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and Scheduling Systems

Henk Zijm and Marco Schutten

Abstract In this chapter, we present algorithms for a number of functions of the
production planning framework presented in Chap. 5. We focus on models for inte-
grated Capacity and Master Production Planning, Job Planning and Resource Group
Loading, and Shop Floor Scheduling and Control. At the Master Production Plan-
ning level, we exploit a simple Linear Programming formulation to set appropriate
capacity levels and in particular to decide whether a temporary expansion of capac-
ity is needed (e.g., through overtime work). With the same formulation, we decide
what end-items are to be produced in which period. By applying the lead time offset
procedure that is the heart of Materials Requirements Planning, and using the Bill
of Materials information, the same is done on the level of part manufacturing (basic
level). Essential in the above procedure are two parameters, the effective overall
capacity of each manufacturing shop and the final assembly department, often indi-
cated as the maximum throughput, and the lead times needed to complete a part or
product in each department. A significant portion of these lead times may in fact be
waiting times in front of individual workstations that are busy. To minimize these
waiting times, workload control norms are often used which in turn may influence
the effective capacity. An essential question then is what these workloads should be
in order to match a desired throughput and production lead time. That question is
answered by exploiting a Closed Queueing Network approach that explicitly deter-
mines the relation between a preset work-in-process level, throughput and the result-
ing lead times (advanced level). Finally, we exploit a detailed shop floor scheduling
procedure, called the Shifting Bottleneck approach, that basically serves to ascertain
that internal due-dates, following from the above defined internal manufacturing lead
times are indeed met (state-of-the-art).

H. Zijm (B) · M. Schutten
Department of Industrial Engineering and Business Information Systems, University of Twente,
Enschede, Overijssel, The Netherlands
e-mail: w.h.m.zijm@utwente.nl

M. Schutten
e-mail: m.schutten@utwente.nl

© Springer International Publishing AG, part of Springer Nature 2019
H. Zijm et al. (eds.), Operations, Logistics and Supply Chain Management,
Lecture Notes in Logistics, https://doi.org/10.1007/978-3-319-92447-2_19

417

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92447-2_19&domain=pdf


418 H. Zijm and M. Schutten

19.1 Introduction: Setting the Stage (Basic)

In this section, we consider a generic manufacturing facility, consisting of a parts
manufacturing shop followed by an assembly department. Typically, the number of
parts produced is limited while a variety of end products can be assembled from
specific parts configurations as specified by the Bill of Materials (BoM) of the final
product. We assume that purchased items and rawmaterials needed for parts produc-
tion can be stocked and that a small inventory of finished parts exists, from which
they are picked to enter a final assembly stage. Depending on specific product-market
combinations, final products are either produced on customer order or distributed to
sales outlets to meet future market demand. Note that, if final assembly is based
upon confirmed customer orders, finished product stocks will in principle not exist
(apart from a possible small delay in shipping them to the customer); in that case
we are dealing with a make-to-stock, assemble-to-order system. A Customer Order
Decoupling Point (CODP) is thus located at the finished parts storage facility. If
some parts are already customer specific, the intermediate stock point for these parts
is also removed, and the CODP is shifted further upstream. However, in order to
describe the most generic situation, we in principle accept stock after any possible
stage, while in additionWork-in-Process (WIP) inventories are obviously present on
the manufacturing shop and assembly floor (cf. Fig. 19.1).

Parts processed in the parts manufacturing shops need a certain lead time from
picking the necessary materials or purchased items to be used, until their completion
and placement in the appropriate finished part stock point (each part type has its own
stock location). Before beginning the assembly of a final product, the parts specified
by the Bill of Materials are collected from the intermediate storage and subsequently
assembled, which again requires a certain lead time. As we will see later, the length
of the lead time strongly depends on the workload of the shop; a shop facing a high
workload will generally reveal longer lead times, because parts to be processed on a
highly utilized machine may experience longer wait times. The impact of lead times
on the overall workload is discussed in Sect. 19.4.

Fig. 19.1 Two stage manufacturing facility
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19.2 Case Study: Injection Molding Machinery (IMM)

Injection Molding Machinery (IMM) in the Netherlands is part of one of
Europe’s larger manufacturers of capital goods and industrial equipment. IMM
was founded in 1968 and quickly specialized in themanufacturing of innovative
injection molding machines. A typical machine costs between 0.5 million and
2million Euro. Theworldmarket share is about 4%. Some 80%of all machines
are exported to Germany. Most of the about 1300 components required in the
assembly of the molding machines are purchased. Only 50 components—the
more voluminous part types—are processed in the firm’s own manufacturing
department. All purchasing and manufacturing activities are customer order
driven.

When the production and selling of a new range of injection molding
machines began, and a significant increase in demand was expected, the firm
decided to install a Flexible Manufacturing Cell (FMC) in their manufactur-
ing department as a replacement for two horizontal milling machines. The
cell consisted of a machining center with a 110-slot capacity tool magazine,
a parts pallet storage with a capacity of 6 FMC pallets, a rail-guided pallet
transport vehicle, and a clamping/unclamping station. Both the exchange of
cutting tools in the tool magazine and the clamping and unclamping of parts
on the pallets were done manually. A hoist is installed for the transportation of
the voluminous and heavy parts to and from the clamping/unclamping station.

The parts assigned to the FMC often need some customer-specific process-
ing. Therefore, the number of different NC programs increases steadily. To
date, there are over 1000 NC programs for about twenty part type families,
which need over 200 different cutting tools. NC programs are written in the
Process Planning department.

