaluation are those instances with an incorrect value, and those instances which directly 
depend on instances with incorrect values. Moreover, we restrict the reevaluation visits to the 

smallest possible subtree surrounding the restructured subtree (and the shortest path from the 

root of the tree to the root of this subtree). This ensures, in particular, that the reevaluator 
works in time linear in the size of the syntax tree and "almost" linear in the size of  the 

"affected area" of  the tree, i.e., all those nodes that have at least one wrong attribute value. 
To mark the attribute instances that need to be reevaluated, we associate with every tree 

node a variable NeedToBeEvaluated of type set of attributes. To properly update 

NeedToBeEvaluated, we introduce a variable Changed of  type set of attributes. In a 
downward visit of a node the variable Changed includes the inherited attribute instances of  
the node which have changed their value during the current visit. Similarly, in an upward 

visit Changed includes the synthesized attribute instances of the node whose values have 
changed during the current visit. Attribute a is inserted in NeedToBeEvaluated of  N as soon 
as an argument of the attribute evaluation rule of a of N has changed, as indicated by 
Changed. Deletion is done immediately after the recomputation of a of N. 

To improve the tree-walk strategy we associate with every tree node labelled by a 

nonterminal symbol a variable SubtreeAffected of  type set of visit numbers. Let N O be a node, 

p: Xp0 ---> Xpl ... Xt,,~ the production applied at No and N 1 ..... N,t, the sons of No from left to 
right, respectively. Let VSp=VSp,1, VSp,2 ..... VSp~n be the visit-sequence (see [13]) of 

production p. In VSp, i a vertex labelled v0, i denotes the i-th downward visit of  Xp0 and a 
vertex labelled vkd denotes the j-th upward visit of  Xek. SubtreeAffected of N O contains visit 

number i if and only if either VSp, i contains a defined attribute occurrence a of Xt, k, such that 
a ~ NeedToBeEvaluated of  Nk for some k (O<k <np), or VSp.i contains vk4, such that 

j~SubtreeAffectedofN k for some k ( l<k<np).  During reevaluation traversals 

SubtreeAffected of No is updated when N O is exited during a visit. 
This scheme guarantees a correct value for SubtreeAffectedofN o whenever the 

reevaluator is not in the subtree with root N o. This makes it possible to skip the subtree with 

root N o whenever the reevaluator returns to N o during a downward visit with number i, where 

i ~ SubtreeAffected of No. At the end of the reevaluation process SubtreeAffected of  N o is 
empty for all No. 

Because of  its recursive nature, the reevaluator starts at the root of the tree. So, at the 

moment of activating the reevaluator, NeedToBeEvaluated of  N and SubtreeAffected of  N are 

required to be correct for any node N in the syntax tree. To explain the initialization of  these 

variables after a tree transformation we will consider both the original tree and the resulting 
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tree. Immediately before the application of a tree transformation rule tr: (itt, ott, cond, eval) 
to a derivation tree T1, the values of all attribute instances of  T1 are correct. Also, for every 

node N of T1, NeedToBeEvaluated of N and SubtreeAffected of N are empty. Since the values 

of the inner and output attribute instances are unknown, it follows that, as a consequence of  a 

tree transformation, the following actions must be taken before the reevaluator is activated. 
1. Every inner and every output attribute instance of  ott must be included in its 

corresponding set NeedToBeEvaluated. 
2. For every non-leaf node N of ott its associated variable SubtreeAffected of  N must be 

set. From the fact that SubtreeAffected of N is defined in terms of variables associated 
with N itself and its immediate descendants, it follows that the instances of  

SubtreeAffected associated with the non-leaf nodes of  ott can easily be computed 
from the bottom up. 

3. For each ancestor of  the root of ott, its associated instance SubtreeAffected has to be 
set. The initialization of these instances can be done during a bottom up tree-walk 
from the root of  ott "straight" to the root of  the tree. 

