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Introduction

Fluids are everywhere around and inside us, like a blood flow inside our veins
which keeps us alive, to rivers, lakes and seas. If we would trust words of the
one and the only Albert Einstein: "Only two things are infinite: the universe
and human stupidity”’, it would imply that every fluid is finite. Or in other
words: every single fluid body has an interface. Although this might not come
as a big surprise to many readers, I invite you to think again. We all know
how the falling drop looks like, we have all seen break up of a jet of fluid in a
series of droplets and we were all once lost romantics who observed rain on the
windshield of a car or a bus. All of this phenomena has one thing in common:
they are driven by interfaces and their respective properties. If the droplet
of a particular liquid is positioned on the substrate, there are at least three
interfaces present in the system, namely, the droplet-substrate interface, the
droplet-environment and the environment-substrate, where environment de-
scribes either a liquid or a gas phase which covers the substrate and surrounds
the droplet (Figure 1.1.b). The problem of many interface interaction is at
the core of the fluid physics field called wetting.

Wetting has many industrial applications such as microfluidics [7] or catal-
ysis [2], in which the precise control of a single droplet or a single bubble mor-
phology is crucial, along with a collective interaction between many droplets
or bubbles via diffusion process. The main problem of industrial applications
of wetting is that at the scientific level, there are still many open fundamen-
tal question.[3, 5, 9, 11, 12] Throughout this thesis, we have challenged many
of this questions and extended the application of wetting principles to finite




1.1. FUNDAMENTAL THEORY

-

Figure 1.1: a) Nucleation of bubbles on a glass surface in a soda drink. (Image taken by
Brocken Inaglory, CC BY-SA 3.0) b) Single drop wetting a DWR-coated surface (Image
taken by Pink Sherbet Photography, CC BY 2.0)

solid bodies. If one would have to summarise all of questions tackled in this
thesis in to the one question, it would be: "What are properties of wetting
equilibriums?".

1.1 Fundamental theory

Existence of interfaces is driven by molecular cohesive forces between molecules
of same species. In the fluid bulk, the net cohesive force is close to zero, since
every molecule experiences this force from every direction. However, on the
fluid boundary, there is only certain part of space in which a single molecule
feels the cohesive force, so the net cohesive force has a direction towards the
bulk of fluid. On the macroscopic level, we average this interactions along
the interface and introduce the physical quantity called the surface tension,
which is usually denoted with . The SI unit for the surface tension is J/m? or
N/m, so usual interpretations of the surface tension are that either it describes
the energy area density or the force length density. If we would multiply the
surface tension of some interface with the area of the same interface, we would
obtain the value of an interfacial energy for that interface. The sum minimum
of all interfacial energy in the system describes the equilibrium state of the
wetting system. If there are no additional interactions present in the system,
two major properties of the interface in the equilibrium state are obtained:
the Young-Laplace equation and the Young’s law. Both of these laws will be
discussed in the further text.

Let us imagine a droplet of volume V' and the droplet surface tension with
the environment 7, (such as one in Figure 1.1.b), where the index ¢ denotes

2



CHAPTER 1. INTRODUCTION

the liquid phase (droplet) and v denotes the environment, which in this case
is considered to be wapour phase. If we would position this droplet on the
homogeneous flat solid substrate (denoted with the index s), two additional
surface tensions would emerge: s, and 7s. The total interfacial energy of
this system reads

E = P)/'UEA'UK + ’YSUAS’U + PYSEASK - ,.)/S’UASE (1-1)

where indices for both the area and the surface tension denotes which interface
we are observing in the system. First two terms on the right hand side express
the interfacial energy of the system in which the droplet does not exist, while
the term ~gAgp tells us how much energy we need to invest to create the
droplet interface with the vapour phase, while the term ~,sAs accounts for
the destruction of the part of the solid-vapour interface. If we assume that
the substrate is infinite compared to the droplet, we can omit the second term
from Eq. 1.1, since the value of Ay, will be constant for any droplet volume
V. The trivial minimum of Eq. 1.1 is that the value of all interfaces is zero,
therefore, the total interfacial energy is also zero. To evade this problem, we
will introduce the droplet volume constraint on the Eq. 1.1, thus we obtain