The Manufacturing Planning and Control system of the firm consists of
three hierarchical levels: a Master Planning Level, a Production Management
Level and a Shop Floor Control Level. The Master Planning Level is basi-
cally responsible for generating orders for the FMC. On a strategic level, it is
decided that 2–4 injection molding machines per week can be assembled and
shipped to the customer. Each injectionmoldingmachine has customer-specific
parts (mostly variants of specific part types). Engineering makes drawing for
these parts. Process Planning subsequently determines the routings of the parts
through the manufacturing department and estimates the required processing
times. After this, the BoM of a particular injection molding machine is known,
and the information will be processes by a Manufacturing Resource Planning
(MRP) system. Purchasing of components and raw materials, parts manufac-
turing and machine assembly are all customer-order driven. The estimated
planned lead times for assembly, manufacturing and purchasing are 5, 2 and
6 weeks respectively. Manufacturing is planned such that all the components
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for a particular machine are available and can be kitted two weeks before the
assembly of the particular injection molding machines is to occur. These two
weeks are the safety lead time and are built in because of problems with the
delivery of raw materials.

The second level of the production control system is the Production Man-
agement Level. At this level, an important objective is to make sure that the
planned lead times are met in an efficient way. Therefore, the production man-
agement level must tune the manufacturing capacity into the order flow. The
Production Management Level receives weekly information from the MRP
system about the capacity needed for each machine, including the FMC, cov-
ering a period of eight weeks. Based on this information, capacity decisions
are made regarding overtime, weekend work, and/or subcontracting.

The third level of the production control system is the Shop Floor Control
Level. Input to this level is a daily MRP list of orders. During the night, the
MRP list is automatically updated. Orders are sequenced according to a critical
ratio rule that considers internal due dates (that is, the day manufacturing is
scheduled to be finished) and the cumulative processing time required for an
order in the manufacturing department. Operators must process the orders as
much as possible according to the given sequence. The order on the MRP list
of the FMC represents a cumulative workload of one, two or sometimes even
three weeks of the machining center.

The company faces various problems. There is a pressure to decrease the
total lead time, starting with a reduction of the safety time from two to one
week. In addition, it lacks an adequate tool to relate the workload to the real-
ized internal manufacturing shop lead times, while at the shop floor level, a
more sophisticated sequencing rule is needed. Currently too many deviations
of the prescribed sequence occur due to unavailability of raw materials, part
programming that is not completed in time, or unavailability of fixtures and
cutting tools (that are still in use by other jobs). The company therefore is in
need of a sound planning and scheduling mechanism.

19.3 Integrated Capacity and Master Production Planning
(Basic)

In this section, we present a model for the formulation of an integrated capacity and
master production planning problem for a finite planning horizon of T periods (say T
weeks). We start with a single stage manufacturing shop and later extend the model
to a two-stage system, consisting of a parts manufacturing department followed by
an assembly shop.We assume that periodic demand can be reliably forecasted for the
full planning horizon. Since capacity is generally limited and in general not sufficient
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to meet peak demands in case of a volatile market or e.g. in case of strong seasonality
patterns, it may be needed to start production of some products early and to store
them temporarily, to make sure that eventually all demand can be met. In such as
case, inventories basically serve as shifted (allocated) capacities, as opposed to cases
where they serve to anticipate normal demand fluctuations (for which safety stocks
are generally held).

We start with some notations. Let t denote the time period index, t � 1, . . . ,T .We
consider a range of N products, indexed by j, and a manufacturing shop consisting
of M workstations, indexed by m. By pjm we denote the processing time, in hours,
of one unit of product j on workstation m. The capacity of workstation m in period t
is limited by Bmt hours. With hj we denote the inventory costs of one unit of product
j per period, while cjm are the cost of processing one unit of product j on machine m.
Inventories are calculated at the end of each period. The total lead time of an order
of products j through the manufacturing shop equals Lj periods. If an order is placed,
it is released at the beginning of a period, say t, and upon completion is added to the
stock of product j at the beginning of period t + Lj. To describe the routing of jobs
through the system, index ajtms � 1 if order j released in period t is processed on
workstation m in period s(s ≥ t), while ajtms � 0 otherwise. Finally, let the decision
variablesQjt denote the size of an order for products j to be released at the beginning
of period t, let Ijt be the physical inventory of final products j at the end of period t,
and let Djt be the demand for product j which occurs during period t. The following
Linear Programming (LP) formulation seeks to minimize the overall production and
inventory costs while predicted demand should be met. Since capacity constraints
cannot be violated this may cause production occasionally to start relatively early in
order to build up inventory such that also peak demands are met.

min

⎡
⎣

N∑
j�1

T∑
t�1

hjIjt +
N∑
j�1

T−Lj∑
t�1

{
hj
1 − αLj

1 − α
Qjt +

M∑
m�1

cjmQjt

}⎤
⎦

subject to

Ijt � Ij,t−1 + Qj,t−Lj − Djt, j � 1, . . . ,N ; t � Lj + 1, . . . ,T ;

Ijt � Ījt, j � 1, . . . ,N ; t � 1, . . . ,Lj;

N∑
j�1

t∑
s�t−Lj+1

Qjspjmajsmt ≤ Bmt m � 1, . . . ,M ; t � 1, . . . ,T ;

Ijt ≥ sjt j � 1, . . . ,N ; t � 1, . . . ,T ;

Qjt ≥ 0 j � 1, . . . ,N ; t � 1, . . . ,T .

Note that orders for product j released in period t are driven by the demand
forecast of period t + Lj period and update inventory only then. With a time horizon
of T periods, period T − Lj therefore offers the last opportunity to release an order
for product j. Also, since production of a batch Qjt of product j takes a lead time Lj,
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it contributes to the work-in-process materials at the manufacturing floor during Lj
subsequent periods, for which inventory costs are incurred. We value the batch Qjt

at a fraction αk−1 (0 < α < 1) of its final value if it still has k − 1 periods to go
till completion (k � 1, . . . ,Lj) and hence update the inventory costs accordingly.
The contribution of order Qjt to the work-in-process related inventory costs in the
objective function therefore equals

hj
(
αLj−1 + αLj−2 + · · · + α + 1

)
Qjt � hj

1 − αLj

1 − α
Qjt

which comes next to the periodic inventory costs associated with stored items. The
last term in the objective function reflects the production costs. In fact, one can argue
that the latter costs are constant since all demand should be produced anyhow and the
costs are time independent, but later we will encounter time-dependent production
costs and to ease the presentation we therefore add them already here.

