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‘Tropical forests are global epicentres of blodiversity and inportant
modulators of climate change', and are mainly c i ¥
fall patterns' *. The severe short-term droughts that ocaimred recently
in Amazonia have drawn attention to the vulnerability of tropical
forests to climatic disturhances* %, The central Africin ruinforests, the
sccond-kargest on Earth, have expericnced a long-teem dryving trend !
whose impacts on vegetation dynamics remain mostly unknown
because in st ohservations are very limited. The Congolese forest,
with its dricr conditions and higher y e of semi-every
trees'**_ may be more tolerant ta shart-term rainfall reduction
than are wetter tropical forests”, but for a long-term drought there
may be critical thresholds of water availability below uhuh higher-
biomass, closed-cunopy forests Leansiti
forests” """ Here we pl observat, ufum idespread
decline in forest greenness over the past decade based on analyses of
satedlite data (optical, thermal, microwave and gravity) from several
independent sensors over the Congo basin, This decline in vegeta-
tion greenness, particularlyin the northern Cangolese forest,isgen
istent with decreases in rainfall, terrestrial water storage,
ahaveground woody and leaf biomass, and the cin
omaly caused by changes in structureand moisture
in upper forest layers. It istent with increases in photo-
synthetically active r, nd surface temperature. These
multiple lines of evidence indicate that this large-scale
browning, or loss of photosynthetic cap
utable to the long-teem drying trend. Our results suggest that a con-
tinued gradual decline of capacity and
driven by the persistent dryving trend could alter lhr.nmpnuﬂoﬂ
and structurcof the Congolese forest 1o tavour the spread of drought
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Widespread decline in greenness of Amazonian vegetation due

to the 2010 drought

Liang Xu,' Arindam Samanta,'” Marcos H. Costa.” Sangram Ganguly,”

Ramakrishna R, Nemani,” and Ranga B. Myneni'
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[1] During this decade, the Amazon region has suffered two
severe droughts in the short span of five years — 2005 and
2010. Studies on the 2005 drought present a complex, and
sometimes contradictory, picture of how these forests have
responded 1o the drought. Now, on the heels of the 2005
drought, comes an cven stronger drought in 2010, as
indicated by record low river levels in the 109 yvears of
bookkeeping. How has the vegetation in this region
responded to this record-breaking drought? Here we report
widespread, severe and persisient declines in vegetation
greenness, a proxy for photosynthetic carbon fixation, in
the Amazon region during the 2010 drought based on
analysis of satellite measurements. The 2010 drought, as
measured by rainfall deficit, alfected an area 1.63 lllTILa
larger than ‘the 2005 dmul_..ht nearly 5 million km® of
vepetated area in Amazonia. The decline in greenness
during the 2010 drought \p.mm.d an area that was four
limes greater (2.4 million km®) and more severe than in
2005. Notably, 51% of all drought-stricken forests showed
greenness declines in 2010 (1.6% million km®) compared to
only 14% in 2005 (0.32 million kmz). These declines in
2010 persisted following the end of the dry season drought
and return of rainfall 1o normal levels, unlike in 2005,
Owerall, the widespread loss of photosynthetic capacity of
Amazonian vegetation due to the 2010 drought may
represent a significant perturbation to the global carbon

cycle, Citation: Xu. L., A Samanta, M. H. Costa, 5 (.m.ugul)
B B Memoni ond BB Musesi (90111 Wil

in

atmosphere, which in turn would accelerate global warming
significantly [Cox er al., 2000]. Hence, the drought sensi-
tivity of these forests is a subject of intense study — recent
articles on the response and vulnerability of these forests to
droughts illustrate the various complexities [Phillips ef al..
2009; Safeska et al, 2007; Samanta et al., 20104, 2010b;
Malki et al., 2008; Brando el al., 2000, Anderson el al.,
20010; Meir and Woodward, 2010]. Severe droughts such
as those associated with the io Southern Oscillation
(ENS0), when the plant — available soil moisture stays below
a critical threshold level for a prolonged period. are known to
result in higher rates of tree mortality and increased forest
flammability [Nepstad er al., 2004, 2007; da Costa et al.,
2010]. The drought of 2005, however, was unlike the
ENSO-related droughts of 1983 and 1998 — it was especially
severe during the dry season in southwestern Amazon but did
not impact the central and castern regions [Marengo et al.,
2008]. Of particular interest are reports of loss of biomass
|Phiflips et al., 2009], decreased vegetation moisture content
[Andersan et al., 2010] and higher fire counts [dragao et al.,
2007] during the 2005 drought, and contradictory reports ol
vepetation greenness changes inferred from satellite ohserva-
tions [Saleska el al, 2007; Samania et al., 20104, 2010b].
This lively state of current affairs is documented in two news
items [Tollefsan, 2010a, 2010b].