A similar method is used by Engelfriet in [7], although he does not make use of sets 

NeedToBeEvaluated and Changed. A tree node is marked as affected for all future visits if 
one of its attribute instances changes its value. This may lead to unnecessary reevaluations 

and unnecessary visits to subtrees. Another (quite involved) solution is presented in [25]. An 
incremental evaluation algorithm for absolutely non-circular attribute grammars [14] can be 

found in [17]. 
The incremental evaluation method, sketched above, can easily be adjusted to pass- 

oriented attribute evaluation schemes, for which also variables NeedToBeEvaluated and 
SubtreeAffected are needed. The difference with incremental ordered attribute evaluation is 

that for simple multi-pass attribute evaluation [ 1, 5, 11] the variables SubtreeAffected are of 
type set of pass numbers (for more details see [2] and [3]). 

6.2 Incremental dynamic evaluation 

The incremental attribute evaluation method of Reps, Teitelbaum and Demers [18] is a 

natural extension of the dynamic evaluation scheme. Instead of a fixed dependency graph 

there is a continuously growing and shrinking dependency graph (called the "model") whose 
vertices represent possibly affected attribute instances that have not yet been reevaluated and 

whose arcs represent (direct or indirect) dependencies among these attribute instances. Every 

vertex of  the model has either a label R, indicating that the associated attribute instance needs 
to be reevaluated, or a label E which means that its value may possibly remain equal (i.e., it 

is not yet known whether the associated attribute instance has to be reevaluated or no0. 

A vertex is removed from the model when the associated attribute instance is recomputed 

or when it becomes clear that its original value is correct. This implies that a vertex is ready 

for removal if it has in-degree 0. An attribute instance associated with such a vertex should 

be recomputed if it has label R, otherwise its original value is still correct, When the value of 
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a recomputed attribute instance turns out to be changed, then every successor of this attribute 

instance should be labelled R. 
If a tree transformation takes place in a subtree, then the starting model consists of the first 

affected attribute instance of the top tree. This attribute instance has label R. In case the tree 

transformation takes place in the top tree, then the starting model consists of the attribute 
instances of the output template ott, the direct dependencies among these attribute instances 

and the (indirect) dependencies induced by the context of ott in the actual syntax tree. Every 

vertex of  the starting model associated with an input attribute instance of ott has label E and 
every vertex associated with an inner or an output attribute instance has label R. 

At any moment the model corresponds to the currendy affected area of the top tree. The 

model has to be expanded if an attribute instance a of a node N at the frontier of the model 
has changed its value and influences attribute instances in a neighbouring production p. The 

model is then extended as follows. First, the (indirect) dependencies at N, induced by the 

context of the old model, are removed. Second, the model is extended with the dependency 
graph of production p. Both graphs are pasted together along N. Third, new (indirect) 
dependencies, induced by the context of the new model, are added at the new frontier 
vertices. Finally, the vertices at the new frontier positions are labelled E, except the vertices 
associated with attribute instances depending on a. The expansion stops if no more attribute 
instances outside the model depend on changed attribute instances from the inside. The 

reevaluation process halts as soon as the model becomes empty. 
From the fact that an attribute instance is only reevaluated after its in-degree has become 

0, it follows that the recomputation of each attribute instance is considered once, and only 
when the reevaluation is guaranteed to yield its f'mal value. Observe that the dynamic 
incremental evaluation algorithm works in time linear in the size of  the affected area. 

6.3 Concurrent incremental static/dynamic evaluation 

The parallel incremental evaluator is a combination of the incremental static evaluator 

described in section 6.1, and the incremental dynamic evaluator described in section 6.2. The 

expansion of the model of the top tree may reach a statically evaluated subtree. This means 
that the model is extended with the attribute instances at the root of the subtree. When an 

inherited attribute instance of the root has both label R and in-degree 0, then the appropriate 
incremental static visit procedure is invoked. In a similar manner the affected area of a 

subtree may reach the dynamically evaluated top tree. When a synthesized attribute instance 

of the root of the subtree changes its value, then the model of the incremental dynamic 

evaluator is extended with the dependency graph of the production on top of the subtree, if it 

was not already a part of the model. New (indirect) dependencies are added at the new 

frontier positions, and the new vertices are labelled E, except the vertices depending on the 
attribute instance which just changed its value. 