If demand is highly volatile or follows a strong seasonality pattern it may be that,
despite the possibility to work in advance and store finished products temporarily,
the available capacity is still insufficient to meet high demands in some periods. In
such a case, companies seek to outsource part of their production or may decide to
work in overtime (e.g. a temporary night shift). Obviously, work in overtime is more
expensive than work in regular time but on the other hand one may save inventory
costs. When allowing for overtime work, one needs to decide which workstation
operations (and possibly how much of each operation) are processed in regular time
and in overtime. To that end, we define two nonnegative decision variables Qjtms and
Q∗

jtms that denote the part of order Qjt that is produced on machine m in time period s
in regular time and overtime, respectively. Let furthermore B∗

mt denote the maximum
available overtime capacity of machine m in period t, while c∗

jm are the costs of
processing one unit of product j at machine m in overtime. Production limitations
are then defined by the following two capacity constraints:

N∑
j�1

t∑
s�t−Lj+1

Qjsmtpjm ≤ Bmt m � 1, . . . ,M ; t � 1, . . . ,T

N∑
j�1

t∑
s�t−Lj+1

Q∗
jsmtpjm ≤ B∗

mt m � 1, . . . ,M ; t � 1, . . . ,T

while furthermore

Qjtms + Q∗
jtms � Qjtajtms j � 1, . . . ,N ; t � 1, . . . ,T ; m � 1, . . . ,M ; s � t, . . . , t + Lj − 1;

Qjtms,Q∗
jtms ≥ 0 j � 1, . . . ,N ; t � 1, . . . ,T ; m � 1, . . . ,M ; s � t, . . . , t + Lj − 1.
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The objective function now becomes

min

⎡
⎣

N∑
j�1

T∑
t�1

hjIjt +
N∑
j�1

T−Lj∑
t�1

⎧⎨
⎩hj

1 − αLj

1 − α
Qjt +

M∑
m�1

t+Lj−1∑
s�t

(cjmQjtms + c∗
jmQ

∗
jtms)

⎫⎬
⎭

⎤
⎦

In comparison with the initial formulation, the last summation in the objective
function now takes into account in which period each operation takes place. The
reason is that we may decide per workstation, and hence per period during the pro-
duction lead time, how much will be produced in regular and how much in overtime.
Naturally, regular production is cheaper, hence we attempt to produce as much as
possible in regular time. If however, inventory-holding costs are relatively high, it
may be advantageous to use the overtime option for production short in advance of
needs, instead of producing earlier and pay more holding costs. The latter option is
also more realistic if it is difficult to forecast periodic demand too long in advance.

The capacity and production planning problem can also be extended in another
way. Consider the situation introduced in Sect. 21.1 (see Fig. 21.1) in which a final
assembly department is preceded by a parts manufacturing shop. Then a logical
procedure is to first plan the assembly department, using the Linear Programming
formulation, followed by the planning of the parts manufacturing department. The
periodic demand for parts D̄pt follows from the just defined production plan of the
final assembly department, as follows. Let the parts be indexed by p (p � 1, . . . ,P),
and let bpj denote the number of parts of type p that are assembled in one product j.
Then the demand D̄pt for parts p is defined by

D̄pt �
N∑
j�1

bpjQjt, p � 1, . . . ,P; t � 1, 2, . . .

which in turn drives the parts manufacturing plan, using the off-set lead times L̄p of
parts p(p � 1, . . . ,P). When linking the twomodels but solving them separately, the
overall solution may still not be optimal in terms of overall costs. When formulating
the integrated parts manufacturing—final assembly model, one immediately sees
that the integrated objective function is the sum of the two objective functions in the
separated (although linked)models. Since also the two constraint sets of the separated
problems are not interfering, the overallminimumof the integrated problem is always
smaller than the sum of the minima of the separated problems.

Several alternative formulations have been proposed by various authors, although
the formulation above with the integration of product- and part-dependent lead times
has to the best of our knowledge not been proposed earlier. Hopp and Spearman
(2008) discuss an LP-formulation for a single-stage multi-product problem in which
all orders are completely produced in the period in which they are released. They also
allow for backorders, discuss overtime production and present a model for workforce
planning in which costs are incurred with any change of staff level (hiring or firing),
in this way forcing the management to keep the workforce as stable as possible.
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Another issue is whether reliable forecasts on a product level be realistically
made over a longer planning horizon. To that end, Hierarchical Production Planning
(see also Chap. 12) offers an alternative by first planning capacity on an aggregate
(product family) level in which a family consists of products with approximately the
same capacity requirements, see Hax and Candea (1984), while later disaggregating
this plan to production plans on an individual product level. Bitran et al. (1982) apply
this approach for a two-stage manufacturing system similar to ours but focus on a
single resource (manual labor) only while all lead times are equal.

Another way to reduce the need to generate demand forecasts that may turn out
to be less reliable over a longer time period is to integrate the linear programming
models in a rolling horizon framework in which forecasts are periodically updated.
After solving the LP (or LP’s in a 2-stage problem) only the first decisions are
implemented, say to period T̃ < T − maxj Lj − maxp L̄p after which the time index
is shifted (period T̃ + 1 becomes period 1), and the whole procedure is repeated.
Obviously, capacity profiles have to be updated carefully as well, taking into account
the effects of decisions that have been taken in or shortly before period T̃ since
they are affecting the free capacity of workstations also after (as a result of longer
lead times) as well as the initial inventory positions but such procedures will not be
discussed in detail here.