E= ’YUKAM + (’Ysﬂ - ’st) A+ AV (12)

where A is a Lagrange multiplier for the volume constraint. To obtain the
analytical solution for the minimum of the Eq. 1.2, we will assume that
the droplet is axisymmetric and we can describe the interface as a function
h(x), where h denotes the local height of the interface, while = is the radial
coordinate. Using differential geometry we can rewrite Eq. 1.2 as

ay dh\ 2
E:/ 1+(%) Yor + (Vse — Ysv) + AR | 2mxdx (1.3)
0

where 2mxdz is an area differential term for the axisymmetric polar coordinate
system, while z; denotes the position of the three-phase contact line. The term
in brackets inside the integral will from now on be denoted with I". To minimise
the value of Eq. 1.3 under the volume constraint, we will use the Euler-
Lagrange equation. Although Fuler-Lagrange equation is more often used to
determine dynamics of the system, we can minimise Eq. 1.3 by replacing time
with the radial coordinate x, general coordinates with the height h and the
general velocities with the b/ = %. Once all these replacement have been done,
we can state that the minimum value of Eq. 1.3 resides in the solution of the

second order partial differential equation




1.1. FUNDAMENTAL THEORY

2 —0. 1.4

dx Oh'  Oh (14)
If we plug I' in Eq. 1.4, we obtain the Young-Laplace equation for the equi-
librium wetting state and it reads

O2h
9°h A
—3%; r= (1.5)
V.
(1 i %)

The left hand side of Eq. 1.5 is the differential geometry definition of the mean
curvature K and as visible, the mean curvature has to be constant for the
functional in Eq. 1.3 to have the minimum value. Further investigation would
reveal that the Lagrange multiplier A is the Laplace pressure which accounts
for the pressure jump across the curved interface and in the equilibrium state
due to the constant curvature, the Laplace pressure is also constant when no
other interactions are present. Unlike for systems with finite volumes, in the
case of soap films, where there is no pressure jump across the interfaces, the
equilibrium state is a zero mean curvature shape [6], while any finite value of
volume V' demands a finite mean curvature shape.

For the homogeneous flat substrate, the only obtainable constant mean
curvature shape is the spherical cap shape. For the spherical cap shape under
the volume constraint, the only parameter needed to describe this shape is
the contact angle # which interface closes with the substrate at the contact
line. To determine the equilibrium contact angle we will again minimise the
interfacial energy, but this time we will perform in it slightly different fashion.
Instead of implying the volume constraint with the Lagrange multiplier, we
will express the volume constraint by setting the total volume derivative to
zero. Since the spherical cap shape is described with the radius of curvature
R and the contact angle 6, the total volume derivative is defined as

ov oV
dV = —0R+—00=0 1.6
aR"" " (1.6)
which results in
OR ov/o6
=— 1.
00 OV/OR (1.7)
Using the Eq. 1.7 we can minimise the interfacial energy by solving
oF 0
% - % (,YUEAUK + (’Ysé - 751}) Asﬁ) =0 (18)



CHAPTER 1. INTRODUCTION

Since we are considering spherical cap geometry, all of areas present in the
Eq. 1.8 have the analytical geometrical definition, as does the volume V. Once
we solve Eq. 1.8, we obtain the Young’s law

Ysv — Vst

Yol (1.9)

costl, =
where the 60, is either called the Young’s angle or the equilibrium contact
angle. Very important aspect of the Young’s law is it’s local nature, which
means that the contact line in the given position on the substrate will always
have the same equilibrium contact angle, which is governed by three surface
tensions present at the contact line.[1, 4, 10] Even if surface tensions ~s, and
~vs¢ are functions of space with finite gradients in all directions, one will obtain
that the Eq. 1.9 is satisfied at every part of the contact line. Eqs. 1.4 and
1.9 are two key equations of wetting problems and the interplay between these
two equations and many types of patterned substrates is a central motive for
this thesis.