[3] Om the heels of the once-in-a-century [Marengo er al.,
2008] drought in 2005, comes an even more severe drought
in the Amazon reginn Mewic ool 20111 The cances of the
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Savanna—forest hysteresis in the tropics

LEONEL DA SILVEIRA LOBO STERNBERG Department of Biology, University of Miami,
Coral Gables, FL 33124, U.S.A. E-mail: Isternberg@umiami.ir.miami.edu

ABSTRACT

A simple dynamic model relating forest area in a
region, its contribution to dry season precipita-
tion and the effect on its own establishment was
developed. The model equation shows hysteresis
between forest and savannas as a function of
imported dry season precipitation. Regions are
either dominated by forests or savannas, with each
ecosystem showing stability despite changes in
imported dry season precipitation. Deforestation

beyond a certain threshold value, however, could
cause a collapse of forest ecosystems and replace-
ment by savannas in marginal areas. The predic-
tions of this model corroborate pollen core analysis
in the Amazon basin, where historical stability
of tropical forest cover has been shown despite
global climate change.

Key words Conservation, hysteresis, palaeocli-
mate, palynology, refuge hypothesis, saddle node
bifurcation, savanna, tropical forest.

INTRODUCTION

In the beautiful story L'Homme qui plantait des

arbres [The man who planted trees] by Jean Giono
L1092\ o cinela sman wiac ahla ¢a srhanea tha ol

Therefore, tropical forests modify regional cli-
mate by increasing precipitation. Interestingly,
tropical forests modify climate so that it becomes
more favourable for their own establishment and
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WHAT IS HYSTERESIS?
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E A POSITIVE FEEDBACK LOOP EXISTS IN THIS SYSTEM...
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HOW TO DETECT PROXIMITY TO TIPPING POINTS
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HOW TO DETECT PROXIMITY TO TIPPING POINTS

System state
(Tree cover)
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EARLY WARNING INDICATORS FOR TIPPING POINTS

OPEN a ACCESS Freely available online . I)L( Sone

Methods for Detecting Early Warnings of Critical
Transitions in Time Series lllustrated Using Simulated
Ecological Data

Vasilis Dakos'?*, Stephen R. Carpenter®, William A. Brock®, Aaron M. Ellison®, Vishwesha Guttal®,
Anthony R. Ives’, Sonia Kéfi®, Valerie Livina®, David A. Seekell'®, Egbert H. van Nes', Marten Scheffer’

Table 1. Early warning signals for critical transitions.
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Abstract c o
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Many dynamical systems, including lakes, organisms, ocean circulation pattems, or financial markets, are now thought to
have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur . .
unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition Return rate (inverse of AR“ ) COEﬁ:ICIEnt) X
is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of
so-called ‘early warning signals’, and successful empirical examples suggest a potential for practical applicability. However, : Fe e
while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use DEtrendEd ﬂUCtUathT‘I ana |y5| 5 |nd|cator X
differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching .
critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and Spectral dET'ISIty x
apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a
methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect earl £ i t
osaied S gLcs: st y 9 P y Spectral ratio (of low to high frequencies) X
warning signals of critical transitions in time series data.
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Introduction To overcome these challenges, numerous studies have suggested  |models ﬂme-varying AR(p) models X X
The Earth’ - i ed | — the use of generic early warning signals (or leading indicators) that
e Earth’s past has been characterized by rapid and often can detect the proximity of a system to a tipping point [6]. Such H . H H H
unexpected punctuated shifis in - temperatre and climatic jygicators are based on common mathematical properties of Nonparametric drift-diffusion-jump models X * X
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FOREST AND SAVANNAS: HOW TO ASSESS THEIR STATE
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WHAT DO WE NEED FOR THIS DETECTION METHOD
THINKING OF REMOTE SENSING

= Continuous time series of observations
= Of sufficient duration

= High frequency

= Measuring a relevant quantity

= At the right spatial scale
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/=, = Top Down | = Bottom Up

TWO POSSIBLE APPROACHES
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ARE THERE SIGNS OF BISTABILITY?
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DO TIME SERIES BEHAVE AS WOULD BE EXPECTED?
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E STABILITY DETECTION WITH RS
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Remotely-Sensed Early Warning Signals of a Critical
Transition in a Wetland Ecosystem
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Abstract: The response of an ecosystem to external
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STABILITY DETECTION WITH RS
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RECOVERY AFTER FIRES
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STABILITY INDICATORS FROM CONTINUOUS TS?
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TS ANALYSIS WITHIN HOMOGENEOUS CLUSTERS
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TS ANALYSIS ACROSS ENTIRE SYSTEM
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WEATHER ALERT Freeze Warhing
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FIRE AS THE TIPPING EVENT

» See fire as the manifestation of a “tipping event”
« Cluster based on detrended EWS signals
» Test how fire events associate with these types of clusters




WRAP UP

RS based EWS indicators work (sometimes)
« Top down approach gives supporting evidence (but is circumstantial)

* Need Bottom up cases (When you know about collapsed (or
collapsing) ecosystems -> let me know!)
 Which RS product to use
« Determine at which threshold EWS indicate tipping point
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