Once more, we wish to stipulate that the linear programming model basically
serves to smooth capacity over time, making sure that expected demand will be
met by balancing the capacities against inventories, possibly with additional options
such as overtime work or outsourcing (the latter not discussed here in detail). The
main idea is to cope with highly volatile, but predictable, demand patterns, to make
sure that parts and products are ready when needed. They are by no means meant
to deal with short term demand fluctuations for which stochastic models are more
appropriate, both to model workstations and order routings (see the next section) as
well as to determine safety stock levels (Chap. 20 of this volume). However, it is
important that the lead times Lj used in this section realistically reflect the actual
situation. It is well known that the off-set lead times used in e.g. MRP systems are
basically larger than necessary, to cover all possible foreseen and unforeseen effects
(batching, machine failures, quality problems). Besides, a high workload typically
causes lead times to grow quite fast, leading to expediting work orders at the cost
of others, etc. For that reason, workload control is often applied to keep lead times
stable. How workload control is affecting the effective capacity (throughput) and the
resulting lead times of a manufacturing shop is the topic of the next section.

19.4 Throughput and Lead Time Under Workload
Control: A Queuing Network Analysis (Advanced)

To determine how the average lead time of a part of type k in the manufacturing shop
is impacted by the load of the shop, we model the parts manufacturing department as
a Closed Queueing Network (CQN) with multiple part types, see e.g. Chen and Yao
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Fig. 19.2 Manufacturing shop with single machine workstations and a fixed number of jobs (parts)

(2001). The processing time of a part at workstation m is exponentially distributed
with rate μm (m � 1, . . . ,M ). At each workstation, parts are processed according to
a FCFS (first-come, first-served) routine. Each part needs a card attached, at Station
0, to guide it through the system. Upon completion of its final operation, the job is
returned to Station 0 where the card is detached, to be used for the next job. Because
we are interested in the maximum production capacity of a system with say N cards,
we assume that there are always jobs present to be loaded if a card is freed. Station
0 is called the load/unload station; we assume that loading and unloading time is
negligible. Define routing probabilities as follows:

P0m the probability that thefirst operation takes place at stationm,m � 0, 1, . . . ,M .
Pkm the probability that a job, after visiting station k, next visits station m, for

k,m � 0, 1, . . . ,M .
Pm0 the probability that a job, after being processed at stationm(m � 0, 1, . . . ,M ),

leaves the system.

The fact that both processing times and routings are probabilistic reflects a part
type aggregation step; in fact, we work with a generic part, representing various
underlying part types that may differ in processing time and routing. All assump-
tions can be relaxed, the current simple model is used as a starting point to present
an important analysis method, called Mean Value Analysis (MVA), see Reiser and
Lavenberg (1980). Clearly, the N cards are a means to implement a workload con-
trol rule, i.e., to allow a maximum of N jobs to be present simultaneously in the
workshop. To determine the maximum system throughput (capacity), we therefore
have to analyze a system that is always fully occupied, i.e., one in which all N cards
are continuously circulating. For ease of presentation, we consider a very simple job
shop first, in which each workstation consists of a single machine, cf. Fig. 19.2.

The question now is to determine the network production rate (throughput) of
the aggregated parts as a function of N , as measured by the load/unload station and
denoted by TH0(N ), as well as the lead time L(N ) which is the time between the
moment a part is loaded at station 0 and its return to that station after completion
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of its final operation, to be unloaded. Before introducing the Mean Value Analysis
(MVA) algorithm in its simplest form, let us introduce some notation:

Vm visit ratio of station m, relative to the load/unload station 0.
Qm(n) expected number of parts present at stationm, when there are n parts in the

network.
Lm(n) lead time experienced at station m for an arbitrary part, when there are n

parts in the network.
THm(n) throughput at station m, when there are n parts in the network

Next, we formulate the MVA algorithm (which is exact for this specific situation)
to calculate the throughput TH0(N ) and the lead time L(N ). In fact, wewill iteratively
determine the TH0(n) and lead time L(n) for any integer value n ≤ N , which will
appear to be useful later.

Mean value analysis algorithm for parts of one type in simple job shops

1. (Initialization) Set the visit ratio V0 to station 0 equal to 1. Determine the other
visit ratio’s Vm,m � 1, . . . ,M , from the set of linear equations determined by
the routing matrix, i.e.,

Vm �
M∑
k�0

VkPkm

Set n � 0 and Qm(0) � 0,m � 0, . . . ,M .
2. n :� n + 1.
3. Compute Lm(n),m � 0, . . . ,M , from

Lm(n) � [
Qm(n − 1) + 1

] 1

μm

4. Compute L(n) and TH0(n) from

L(n) �
M∑

m�0

VmLm(n)

TH0(n) � n

L(n)

and compute THm(n),m � 1, . . . ,M from THm(n) � VmTH0(n).
5. Compute Qm(n),m � 0, . . . ,M from

Qm(n) � THm(n)Lm(n)

6. If n � N then STOP, else go to Step 2.
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Fig. 19.3 Throughput and lead time as a function of the number of parts in the system

Note that the MVA algorithm computes the system production rate (throughput)
for any possible number of parts in the system. When displaying the calculated
throughputs and lead times graphically, one may observe some remarkable phenom-
ena (cf. Fig. 19.3). First, the system throughput asymptotically approaches a limit,
which may be detected as the capacity of the bottleneck machine in the system,
i.e., the machine m with the largest value of Vm

μm
(hence the machine that spends the

most time to a single part, taking into account the visit ratio). Clearly, with a low
number of parts in the system, even a bottleneck machine may be temporarily idle,
but at the same time, loading too many jobs in the system does not improve system
throughput any further. The system lead time increases asymptotically linear with
the number of parts in the system, since L(n) � n

TH0(n)
. Hence, one may conclude

that the system should be sufficiently loaded to attain an acceptable throughput but
not more since that would only increase the system lead time. This fundamental
observation is the basis of the workload control concept—loading too many jobs in
the system only increases the lead time and does not help to generate a significantly
higher throughput.

One may wonder why it is not possible in general to load the system such that
exactly a bottleneck machine is always kept busy. For instance, a machine visited
by every part exactly once, having an average processing time of 10 min, should
be able to continuously work with an input flow of six jobs per hour. However,
there are two reasons why this argument doesn’t hold. First, it should require a
deterministic interarrival time of exactly 10 min at the machine as well. The latter
cannot be guaranteed because other stations may be visited by the part before it
visits this particular machine. It is even more difficult to ensure a deterministic
interarrival time if the visit schemes differ among parts queuing up in front of a
bottleneck machine. Second, an average processing time of 10 min does not mean
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that every processing time is exactly 10 min. Apart from the aggregation discussed
earlier, processing times are seldom deterministic; they usually vary due to operator,
machine or material interruptions, set-ups required, quality problems, etc. On the
other hand, if the number of parts loaded to the system is sufficiently high, there will
be almost always parts buffered in front of the machine, preventing idleness of the
bottleneck.

The model and analysis presented above can be generalized in many ways. Work-
stations may contain multiple machines processing multiple part type families, each
with their own (probabilistic) routing and processing time characteristics, including
arbitrarily distributed processing times. In addition, extensions exist to include batch-
ing and set-up times (adding more variance to processing times, because typically
the first part in a batch includes the set-up time in its process time), and quality prob-
lems causing possible rework loops (again a source of variability). Under these more
general characteristics, the analysis is no longer exact but the procedures developed
have been extensively tested and have proven to provide near-accurate estimates of
important performance measures. The generalized MVA algorithms are mathemati-
cally complex and therefore beyond the scope of this chapter. Important however is
that the general picture remains the same. The throughput increases with the number
of parts loaded, but the function is concave. In other words, the law of diminish-
ing returns applies. Beyond a threshold, additional parts loaded do not increase the
throughput, instead lead to significant longer lead times.

19.5 Workload Control Under External Demand
for Production to Stock (Advanced)

So far, note that the CQN model is only used to determine the maximum capacity
of a manufacturing department under a workload control regime (i.e., a regime that
limits the number of parts released to the cell), consisting of various work stations
that may be visited by various part types, each having their own routing through
the cell. To that end, it was natural to assume that the department was always fully
loaded. The parts manufacturing shop discussed in the introduction of this chapter
however is subject to demand generated from a final assembly schedule. Because
the variety of part types was limited in comparison to the large variety of end-items,
parts are produced to stock (the CODP is located between parts manufacturing and
assembly) to ensure that assembly is never idle due to a lack of parts. At the same
time, a workload control regime limits the number of parts to be simultaneously
processed to some number N . The question is how the preceding analysis can be
used to accurately determine all performance measures of interest, including the
fill rate of the finished parts inventories, the parts manufacturing lead times, and of
course the resulting effective throughputs.

In this section, we therefore consider a parts manufacturing department that pro-
duces items to be placed in stock, in anticipation of their use in a subsequent assembly
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phase. The parts manufacturing department is subject to a workload control regime.
See Fig. 19.4, in which we restrict ourselves to one (generic) part type again to
simplify explanation.

In this system two control parameters play a crucial role, the predetermined stock
level of finished parts S (called the base stock level) and the number of cards N .
For each job (a part to be processed in the manufacturing shop), a card needs to be
attached to guide it through the system. Hence, the number of cards N limits the
number of jobs to be processed simultaneously. However, contrary to the capacity
analysis in the preceding section, here not all cards are always in use; if demand
from assembly shows a temporary decline, the production requirements diminish
and hence a number of cards may be temporary idle. Now let

m � the number of finished parts placed in stock, m ≤ S,
k � the number of backordered demands for finished parts,
a � the number of backordered production requests for parts,
b � the number of free Kanbans available for parts production, b ≤ N .

If a request for a part arrives from the assembly department, it is split into two sub-
requests. The first one is directed to the stock of finished parts m, at synchronization
station Js. If a product is available in stock, it is used to satisfy demand, otherwise
it joins a queue (k) of requests still waiting to be fulfilled (demand is backordered).
The second sub-request reflects a production order for a similar part in order to make
sure that the inventory position of finished parts is eventually replenished. However,
the production order is released if and only if it is authorized by a card from the
queue of free cards (b) at synchronization station Jc. If no free card is available, the
production order joins a queue of orders that are waiting for a card and hence still

Fig. 19.4 A production-to-stock parts manufacturing shop controlled by a generalized Kanban
control (GKC) system
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have to be released. Finally, let �n denote the vector with each element the number of
parts at a workstation in the parts manufacturing department. Then, it is easily seen
that:

|�n| + a + m − k � S

|�n| + b � N

m · k � 0

a · b � 0

Subtracting the first equation from the second equation and rearranging terms
leads to

(m − k) � (b − a) + (S − N )

Note that, if b − a is known, we know both b and a separately because both
variables are nonnegative and cannot be non-zero simultaneously. If b− a � c then
c ≥ 0 implies b � c and a � 0, while c < 0 implies b � 0 and a � −c. The
same holds form− k, in other words, both synchronization stations constitute a one-
dimensional queueing system, with states described by b−a andm− k respectively,
which differ by a value S −N . Both queues act as a one-dimensional birth and death
queue of which the state is increased by one due to a parts job completion, and is
decreased by one due to an arrival of a finished parts request.

Also observe that the parts manufacturing shop, together with synchronization
station Jc, is in fact very similar to the closed shop in the preceding section, where
station Jc takes the role of the load/unload station. The only, important, difference
is that now a card that is dismissed after completion of a parts manufacturing job,
is not immediately coupled to a new part to enter the shop, but may have to wait
until all free cards ahead of it are occupied and then finally is attached to the next
arrival for a parts production request. Suppose for the moment that the arrival of parts
production requests is governed by a Poisson process with rate λ. Let c � b − a.
Then the transition diagram between the states c (i.e., the birth and death process) is
displayed as in Fig. 19.5, where TH (n) is the throughput of the parts manufacturing
department treated as a CQN n cards circulating through the shop (as determined in
the preceding section).