1.2 Guide throughout the thesis

This thesis explores the wetting effect of bubbles, droplets and solid films.
Chapter 2 focuses on the interaction between the wettting principles and the
disjoining pressure on the single bubble. The disjoining pressure is interaction
between two phases, which are separated by the intermediate phase. The pres-
sure in the intermediate phase is larger due to the van der Waals interactions
of atoms over the intermediate phase and due to the compressibility of the
bubble, morphology starts to deform very close to the contact line. Chapters
3,4, and 5 are focused on the droplet wetting. Inside Chapters 3 and 4 we are
dealing with wetting on both physically and chemically patterned substrates.
In Chapter 3 we have investigated experimental evidence of selective droplet
nucleation on the substrate decorated with solid microcaps, while in Chapter
4 we are interested in the direct interplay between the Young’s law and the
Young-Laplace equation on the elliptical lyophilic patch, where we show that
due to the Young-Laplace equation the droplet might prefer spreading on the
lyophobic part of the substrate, rather than on the lyophilic part. In Chapter
5 we explore the application of a body force on the droplet and we analyse
the stability of the droplet on the chemical step, when the droplet is forced
to go from a lyophilic to a lyophobic part of the substrate. We discovered
that the lack of possibility to satisfy either the Young-Laplace equation or
the Young’s law might prevent droplet from having a stable shape, however,
these two different effects are occurring in different regimes of the wettability

5
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contrast over the chemical step (difference in values of the Young’s angle).
Chapters 6 and 7 are focused on the problem of the solid-state dewetting
[8, 13]. Solid-state dewetting is a dynamical process of an atom surface diffu-
sion along the interface and equilibrium states of given dynamics are identical
to the ones observed in bubbles and droplets. The interplay between solid-
state dewetting and patterned substrates was not even considered until few
years ago. In this thesis, we present the effect of physical singularities on the
solid state dewetting (Chapter 6) and we also conducted the first fundamental
numerical research of solid-state dewetting on the chemically patterned sub-
strate( Chapter 7). In Chapter 6 we performed the analysis of the solid-state
dewetting on the grooved substrate. The crucial result from this chapter is the
first report of a slow and a fast way of convergence to the equilibirium, where
the separation of the two regimes is the direct consequence of the contact line
pinning in the physical singularity. Results from Chapter 7 reveal that solid-
state dewetting is completely a contact line driven problem and any solution
of Young-Laplace equations presents an equilibrium, irrelevant of the value of
the interfacial energy (whether it is global or local minimum) and the stability
of equilibrium is determined rather by a position of the contact line, rather
than any macroscopic aspect of the dynamics. The main thesis conclusion will
be summarised in Chapter 8.
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Effect of disjoining pressure on surface
nanobubbles

In gas-oversaturated solutions, stable surface nanobubbles can exist thanks to
a balance between the Laplace pressure and the gas overpressure, provided the
contact line of the bubble is pinned. In this article, we analyze how the dis-
joining pressure originating from the van der Waals interactions of the liquid
and the gas with the surface affects the properties of the surface nanobubbles.
From a functional minimization of the Gibbs free energy in the sharp-interface
approzimation, we find the bubble shape that takes into account the attracting
van der Waals potential and gas compressibility effects. Although the bubble
shape slightly deviates from the classical one (defined by the Young contact
angle), it preserves a nearly spherical-cap shape. We also find that the disjoin-
ing pressure restricts the aspect ratio (size/height) of the bubble and derive the
mazimal possible aspect ratio, which is expressed via the Young angle.!

!Based on: V. B. Svetovoy, I. Devi¢, J.H. Snoeijer and D. Lohse, Effect of Disjoining
Pressure on Surface Nanobubbles, Langmuir 32:11188-11196 , 2016. Numerical work is part
of the thesis




2.1. INTRODUCTION

2.1 Introduction

When a solid is immersed in liquid at some conditions nanoscopic spherical-
cap-shaped gaseous domains are formed at the interface. These domains,
called surface nanobubbles, attracted a lot of attention recently (see reviews
[1-5]). Their existence and gaseous nature has been confirmed with differ-
ent methods but the main challenge was to understand the unexpectedly long
lifetime of these bubbles. The surface nanobubbles exist days instead of mi-
croseconds as expected from the theory of diffusive dissolution [6]. Recently
it was established that contact line pinning of the gas-liquid-solid contact
line is crucial for the stability of the bubbles [7—12]. The effect of pinning
originates from chemical and topographical heterogeneities of the solid sur-
face [13-17], which are omnipresent and unavoidable. Given pinning, a stable
equilibrium is achieved through the balance of Laplace pressure and gas over-
pressure due to oversaturation, which is also a necessary condition for stable
surface nanobubbles [11, 12]. The question we want to address in this paper
is: How do disjoining pressure effects — a concept introduced to extended the
continuum approach down to the nanoscale (see e.g. refs. [16, 18, 19]) — modify
this balance and the shape of the surface nanobubble?

It is usually assumed that the surface nanobubbles can be described by a
spherical cap shape. The pressure in such a bubble is constant and equals the
ambient pressure plus the Laplace pressure. For liquid drops on a solid it was
already recognized [13, 20| that near the contact line the disjoining pressure
contributes to the total force balance and influences the equilibrium shape of
the drop. The influence of the disjoining pressure on the shape of the drops is
however rather weak [21-24] and it is important only at the very edge of the
drop. This need not a priori to be the case for surface nanobubbles because
strong a disjoining pressure near the edge could influence the bubble as a whole
due to compressibility of the gas. However, this problem was not yet addressed
in detail, though the relevance of the disjoining pressure for nanobubbles and
micropancakes is of course known for a long time [5, 25].

In this paper we will analyse the influence of the van der Waals interac-
tion (i.e., the disjoining pressure) on the equilibrium shape of a free or pinned
nanobubble. The paper is organized as follows. In Section 2 we shortly re-
view the approach developed for droplets on a solid surface, then derive the
equation of the force balance in presence of an external field, which is identi-
fied with the disjoining pressure, and finally construct the Gibbs free energy
for the surface bubble, which can be considered as a functional of the bubble
shape. Analytical solutions, which are possible for two-dimensional bubbles
are analysed in Section 3. Axisymmetric bubbles are discussed in Section 4.
Our conclusions are presented and summarized in the last section.

10



CHAPTER 2. EFFECT OF DISJOINING PRESSURE ON SURFACE
NANOBUBBLES

2.2 Formulation

We aim to establish the shape of surface nanobubbles under the influence of a
disjoining pressure. The shape is characterised by the function h(z,y) defined
in Fig.2.1. Here we derive the free energy functional ®[h| using a sharp-
interface description, from which the equilibrium equations for h(z,y) can
be obtained. Assuming an equilibrium implies isothermal conditions; phase
transitions which may lead to local cooling are not considered. As a brief

Figure 2.1: Sketch of a surface nanobubble with vdW interaction (most relevant in the
corners) and definitions of the involved parameters. Different media are indicated as liquid
(1), gas (g), and solid (s). The local height of the bubble h(z,y) is a function of in-plane
coordinates x and y. The maximal height in the center is H and the footprint size is L.

reminder, we first summarise the approach commonly used for incompressible
liquid drops, which is subsequently extended to incorporate the effect of gas
compressibility as is required for surface nanobubbles. We remind the reader
that the sketch as express in figure 2.1 is an approximation: One could also
consider a “precursor film” of the nanobubble towards the surrounding liquid,
which would correspond to a local depletion of the water density in direct con-
tact to the wall or similarly to a local gas enhancement, as were both found in
molecular simulations [26, 27]. However, of course, the present sharp-interface
description can not give the detailed molecular information, but the fact that
such layers are observed in molecular simulations justifies this assumption of
our analysis.
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2.2.1 Incompressible liquid drops

For incompressible liquid drops the change of energy when changing the shape
can be presented as the functional [17, 21-24]

®[h] = /da:dy [7( 1+ (Vh)2> + st —Ysg +w(h) +Ah| . (2.1)

Here, 7 is the liquid-gas surface tension and the integral gives the surface area.
The contribution from a unit area of wetted substrate is vg —vsg, Where ~g
and sy are the surface tensions for the solid-liquid and solid-gas interfaces,
respectively. w(h) represents the van der Waals potential. The Lagrange
multiplier A is introduced to perform the minimisation under the constraint
of a prescribed finite volume; indeed, the integral [ dzdyh(z,y) represents the
volume of the droplet.

On a nanoscale, i.e., for nanodrops and nanobubbles, one cannot neglect the
range of molecular interactions, which are captured by the effective interface
potential w(h). Its influence extends to small h, where the interface is suffi-
ciently close to the substrate. In the variational analysis, which gives the equi-
librium equation for h(z,y), the interface potential gives rise to an additional
pressure term, II = —dw/dh, which is the so-called disjoining pressure. In the
macroscopic limit, the interface potential simply vanishes, i.e. w(h=00)=0.
We define the change in the free energy in such a way that it disappears in
the "dry" state, which implies that w(h¢) = vsg — Vst — 7, Where h. is a micro-
scopic cutoff that will be discussed explicitly below. Using Young’s law for the
macroscopic contact angle 0y, this can be written as —w(h.) = (1 — cosfy ).
For now, it is of key importance to note that the integral over the disjoining
pressure is related to Young’s contact angle 0y, since [21-24, 28|

(©.@)

- dhII(h) = w(oo) —w(h.) = v(1 —cosby). (2.2)
Indeed, droplet shapes that minimises the free energy (2.1) are very close to a
spherical cap, with a macroscopic contact angle fy. The Lagrange multiplier
A represents the Laplace pressure in the drop and can be tuned to achieve the
desired drop volume. Only in the close vicinity of the contact line, where h
falls within the range of molecular interactions, the disjoining pressure alters
the droplet shape.

2.2.2 Pressure distribution in compressible gas bubbles

Let us now turn our attention to the case of compressible gas bubbles. The
obvious first difference with respect to the droplet is that the gas and liquid
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domains in Fig.2.1 are inverted. This can be accounted for by exchanging the
roles of s, and 7,. However, upon redefining the contact angle in the gas
phase (inside the bubble, so that vcosfy =5 —7sg), both the formalism and
the integral relation (2.2) are still valid. The key difference, however, is the
gas compressibility. The energy functional should be minimised not under the
constraint of constant volume, but instead we must impose the number of gas
molecules N inside the bubble. Namely, surface nanobubbles are observed for
a very long time [1-5], which means that the bubble can be treated as quasi
static and we neglect the escape or influx of molecules due to diffusion. Due
to compressibility, a constant number of molecules does not imply a constant
volume, nor a constant pressure inside the bubble.

For simplicity and for specific calculations we assume that the only source
of the disjoining pressure is the van der Waals (vdW) interaction, but this
restriction can be easily removed if some other interactions are involved. The
interaction becomes strong near the contact line between gas, liquid, and solid
(see Fig.2.1). In absence of external fields at the interface separating the
liquid and gas phases temperature T" and pressure P stay constant. From
the thermodynamic point of view the vdW interaction can be considered as
an external field acting on the gas molecules located between the opposing
walls of the bubble. In a stationary external field the system becomes in-
homogeneous and the pressure along the boundary is not constant anymore.
Instead, the chemical potential i as a function of temperature, pressure, and
the parameters characterizing the field stays constant at the interface [29].

Thermodynamically, u is the Gibbs free energy per molecule. In an external
field it can be written as

M:UO(P7T)+¢(I')7 (2'3)

where po(P,T) is the chemical potential in absence of the field and ¢(r) is the
field potential per molecule, which depends on the position of the molecule
r. The bubble will be in the mechanical equilibrium if © = const along the
gas-liquid interface. Differentiating (2.3) with respect to the space coordinates
we can find the force balance at the interface:

VP

nET) Ve =0, (2:4)

where n(P,T') is the gas concentration in the bubble and we made use of the
thermodynamic relation (Ou/0P)r =n~"Y(P,T).

As was already mentioned, we assume for definiteness that the opposing
walls of the surface nanobubble attracts each other with a force per unit
area, which originates only from the vdW interaction between solid and liquid
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molecules via the gas gap. This force is

An

M) =5

(2.5)
where Ap ~1072°J is the Hamaker constant between liquid, gas, and solid and
h = h(z,y) is the local distance between the walls as shown in Fig.2.1. In the
more general case [28] the vdW interaction is not the only contribution to the
disjoining pressure II(h). The local distance h is going to zero in the corners,
where the pressure (2.5) diverges. In reality this divergence is regularised by
hard-core repulsion. Such a regularisation is also critical in view of (2.2),
since the disjoining pressure in (2.5) cannot be integrated to h = 0; this was
the reason for introducing a cut-off distance h.. To control the effect of the
cutoff, we explicitly include a repulsive contribution to the disjoining pressure,

) T(h) = Gf% [(%)6_ 1] | (2.6)

This pressure is motivated by the body-body Lennard-Jones interaction [30,
31]. At h = h, the repulsive and attractive contributions are equal and the
disjoining pressure becomes zero. We note that in eq. (2.6) we have neglected
the contribution of spatial partial derivatives to II(h), which in general [19]
also depends on 9, h and 0,.h, where x represents a spatial coordinate. Given
that the contact angle of surface nanobubbles is small this approximation is
justified.

It has to be noted that the pressure (2.5) or (2.6) is defined between parallel
plates, which is not the case for the bubble walls. We can apply this equation
locally by changing the curved surface by flat patches parallel to the substrate.
This is the idea of the proximity force approximation [32] (PFA) that is widely
used in analysis of the dispersion forces (see recent review [33]). Application
of PFA is justified if the curvature radius of interacting surfaces is much larger
than the distance between them. In our case this condition reads 8H?2/(L? +
4H?) < 1. Tt will be assumed here that the condition holds true. However,
there is no principal problem if the condition is broken. It just means that the
specific functional behavior (2.5) or (2.6) is changed. Then a more complicated
expression has to be used but one can apply numerical (see review [34]) and
sometime analytical [35] methods to determine the function II(h).

Attraction of the bubble walls results in an extra pressure (disjoining pres-
sure) experienced by a gas molecule. Due to this pressure the chemical poten-
tial at a constant temperature changes on II(h)v, where v = n(P,T)~! is the
volume per molecule (molar volume). Therefore, the external potential ¢ in
Eq.(2.3) can be presented as
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11(h)

¢(r) = n(P.T)’ (2.7)
where both h and P are functions of the in-plane coordinates x,y. The func-
tional dependence of pressure one can find by substituting ¢ into the equation
(2.4) of the force balance and expressing the concentration via the pressure
with the help of the equation of state: n(P,T) = P/kT. For simplicity we use
here the equation of state for ideal gas, which can be generalized if necessary.
The resulting equation on the coordinate dependence of the pressure is

¥+V (@) — 0. (2.8)

It can be integrated to find an implicit dependence of P on the local height
h(z,y):
Pln(P/Py) = —1I(h), (2.9)

where Py is the pressure in the bubble if the interaction is switched off (Ay —
0), or when the bubble height reaches macroscopic distances outside the range
of molecular interactions. This relation shows explicitly that the pressure in
the bubble is not homogeneous. Note that the Hamaker constant for liquid-
gas-solid system is always positive, so the pressure in the bubble is always
larger than F.

The pressure P as a function of the local height A is shown in Fig. 2.2.
It is defined by two independent parameters. One is the cutoff distance that
has typical value h. ~ 0.2nm [36]. The second independent parameter is =
Ay /67h2 Py. At large heights h > h, the pressure approaches asymptotically
Py, it has maximum at h = 31/ 6h., and decreases up to Py at h = he.

2.2.3 Gibbs free energy for compressible gas bubbles

The thermodynamics of coexistence of different phases in external fields was
considered in [37] for a number of physical systems. We construct here the
Gibbs free energy ®[h| as a functional of the bubble shape h(x,y), which
consists of volume and surface contributions. The volume contribution is just
the sum of the chemical potentials p for all the gas molecules inside of the
bubble:

®y[h] = /Vd%u(P, T,h)n(P,T). (2.10)

We assume here a sharp interface between liquid and gas (sharp-kink approx-
imation [22]). In this case the integrand does not depend on the vertical
coordinate z and the corresponding integration can be done explicitly. The
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15

10f ]

Y
0 1 2
h (nm)

Figure 2.2: Pressure as a function of the local height for the disjoining pressure (2.6). The
curve is given for the parameters he = 0.2nm and Ap/ 67rh2P0 = 100.

lower integration limit z = 0 corresponds to the solid-gas interface and the
upper limit z = h is at the gas-liquid boundary. Expressing n(P,T) via the
equation of state and using the condition u = const we find

By [h] = —m/dazdy LP(h), (2.11)

where Kk = —p/kT is an unknown constant, P(h) is the solution of Eq. (2.9),
and the integral is running over the bubble footprint in the x —y plane. The
right hand side of Eq. (2.11) is proportional to the number of molecules in the
bubble. The constant x plays the role of a Lagrange multiplier that imposes
the desired number of molecules. Importantly, since the pressure P(h) is not
constant inside the bubble, this constraint is fundamentally different from the
incompressible case, for which the constraint involves the volume [ dxdy h.
The surface contribution to the Gibbs potential ®g[h] can be written as

B[h] = /dmdy [%/1 (VR 45y — 7o+ w(B)| - (2.12)

This is in direct analogy to (2.1) for droplets, except for the interchange be-
tween 7,4 and 7, due to the inversion of the liquid and gas phases. The
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explicit form of the potential in the case of the Lennard-Jones model is

6
w(h) = éT—HhQ [% (%) _ 1] | (2.13)

Let us stress that the contributions of the interaction to ®g and ®y are inde-
pendent. The first one will exist even for a bubble filled with vacuum, while
the contribution to ®y is related to the gas molecules.

As a result, the total Gibbs free energy can be presented as

B[h] = By [] + Ds[h] = / dady [7 ( 1+ (Vh)?2— 1) + U(h)} o (214)
where using (1 — cosfy ) = —w(h.) we introduced the "effective potential
U(h) =w(h) —w(h.) — khP(h). (2.15)

In combination with (2.9) and (2.13), this fully specifies the energy functional
for compressible gas bubbles. In the next sections this functional will be
minimized to determine bubble shapes h(x,y).

2.3 Two-dimensional bubble

We first consider the shape of a two-dimensional (2D) bubble, which is ho-
mogeneous in the y-direction. In this case the shape h(z) can be obtained
analytically, and is sufficient to reveal the essential physics. After deriving
the general solution, we consider the bubbles with and without pinning. We
highlight geometrical features and identify a bound on the aspect ratio for
pinned bubbles.

2.3.1 General solution

The minimisation procedure can be made using the Euler-Lagrange method.
Namely, for the two-dimensional problem the functional (2.14) reduces to the
form

B[h] = /dazF(h,h’), (2.16)

with the energy per unity length

T'(h,h) :7<\/1+h’2—1> +U(h). (2.17)
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This is the equivalent to a Lagrangian in classical mechanics, in which case
the variable is time instead of the spatial coordinate x. Minimisation of the
functional leads to the Euler-Lagrange equations

d oI oI
and yields the equilibrium equation
oo\ du d
—— | =——=-II(h)—k—|hP(h)|. 2.1

The left hand side is the Laplace pressure, surface tension times curvature,
while the right hand side contains the disjoining pressure and a term allowing
for a finite number of molecules N.

The bubble shape is thus determined by a second order ordinary differential
equation (ODE), which contains x as an unknown parameter. As boundary
conditions we impose a height H at the bubble centre, where due to symmetry
one also has h/(0) =0, i.e.

h(0)=H, h'(0)=0. (2.20)

This means that a solution can be generated for each value of k: by varying
k one finds bubble shapes that contain a varying number of molecules. We
anticipate that a unique equilibrium solution is obtained when assuming that
there is no pinning of the contact line.

Since in the 2D case the functional does not depend explicitly on x, one
can find a first integral of Eq. (2.19) [24]. It reads

oT 1
_ _
E=h ah,—r_7<1— 1+h/2>—U(h), (2.21)

where £ is a constant. Again, there is a direct analogy with classical me-
chanics, where the homogeneity in time enables a first integral of the equation
of motion, which expresses the conservation of energy. The analysis is now
reduced to (2.21), a first order ODE with £ and k as unknown parameters.
The value of £ can be eliminated using the boundary conditions (2.20). This
reduces (2.21) to

y (1 _ ﬁ) — AU(h), (2.22)

where the potential energy difference is introduced
AU(h)=U(h)—-U(H). (2.23)
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An important observation here is that a solution exists only if AU is not
negative over the entire bubble. In the domain 0 < x < 0o, the solution can
be presented in an implicit form

. " dh(y—AU)
AUy =AUY’

(2.24)

where all the conditions at x = 0 are already satisfied. Note that via eq. (2.15)
and U(h) respective AU(h) k still appears as a parameter, allowing for a
family of bubble shapes.

2.3.2 Homogeneous substrate: no pinning

Let us first consider the case where there is no pinning at the contact line,
which leads to the true equilibrium solution. For the disjoining pressure (2.6),
the balance of attraction and repulsion leads to a solution where the bubble
has a precursor film that extends to x — +oo. The film thickness h* can be
determined from the condition A’ = 0 inside the film. According to (2.22) this
implies AU (h*) =0, and for a given value of H this selects a unique value of
k, and consequently the number of molecules. Note that in the limit of large
bubbles H — 0o, much larger than the range of interaction, one has U(H) — 0,
which implies that the precursor film thickness h* — h.. For small bubbles,
the precursor film is a bit larger than h..

height, h (nm)

0 5 10 15 20 25 30 20 21 22 23 24 25
X (nm) X (nm)

Figure 2.3: (a) 2D nanobubble on a homogeneous substrate (solid red curve) with a height
of H =5nm. The dashed blue curve shows the cylindrical cap of an equivalent size L given
by Eq.(2.25). The black curve presents a classical bubble (i.e., a bubble in the macroscopic
description where the influence of the disjoining pressure is replaced by a perfectly localised
contact angle boundary condition) containing the same number of molecules. The dashed
and dash-doted red curves correspond to the reduced interaction with the scaling factors
(see text) A =4 and 256, respectively. (b) shows a zoom of the figure near the bubble edge,
indicating important parameters as explained in the text.
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The existence of the precursor film means that h relaxes to A*™ at infinity,
and thus the bubble formally extends over the entire domain. Still, we wish to
determine a lateral bubble size L. Here we do this by equating the curvature
radius at the top of the bubble to a cylindrical cap, which is the solution for
a macroscopic bubble without disjoining pressure. With a cylindrical segment
of radius of curvature R this implies the geometrical connection

v dU R (L/2)*+ H?
"R dhlpy’ ~ 2H
which effectively defines L.

The shape of a bubble with height H = 5nm is shown in Fig.2.3a by the
solid (red) curve. We took as typical parameters v = 0.072.J/m?, h. = 0.2nm,
and Ay =1x10720]. According to Eq.(2.2) these parameters correspond
to 0y = 21.4°. The blue dashed curve is given by Eq.(2.25). It defines the
cylindrical cap of an equivalent size L. Note that the cap practically coincides
with the actual bubble except of the very edge. We found the bubble size and
the precursor film thickness to be L &~ 44.4nm and h* ~ 0.23 nm, respectively.
The detailed behavior near the edge is shown in fig. 2.3b, where the bubble
edge is marked by the vertical line and the cutoff distance is indicated by the
dashed horizontal line. Above the physical edge the bubble quickly reaches
the asymptotic height h*.

It is interesting to emphasise the effect of the interaction on the bubble size.
The bubble that was found by the minimization of the Gibbs free energy (2.16)
can be compared with a classical bubble that has the contact angle 6 equal
to the Young angle, # = fy, and contains the same number of molecules N.
These two conditions completely define the classical bubble, which is shown
by the black curve in the same figure. It has the lateral size L% = 62.2nm and
height H% = 5.9nm. There is a difference between bubbles with and without
interaction potential. This difference is the combined effect of the disjoining
pressure and the gas compressibility. How these factors influence the shape
and size of the bubble has to be discussed qualitatively.

The pressure in the classical (2D) bubble is estimated as P§' = P, +v/R% ~
9.46 bar, where P, ~ 1bar is the ambient pressure and R ~ 85.1nm is the
curvature radius of the classical bubble. The pressure in the bubble with
the vdW interaction is distributed inhomogeneously as shown in Fig.2.2. In
the center it is approaching Py ~ 14.92 bar and sharply increases near the
edges. This inhomogeneous pressure distribution can be responsible only for
small part of the difference between the bubbles. The number of molecules
dN/dx ~ h(x)P(h) in the interval dz is shown in Fig.2.4(a). For comparison
the same value dN/dx ~ h(x) is given for the homogeneous pressure P(h) = Py
in the bubble. As one can see dN/dx near the edge is larger than in the

(2.25)
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Figure 2.4: (a) