DOI: 10.1002/pamm.201800093

Computation of the inf-sup constant for the divergence

Dietmar Gallistl^{1,*}

¹ Department of Applied Mathematics, University of Twente, 7500 AE Enschede, The Netherlands

A numerical method for approximating the inf-sup constant of the divergence (LBB constant) is proposed, and some details of the convergence analysis are reported.

© 2018 The Authors. PAMM published by Wiley-VCH Verlag GmbH & Co. KGaA Weinheim.

Let $\Omega \subseteq \mathbb{R}^n$, $n \ge 2$, be a bounded Lipschitz polytope and let $V := H_0^1(\Omega; \mathbb{R}^n)$ denote the space of L^2 vector fields over Ω with generalized first derivatives in $L^2(\Omega)$ and vanishing trace on the boundary, and let $Q := L_0^2(\Omega)$ denote the space of L^2 functions with vanishing average over Ω . It is known [1,4] that the divergence operator div : $V \to Q$ possesses a continuous right-inverse, i.e., there exists a positive constant β such that for any $q \in Q$ there exists some $v \in V$ with div v = q and $\beta \|Dv\| \le \|q\|$ (here $\|\cdot\|$ is the $L^2(\Omega)$ norm). The largest number β with this property is characterized by

$$\beta = \inf_{q \in Q \setminus \{0\}} \sup_{v \in V \setminus \{0\}} \frac{(q, \operatorname{div} v)_{L^2(\Omega)}}{\|q\| \|Dv\|}.$$
(1)

The numerical approximation of β with stable standard finite element pairings [3] is problematic because convergence cannot be guaranteed in general [2]. Since, with the space of velocity gradients $\Gamma := DV$, the constant β can be rewritten as

$$\beta = \inf_{q \in Q \setminus \{0\}} \sup_{\gamma \in \Gamma \setminus \{0\}} \frac{(q, \operatorname{tr} \gamma)_{L^2(\Omega)}}{\|q\| \|\gamma\|},\tag{2}$$

numerical schemes that directly approximate the space Γ are applicable. The classical Helmholtz decomposition [with \bot denoting L^2 orthogonality in $\Sigma := L^2(\Omega; \mathbb{R}^{n \times n})$] reads

$$\Gamma := \mathfrak{Z}^{\perp}, \quad \text{with } \mathfrak{Z} := [H(\operatorname{div}^0, \Omega)]^n = \{ \sigma \in \Sigma : \text{all rows of } \sigma \text{ are divergence-free} \}.$$

The work [7] proposed a discrete analogue in $\Sigma_h := P_k(\mathfrak{T}_h; \mathbb{R}^{n \times n})$, the space of piecewise polynomial (of degree $\leq k$) tensor fields with respect to a simplicial triangulation \mathfrak{T}_h of Ω , as follows

$$\Gamma_h := \mathfrak{Z}_h^{\perp}, \quad \text{with } \mathfrak{Z}_h := (RT_k(\mathfrak{T}_h)^n \cap \mathfrak{Z}) \subseteq (\mathfrak{Z} \cap \Sigma_h)_{\mathfrak{Z}_h}$$

where \perp denotes L^2 orthogonality in Σ_h and $RT_k(\mathfrak{T}_h)^n$ denotes the subspace of Σ whose rows belong to the Raviart–Thomas finite element space [3] of degree k. The property $\mathfrak{Z}_h \subseteq \Sigma_h$ is proved in [5]. One should note that in general $\Gamma_h \not\subseteq \Gamma$.

Let Q_h denote the subspace of Q consisting of T_h -piecewise polynomial functions of degree $\leq k$. The approximation β_h is defined as

$$\beta_h = \inf_{q_h \in Q_h \setminus \{0\}} \sup_{\gamma_h \in \Gamma_h \setminus \{0\}} \frac{(q_h, \operatorname{tr} \gamma_h)_{L^2(\Omega)}}{\|q_h\| \|\gamma_h\|}.$$
(3)

Lemma A. Let \mathfrak{T}_h be a regular refinement of a (coarser) mesh \mathfrak{T}_H . Then, $\beta \leq \beta_h \leq \beta_H$.

Proof. From (2) and $Q_h \subseteq Q$ it is obvious that

$$\beta \leq \inf_{q_h \in Q_h \setminus \{0\}} \sup_{\gamma \in \Gamma \setminus \{0\}} \frac{(q_h, \operatorname{tr} \gamma)_{L^2(\Omega)}}{\|q_h\| \|\gamma\|}.$$

With the L^2 projection Π_h onto Σ_h , it furthermore follows for any nonzero $q_h \in Q_h$ that

$$\sup_{\gamma \in \Gamma \setminus \{0\}} \frac{(q_h, \operatorname{tr} \gamma)_{L^2(\Omega)}}{\|q_h\| \|\gamma\|} = \sup_{\gamma \in \Gamma \setminus \{0\}} \frac{(q_h, \operatorname{tr} \Pi_h \gamma)_{L^2(\Omega)}}{\|q_h\| \|\gamma\|} \le \sup_{\substack{\gamma \in \Gamma \\ \Pi_h \gamma \neq 0}} \frac{(q_h, \operatorname{tr} \Pi_h \gamma)_{L^2(\Omega)}}{\|q_h\| \|\Pi_h \gamma\|} \le \sup_{\gamma_h \in \Gamma_h \setminus \{0\}} \frac{(q_h, \operatorname{tr} \gamma_h)_{L^2(\Omega)}}{\|q_h\| \|\gamma_h\|},$$

where the last estimate holds because $\Pi_h \Gamma \subseteq \Gamma_h$ (proof: $\forall \gamma \in \Gamma \ \forall \mathfrak{z}_h \in \mathfrak{Z}_h \ (\Pi_h \gamma, \mathfrak{z}_h)_{L^2(\Omega)} = (\gamma, \mathfrak{z}_h)_{L^2(\Omega)} = 0$). Note that in the pathological case $\{\gamma \in \Gamma : \Pi_h \gamma \neq 0\} = \emptyset$, where the third expression in the displayed formula equals $-\infty$, the left-hand side equals zero, and the desired estimate is obviously still valid.

The infimum over all nonzero $q_h \in Q_h$ in combination with the first upper bound of β shows $\beta \leq \beta_h$. The second asserted inequality is obtained in an analogous way.

* Corresponding author: e-mail d.gallistl@utwente.nl

PAMM · Proc. Appl. Math. Mech. 2018;18:e201800093. www.gamm-proceedings.com © 2018 The Authors. PAMM published by Wiley-VCH Verlag GmbH & Co. KGaA Weinheim. 1 of 2 https://doi.org/10.1002/pamm.201800093

This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial-NoDerivs Licence 4.0, which permits use and distribu-

tion in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Lemma A establishes a monotonically decreasing approximation under mesh refinement. For a convergence proof, the following equivalent formulation of the problem turns out useful. It is well known [2] that

$$\beta^2 = \inf_{v \neq 0} \frac{\|\operatorname{div} v\|^2}{\|Dv\|^2} \tag{4}$$

where the infimum is taken over the V-orthogonal complement (that is, with respect to the inner product $(D \cdot, D \cdot)_{L^2(\Omega)}$) of the divergence-free functions in V. The discrete analogue of this space is

$$X_h := \{ \tau_h \in \Gamma_h : (\tau_h, \eta_h)_{L^2(\Omega)} = 0 \text{ for all } \eta_h \in \Gamma_h \text{ with } \operatorname{tr} \eta_h = 0 \}.$$

It can be shown that, in analogy to the infinite-dimensional setting, β_h satisfies

$$\beta_h^2 = \inf_{\xi_h \in X_h \setminus \{0\}} \frac{\|\operatorname{tr} \xi_h\|^2}{\|\xi_h\|^2}.$$
(5)