Fig. 19.5 Transition diagram of synchronization station Jc
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We now assume that the throughput rates TH (n) are exponentially and indepen-
dently distributed (which is not true in general). This allows us to determine the
probabilities p(c), as follows:

p(c) �
(

λN−c

∏N−c
j�1 TH (j)

)
p(N ), c � N − 1,N − 2, . . . , 0,

p(c) �
(

λ

TH (N )

)−c
(

λN

∏N
j�1 TH (j)

)
p(N ), c � −1,−2, . . .

Finally, p(N ) follows as a normalization constant, i.e., from
∑N

c�−∞ p(c) � 1.
The number of parts n actually in process in the shop is now easily determined

from

n � N − max(c, 0)

while also the probability distribution of m − k, and hence of m and k separately
follows immediately from the probability distribution of c � b − a. From this, all
relevant performance indices are now detected. As an example, we present the fill
rate FR(S) of the stock of finished parts, i.e., the probability that an arriving request
for a finished part is immediately fulfilled, when the base stock level is equal to S.
We have

FR(S) �
S∑

m�1

p(m) �
N∑

c�N+1−S

p(c)

while for the expected time to fill a part request ETFPR(S), the following equation
holds.

ETFPR(S) �
∞∑
k�0

(k + 1)p(k)/λ �
N−S∑
c�−∞

(N − S − c + 1)p(c)/λ

The average lead time L∗(N ) in the parts manufacturing shop satisfies

L∗(N ) � L(N ) +
∞∑
a�1

ap(a) � L(N ) +
−1∑

c�−∞
(−c)p(c)

where the first term on the right-hand side is the lead time as determined for a
maximally loaded shop (as in Sect. 19.3) and the second term denotes the average
waiting time before a card becomes available and hence production can be started.

The above analysis can be extended to multiple part type families, each with their
own routing. The analysis is dependent on whether one general workload norm for
all part type families simultaneously holds (meaning one set of cards that limits the
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overall workload) or a specific workload per part type family is specified (meaning
a specific set of cards for each part type family). The analysis is beyond the scope of
this chapter; we will not discuss it here any further.

Further extensions to multi-stage systems in which each department is subject to
a workload control system are also possible. Instead of an external demand modeled
by a Poisson process with rate, we then encounter a state-dependent external demand
rate (demand depends on the workload control rule, i.e., the number of cards, and the
base-stock levels of a subsequent assembly section, whereas material availability in
front of the parts manufacturing department again depends on base-stock levels and
possibly a workload control rule at a preceding stage. We refer to the literature at the
end of this chapter for further reading.

Recall that in the entire analysis in this section we have assumed an FCFS priority
discipline at each workstation, based upon which lead times have been determined.
One may wonder whether at a detailed operational level smart scheduling systems
might help to meet the due dates induced by these pre-determined lead times. That
will be discussed in the final section.

19.6 Job Shop Scheduling (State-of -the-Art)

In the preceding section, we determined the relation between the effective capac-
ity and the expected lead time in the parts manufacturing shop. Based upon these
expected lead times, we might set a due-date for each individual shop at the time of
actual release to the shop floor. However, note that these due dates are then based on
an average lead times and on a first-come-first-served priority discipline at individual
workstations. In the current section we investigate whether at an operational level a
more smart scheduling discipline can help to ensure that as many jobs as possible
will indeed meet their scheduled due date. Such an advanced scheduling discipline
exists. In this section, we outline the basic principles of what is known as the Shifting
Bottleneck heuristic for a relatively simple job shop. Similar to the procedures in the
previous section, also this heuristic can be extended rather easily to cope with generic
versions of the job shop scheduling problem and is therefore suitable to be used in
practice where all kinds of additional constraints may exist, both with respect to job
as well as equipment constraints.

Below, we first provide a formal description of the job shop scheduling problem
that we need to solve. We then show how such problems can be represented by a
disjunctive graph, after which we discus show to use the concept of selection to
specify solutions for the job shop scheduling problem.

Problem description
In the job shop scheduling problem in its simplest version, a finite set of jobs J �
{1, . . . , n} needs to be scheduled on M machines, numbered 1, 2, . . . ,M . Each job
j ∈ J consists of a number of operations that need to be processed in a specified
sequence. For the sake of notational convenience, we assume that each job consists
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of M operations and that each job visits every machine exactly once, i.e., each job
has one operation that needs to be processed on machine m (m � 1, . . . ,M ). Note
that the sequences in which the jobs have to visit the machines may differ from job
to job. Let Omj be the operation of job j that needs to be processed on machine m
and let tmj denote the processing time. Moreover, let dj be the due date of job j, i.e.,
the time at which job j should be finished (as determined by its release time and the
lead time as determined in the preceding section).

Each machine can only process one operation at a time and once a machine starts
processing an operation, it needs to finish processing this operation before it can start
processing a next operation. Therefore, for each machine, we should find a sequence
in which it processes its operations. A schedule σ specifies for each operation Omj

its start time Smj(σ ) (i.e., the time at which machine m starts processing operation
Omj) and its completion time Cmj(σ ) � Smj(σ ) + tmj (i.e., the time at which machine
m completes operation Omj). The maximum lateness of schedule σ is defined as

Lmax(σ ) � max
m,j

Lmj(σ ) � max
m,j

{
Cmj(σ ) − dj

}

The objective is to find a schedule σ ∗ in which the maximum lateness Lmax(σ ∗) is
as small as possible, which means that Lmax(σ ∗) � min

σ
Lmax(σ ).