In the incremental combined static/dynamic evaluator each attribute instance is 

recomputed once, and only when the reevaluation is guaranteed to yield its correct value. The 
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time complexity of the combined reevaluator is the same as that of the static evaluator. It 
works in time linear in the size of the tree and "almost" linear in the size of the affected area 
of the tree. In this, "almost" refers to the bottom trees, in which a tree walk repeatedly has to 

be made from the root to the affected area, and return. 

7. Multiple asynchronous tree transformations 

In [12] Kaplan and Kaiser presented a model for distributed program editing, which applies 
the dynamic attribute reevaluation scheme. In their work, a concurrent algorithm is first 
developed for incremental attribute evaluation in a single user, single edit environment. This 

algorithm is then expanded to handle multiple asynchronous edits, and then further extended 
to handle multiple asynchronous edits on program modules that are distributed across a 

number of workstations connected by a high speed network. 

To be sure that the part of the tree a programmer is editing is not suddenly changed 
because of reevaluations propagated by another tree transformation, Kaplan and Kaiser 

introduce firewalls, which act as a barrier behind which a module can shelter if it is not ready 

to accept attribute change propagations from other modules. In our concurrent incremental 

static/dynamic evaiuator, each region is either in its tree transformation phase or in its 

reevaluation phase. A subtree will only accept attribute change propagations from the top tree 
(and reversed) when it is in its reevaluation phase. 

A significant difference between tree transformations for the purpose of  program editing 

and conditional tree transformations is that the latter require the attribution of the tree to be 

made correct after every transformation. This is generally needed in order to be able to test 
the predicates of  subsequent tree transformations. This implies, however, that conditional tree 
transformations cannot be performed in parallel. To remove this restriction, we formulate 
criteria which permit a delay in calling the reevaluator. These criteria allow in particular the 
execution of tree transformations in different regions at the same time, and also a delay in 

calling the reevaluator until a sequence of tree transformations has been performed and 
several parts of a region have been affected [4]. A delay in calling the reevaluator requires a 
different view of  the correctness of attribute values of a syntax tree. For a non-circular 

attribute grammar, the classical theory defines one single value to be correct for each 

attribute instance. This value is called the consistent value of the attribute instance. For the 
purpose of  conditional tree transformations we extend the classical attribute grammar 

framework by allowing a set of values to be co/rect for each attribute instance. Such a value 

is called safe [9, 10]. Every safe value should be an approximation of  the .consistent value, 
which is therefore the optimal safe value. The set of safe values contains the consistent value. 

Tree transformations based on safe attribute values have the following characteristics. 

1. If a tree transformation rule is applicable to a safely attributed tree, then it is also 
applicable to the corresponding consistently attributed tree. 

2. A tree transformation applied to a safely attributed tree again yields a safely attributed 
tree. 
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These characteristics allow a tree transformation phase to perform without any 

interruption for reevaluations anywhere in the tree. 

The safety of the conditional tree transformation rules is the responsibility of the writer of 
these rules, i.e., their safety is not checked at compiler generation time. However, in the next 
section we provide local criteria so that the writer can check the safety of his rules. 

7.1 Safe trees and safe tree transformations 

In the sequel we make a distinction between the local and global reevaluation of a 
transformed tree. The local reevaluation is restricted to the attribute instances in the 

restructured area of the tree (i.e., the area covered by ott). The global reevaluation is the 
incremental evaluation (according to the approach described in section 6.3) of the entire tree. 

We discuss a scheme where the reevaluation process after every tree transformation may be 
confined to the local reevaluation, and where the global reevaluation may be delayed. 

Hereafter, we assume that for each attribute a the set V(a) of  possible values of a is 
partially ordered, and we denote this partial order by < (in fact, this is ambiguous, because 

we should write <-a, but we want to keep our notation as simple as possible). For x, y ~ V(a), 
if x < y, then we say that x is an approximation of y, or that y is better (>) than x. For 

synthesized attributes of terminals we assume the partial order to be trivial, i.e., x <y  iff 

x =y.  This is necessary because these attributes are imported attributes for which no 
evaluation rules are defined. For all other attributes we assume that the partial order has a 

smallest element, denoted (again ambiguously) by ±. Informally, the value x of an attribute 
instance is called safe i fx  < y, where y is its consistent value. 

For the comparison of safely and consistently attributed derivation trees, and for the 

expression of the requirements that guarantee the reliability of transformations based on safe 

syntax trees, we introduce the following notations and concepts. 
Let T be an attributed syntax tree, then To denotes the result of the global reevaluation of 

T. More precisely, To is the unique consistently attributed tree with the same underlying 

syntax tree as T, and the same values for the corresponding synthesized attribute instances of 
the leaves. 

For attributed trees T and T' with the same underlying syntax tree, T < T' means that the 

value of every attribute instance of  T is an approximation of the value of  the corresponding 
attribute instance of T'. Note that if T < T' then TO = T 'e. 

Now, the safety of (the values of the attribute instances of) a syntax tree, and the safety of 
a tree transformation rule, can be defined as follows. 

Definition 1. T is safe iff T < TO. 

Note that T is consistent iff T = To; hence a consistent tree is safe. 
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Definition 2. A conditional tree trahsformation rule tr is safe if: 

a) if tr  is applicable to a subtree of a safely attributed tree, then tr is also applicable to 
that subtree of the corresponding consistently attributed tree, 

b) the local reevaluation after the application of tr  results in a safe tree. 

Part a) of this definition says that a tree transformation rule is never wrongly applied. Part 
b) guarantees the reliability of subsequent transformations. 

Using safety rather than consistency as the new definition of correctness we may conclude 
that during a tree walk, after the application of  a tree transformation rule, the attribute 
instances may not have their best values, although their values are always safe. This means 

that during a walk where no global reevaluations are performed, every tree transformation is 
correct, although an interrupt of the walk in order to perform a global reevaluation (i.e., to 

compute the best values for all attribute instances) might have disclosed further opportunities 
for transformations during the continuation of the walk. 

We now show that local restrictions can be imposed on the attribute evaluation and tree 
transformation rules that guarantee the safety of the tree transformation rules. First, we need 

the monotonicity of the evaluation rules and the enabling conditions. A function 
f(xl, x2 ..... xn) of attribute values, whose result is an attribute value, is mono ton ic  if the 

following condition holds: ff a i < b i (1 < i ~ n), and f ( a  1, a2 . . . . .  an), f ( b l ,  b2 . . . . .  bn) are 

defined, then f(al,  a2 ..... an) < f ( b l ,  b2 . . . . .  bn). An attribute evaluation rule or a lexical 
evaluation rule is monoton ic  if  the function in its right part is monotonic. Note that the 

monotonicity of a lexical evaluation rule means that if ai < bi then f(a  x, a2 ..... an) = 

f ( b l ,  b2 . . . . .  bn). An enabling condition f ( x l ,  x 2 . . . . .  Xn) of a tree transformation rule is 
monoton ic  if the following condition holds: if a i < b i (1 < i < n) and f ( a  1, a 2 . . . . .  an) = true, 

thenf(bl, b2 ..... bn) = true (i.e., for false < t ruef is  monotonic). 
Besides monotonic attribute evaluation rules, we also need for every tree transformation 

rule tr: (itt, ott, cond,  eval)  that "ott  is bet ter  than itt". By this we mean that for every possible 

choice of values for the input attribute instances of itt, the values of the output attribute 

instances of itt  are approximations of the values of the corresponding output attribute 
instances of ott (if they exist). Intuitively, this means that application of  tr  "increases the 
amount of  information". 

Definition 3. A tree transformation rule tr: (itt, ott ,  cond,  eval)  is local ly  safe ,  if: 
a) cond  is monotonic, 

b) all lexical evaluation rules in eval  are monotonic, and 
c) ot t  is better than in. 

In [4] it has been proved that, for monotonic attribute evaluation rules, every locally safe 
tree transformation rule is safe. These criteria may help the writer of the attribute evaluation 

and tree transformation rules to check the safety of his rules. Another important conclusion 

from [4] is that, the use of  both monotonic attribute evaluation rules and locally safe tree 
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transformation rules yields an improvement of the attribute values at any local or global 

reevaluation. 

7.2 Delayed incremental static evaluation 

In section 5 we did not assume any local reevaluation was performed, i.e., all inner and 

output attribute instances of ott were given the value unknown. In section 7.1. we changed 

our strategy. This implies a change in the initialization of the variables NeedToBeEvaluated 

and SubtreeAffected. Observe that the local reevaluation of ott stops at the border of ott, i.e., 

all output attribute instances of ott. Let a of K be an output attribute instance of ott whose 

value has changed, then every attribute instance b of N, which depends on a of K, has to be 
inserted in NeedToBeEvaluated of N. The associated visit numbers should be included in 

SubtreeAffected of N's ancestors in ott and in the production which borders at the root of ott. 

We assume the tree transformations in a subtree to be performed during a tree walk which 
starts and finishes at the root. Hence, there is no need to make a separate bottom up tree walk 

from the root of ott to the root of the subtree in order to initialize the instances of 
SubtreeAffected on this path. These initializations can be done during the bottom up moves of 
the tree walk during which transformations are performed. 

Observe that a single call of the incremental static evaluator of a subtree handles the 
reevaluations propagated from all the affected areas in the subtree, and also from attribute 
instances at the top of the subtree, which are affected by the incremental dynamic evaluator. 

7.3 Delayed incremental dynamic evaluation 

Every tree transformation in the top tree results in a graph which represents the 
corresponding affected area. Also propagations from reevaluations of subtrees may reach the 
top tree and result in affected areas. These graphs are merged when they overlap. This 

merging operation is a union operation, i.e., identical arcs and vertices in two graphs become 
one in the resultant graph. 

The dependency graphs grow and shrink on-the-fly. As soon as an attribute instance has 

in-degree 0, it has certainly become independent of any reevaluations propagated from the 

output template associated with the tree transformation that ultimately caused its 
reevaluation. However, a graph connected with one transformation may grow to cover an 

attribute instance that has already been recomputed due to another transformation, and 
therefore, has already been released because of the shrinkage of the graph concerned. Kaplan 
and Kaiser [12] show that, for any tree on which k transformations take place 

asynchronously, in the worst case any attribute instance is reevaluated at most k times. In 

general, the number of reevaluations will be less because affected areas of different 
transformations overlap. 
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7.4 Concurrent delayed incremental combined static/dynamic evaluation 

The system based on safe trees and safe tree transformations allows multiple asynchronous 
tree transformations and multiple asynchronous reevaluations. The only restriction is that 
every region (i.e., every subtree and also the top tree) is either in its transformation phase or 
in its reevaluation phase. In particular, this allows that one region is in its transformation 
phase while at the same time another region is in its reevaluation phase. A region will only 
accept attribute change propagations from another region when it is in its reevaluation phase. 

8. Conclusion 

We have presented the design of a concurrent incremental combined static/dynamic 
evaluator. The static part is an incremental version of the ordered attribute evaluation 
scheme. The dynamic part is an extension of the dynamic evaluation scheme. 

To remove the restriction that every tree transformation should imme~ately be followed 
by an incremental reevaluation of the syntax tree, criteria have been formulated which permit 
a delay in calling the reevaluator. The use of safe trees and safe tree transformations allows 
multiple asynchronous tree transformations and multiple asynchronous reevaluations. The 
only restriction is that every region is either in its transformation phase or in its reevaluation 
phase. Different regions may be in different phases at the same time. 
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