Let $\mathfrak{P}_h : \Sigma \to X_h$ denote the L^2 -orthogonal projection onto the space X_h . For the sake of simple exposition assume that $u \in V$ is an eigenfunction corresponding to (4) with ||Du|| = 1. Since $\Pi_h \Gamma \subseteq \Gamma_h$, the projection Π_h maps Γ to Γ_h and, thus, $\mathfrak{P}_h \circ \Pi_h = \mathfrak{P}_h$. The function $\Pi_h Du \in \Gamma_h$ can hence be decomposed as

$$\Pi_h D u = \mathfrak{P}_h D u + (1 - \mathfrak{P}_h) \Pi_h D u.$$

By definition, $(1 - \mathfrak{P}_h)$ is the orthogonal projection from Γ_h to the trace-free elements of Γ_h . Thus, taking the trace in the above relation reveals tr $\mathfrak{P}_h Du = \text{tr } \Pi_h Du$. The Rayleigh–Ritz principle and this conservation property show

$$\beta_h^2 \|\mathfrak{P}_h Du\|^2 \le \|\operatorname{tr} \mathfrak{P}_h Du\|^2 = \|\operatorname{tr} \Pi_h Du\|^2 \le \|\operatorname{tr} Du\|^2 = \|\operatorname{div} u\|^2 = \beta.$$

The Pythagoras rule with $||Du||^2 = 1$ reads $||\mathfrak{P}_h Du||^2 = 1 - ||(1 - \mathfrak{P}_h) Du||^2$, so that rearranging terms in the last displayed formula yields:

Lemma B. Any eigenfunction $u \in V$ corresponding to (4) with ||Du|| = 1 satisfies $(1 - ||(1 - \mathfrak{P}_h)Du||^2)\beta_h \leq \beta$. \Box

The same lower bound (with some further technical steps in the proof [6]) holds in the case that β is not an eigenvalue. Lemmas A–B show that the convergence $\beta_h \searrow \beta$ as $h \to 0$ is solely determined by the approximation properties of the projection \mathfrak{P}_h . These can be quantified with arguments from the theory of the approximation of saddle-point problems. The main result, a detailed proof of which can be found in [6], reads as follows.

Theorem. Let $(\mathcal{T}_h)_h$ be a sequence of nested partitions such that the mesh size function h uniformly converges to zero. Then the sequence $(\beta_h)_h$ converges monotonically from above towards the inf-sup constant β from (1), i.e.,

 $\beta_h \searrow \beta$ under mesh refinement.

Any $v \in V$ that is V-orthogonal to all the divergence-free elements of V is approximated under mesh refinement: $||(1 - \mathfrak{P}_h)Du|| \to 0$. Provided that the square of the inf-sup constant β^2 is an eigenvalue of (4) with normalized eigenfunction $u \in H^{1+s}(\Omega; \mathbb{R}^n)$ for some $0 < s < \infty$, any \mathfrak{T}_h satisfies

$$(1 - \|(1 - \mathfrak{P}_h)Du\|^2)\frac{\beta_h^2 - \beta^2}{\beta^2} \le \|(1 - \mathfrak{P}_h)Du\|^2 \le C\|h\|_{L^{\infty}(\Omega)}^{2r}\|u\|_{H^{1+s}(\Omega)}^2$$

for the rate $r := \min\{k+1, s\}$ and some mesh-size independent constant C > 0.

References

- [1] G. Acosta, R. G. Durán, and M. A. Muschietti, Adv. Math. 206(2), 373-401 (2006).
- [2] C. Bernardi, M. Costabel, M. Dauge, and V. Girault, SIAM J. Math. Anal. 48(2), 1250–1271 (2016).
- [3] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, Vol. 44 (Springer, Heidelberg, 2013).
- [4] M. E. Bogovskiĭ, Dokl. Akad. Nauk SSSR 248(5), 1037-1040 (1979).
- [5] R.G. Durán, Mixed finite element methods, in: Mixed finite elements, compatibility conditions, and applications, Lecture Notes in Mathematics, Vol. 1939 (Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence, 2008).
- [6] D. Gallistl, Math. Comp. (2018), Published online doi 10.1090/mcom/3327.
- [7] M. Schedensack, Comput. Methods Appl. Math. 17(1), 161-185 (2017).