Disjunctive graph representation
Each instance of the job shop scheduling problem can be represented by a graph
G � (V,A), with V a set of nodes and A a set of arcs. V consists of a node vmj for
each operation Omj and two dummy nodes, S1 (the source) and S2 (the sink). The
weight of node vmj is equal to the processing time tmj of operation Omj. The weights
of the nodes S1 and S2 are equal to 0.

Suppose that Ohj and Omj are two consecutive operations of job j, which means
that when job j has been processed on machine h, it needs to be processed next on
machine m. For each pair of consecutive operations Ohj and Omj, A contains an arc(
vhj, vmj

)
. Moreover, A contains an arc

(
S1, vmj

)
if operationOmj is the first operation

of job j. This means that there are n such arcs in total (one for each job). Finally,
A contains n directed arcs from the last operation of each job to S2. Together, these
arcs form the conjunctive arcs of G. These conjunctive arcs represent the sequence
in which the operations of each job need to be processed. Let C be the set consisting
of these conjunctive arcs.

Apart from the conjunctive arcs, A contains disjunctive arcs as well. These dis-
junctive arcs represent the machine conflicts. Because each machine can process at
most one operation at a time, in a solution for the job shop scheduling problem we
need to specify the sequences in which the machines process their operations. For
every pair of operations Omj and Omk that need to be processed on the same machine
m, A contains a pair of arcs, namely

(
vmj, vmk

)
and

(
vmk , vmj

)
, so one arc in both

directions.
Each arc has a weight of 0, except for the arcs to S2. To model the job due dates,

the arc from the node representing the last operation of job j to S2 gets a weight
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Table 19.1 Data of an
example instance

Jobj dj Omj
(
tmj

)

1 17 O11 (4) O21 (7) O31 (6)

2 18 O32 (3) O12 (5) O22 (8)

3 14 O23 (2) O33 (6) O13 (7)

62 7

5

4 7

8

6

3
-17

-18

-14

Fig. 19.6 Disjunctive graph representation

equal to −dj. Figure 19.6 shows the disjunctive graph representation of a job shop
scheduling instance shown in Table 19.1.

Selection
Now we have represented the job shop scheduling problem by a disjunctive graph.
In this subsection, we subsequently show how a solution can be specified using this
graph.

Recall that the graph G contains a pair of arcs (one in each direction) between
nodes vmj and vmk , representing two operations that need to be processed on the same
machine m. A selection is a set of arcs that contains exactly one arc of each of these
arc pairs. Let GS � (V,C ∪ S) be the graph that has the same node set V as the
disjunctive graphG; moreover, the arc set ofGS consists of the conjunctive arc set C
of G plus the selection S. A selection S is called feasible if the corresponding graph
GS is acyclic, i.e. if it does not contain a directed cycle.

Recall that the objective in the job shop scheduling problem is to minimize the
maximum lateness Lmax(σ ). This objective function is a regular objective function,
which means that, given the sequences of operations on machines, it is always best
to start each operation as early as possible. So, given a feasible selection S, we can
determine its associated schedule σS by determining the earliest possible operation
start and completion times, given the sequences of operations on machines implied
by selection S. Figure 21.7 shows the graph GS for a feasible selection S and its
associated schedule.

Given a feasible selection S, the schedule σS associated with it can be calculated
as follows. Let lmj(S) be the length of a longest path from S1 to vmj in the graph GS .
The length lmj(S) is defined as the sum of the weights of the nodes and arcs that are
part of the longest path from S1 to vmj in graphGS , excluding the weight of node vmj.
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Fig. 19.7 Graph GS and its associated schedule
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Fig. 19.8 Longest path calculations in graph GS

Given a feasible selection S, the earliest possible starting time of operation Omj is
equal to lmj(S) (assuming that we begin the scheduling procedure at time 0, e.g. at the
beginning of each week). This means that Smj(σS) � lmj(S). Moreover, Lmax(σS)

is equal to the length of a longest path from S1 to S2. Figure 19.8 shows the longest
path calculations for the same selection S as shown in Fig. 19.7 (resulting in the start
times of all operations and in the maximum lateness Lmax(σS)).

It is not difficult to see that there exists a selection S∗ that results in an optimal
schedule σ ∗. Finding an optimal schedule (specifying the start and completion times
of all operations) is therefore equal to finding the best selection (specifying the
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operation sequences onmachines, based on which the operation start and completion
times can be calculated).

19.7 The Shifting Bottleneck Heuristic (State-of -the-Art)

The Shifting Bottleneck (SB) is an iterative heuristic that decomposes the job shop
scheduling problem into single-machine scheduling problems. In each iteration, one
additional machine is scheduled until all machines are scheduled; the result is then
a schedule for the job shop scheduling problem. In this section, we first discuss the
Shifting Bottleneck heuristic and then zoom in on the required steps.

The idea behind the SBheuristic is to focus first onmachines that havemost impact
on the job shop schedule. The machine that is identified as having the most impact
is called the first bottleneck machine and a schedule for this machine is determined.
Next, in the second iteration, the consequences of the schedule of the first bottleneck
machine is determined for each of the remaining machines. Then, of the remaining
(non-bottleneck) machines, the machine with the most impact is determined. This
machine is the next bottleneck machine and a schedule for this machine is fixed. At
the end of the second iteration, the impact is determined that the schedule of second
bottleneck machine has on the schedule of the first bottleneck machine. Possibly, the
schedule of the first bottleneck machine is adapted to get a better overall result. This
latter step is called the bottleneck reoptimization step and it ends the second iteration
of the SB heuristic. In the third iteration, the third bottleneck machine is identified,
its schedule is determined, and the bottleneck reoptimization step is performed. After
theMth iteration, the SB heuristic terminates. Before discussing the technical details
of the steps, we first present a pseudocode for the steps at a high level:

• //Initialization
• M :�∅
• //Execute M iterations to schedule all machines
• For m := 1 to M do

– Find next bottleneck machine (bm)
– Fix schedule of new bottleneck machine bm
– Reoptimize the (m − 1) existing bottleneck machines
– M :� M ∪ {bm}
We now proceed to discuss the technical details of the steps in the Shifting Bot-

tleneck heuristic.

Find next bottleneck machine and its schedule
At the start of iteration m of the SB heuristic, the schedules of (m − 1) bottle-
neck machines have been fixed. For these machines, we therefore have sequences
in which these machines process their operations. In other words, we have a partial
selection S ′. Consider now the graph GS ′ . If we ignore the capacity constraints of
non-bottleneck machines, rmj

(
S ′) := lmj

(
S ′) gives the earliest possible starting time
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(i.e., the release date) of each operationOmj, while the length of a longest path inGS ′

from S1 to S2 gives the maximum lateness Lmax(σS ′). Let l′mj
(
S ′) be the length of a

longest path inGS ′ from vmj to S2. If we do not want to increase the current maximum
lateness Lmax(σS ′), then operationOmj should start no later than Lmax(σS ′)−l

′
mj

(
S ′).

Therefore, dmj
(
S ′) := Lmax(σS ′) − l

′
mj

(
S ′) + tmj is a due date for operation Omj.

Based on longest path calculations inGS ′ , we have an earliest possible starting time
rmj

(
S ′) and a due date dmj

(
S ′) for each operationOmj. For each of the non-bottleneck

machines, we now determine the optimal (single-machine) schedule, taking into
account the release and due dates bymeans by an algorithmderived byCarlier (1982);
the objective in these single-machine scheduling problems is also to minimize the
maximum lateness.

The non-bottleneck machine that has the highest maximum lateness is the next
bottleneck machine. The schedule that is fixed for this machine is the schedule that
results in the optimal maximum lateness.

Reoptimize the existing bottleneck machines
Suppose again that we are at themth iteration of the SB heuristic and, moreover, that
we just identified the mth bottleneck machine. To finalize the mth iteration of the
heuristic, we now perform the bottleneck reoptimization step. Suppose that bk is the
bottleneck machine found in the kth iteration (k � 1, . . . ,m). During the bottleneck
reoptimization step, the m − 1 existing bottleneck machines are rescheduled one by
one, taking into account the schedules on the other bottleneck machines, including
the one identified in this (mth) iteration. Once an existing bottleneck machine is
rescheduled, the newly found schedule replaces the existing schedule for this bottle-
neck machine.

To find a new schedule for bottleneck machine bk , consider the partial selection
S

′
k that consists of the newly found schedules for machines b1, b2, . . . , bk−1 and
the schedules for machines bk+1, bk+2, . . . , bm. For operations Obk ,j on bottleneck
machine bk , the release and due dates are calculated in the graphGS

′
k
, again based on

longest path calculations. The new schedule for machine bk is the schedule on this
machine that minimizes the maximum lateness given the release and due dates.
In pseudocode, the bottleneck reoptimization procedure reads as follows:

• //at the start, we have the existing bottleneck
• //machines b1, b2, . . . , bm−1 and
• //a new bottleneck machine bm
• For k := 1 to m − 1 do

– Construct GS
′
k

– Calculate release and due dates for operations on machine bk
– Find optimal schedule for machine bk .

Practical extensions
One of the strengths of the SB heuristic is the possibility to modify it such that it
can be applied to far more general versions of the job shop scheduling encountered
in practice. The modifications typically consist of (a combination of) changes in the
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weights of the nodes and arcs in the disjunctive graph and using adapted algorithms
to solve the single-stage scheduling problems (which are single machine scheduling
problems in the version described above). In this way, the SB heuristic is for example
able to deal with setup times on machines, or workstations that consist of parallel
identical machines instead of a single machine.

19.8 Further Reading

In this chapter, we have presented algorithms for executing important building blocks
of the framework presented in Chap. 5 and present the basic structure of a (metal
working) company as often exists in practice. Such a company is detailed in the
case study presented in Sect. 21.2, which is derived from Slomp (1993). The linear
programming formulations discussed in Sect. 21.3 uses elements from various pub-
lications, including Silver et al. (2017), Bitran et al. (1982) and Hopp and Spearman
(2008). Interesting also are attempts to integrate MRP and HPP, see e.g. Hax and
Meal (1975) and Hax and Candea (1984).

The relation between workload, throughput (effective capacity) and internal lead
times in a manufacturing shop are discussed by Hopp and Spearman (2008), but
the complete technical basis is due to Buzacott and Shanthikumar (1993), using a
queueing network approach. This work (and the papers it is based on) led to a rich
offspring, see e.g. Dallery (1990), Di Mascolo et al. (1996), and Buitenhek et al.
(2000), while an attempt to place the work in a broader manufacturing planning and
control context was presented by Zijm (2000). Zijm andBuitenhek (1996) investigate
the integration of a due-date setting approach based on (open) queuing networks and
the subsequent application of a Shifting Bottleneck heuristic.

Job Shop scheduling is a topic that has received much attention in combinatorial
optimization of which the book by Pinedo and Chao (1996) presents a nice review,
see also Brucker et al. (1994). The Shifting Bottleneck procedure was introduced
by Adams et al. (1988), using Carlier’s one-machine scheduling problem as a build-
ing block (Carlier 1982), and generated quite some offspring, see e.g. Ivens and
Lambrecht (1996). Extensions that make the procedure applicable to more realistic
machining systems are due to Schutten (1998), Schutten and Leussink (1996) and
Schutten et al. (1996).

The integration of workload control, lead time off-setting and shop floor schedul-
ing remains a challenging task. The wealth of generic heuristics for combinatorial
optimization problems (simulated annealing, taboo search, genetic algorithms) have
contributed significantly to deriving close-to-optimal solutions for these problems.
At the same time, they do not provide the insights that can be expected from a further
integration of queueing and smart scheduling approaches. The latter defines a rich
field for future research.
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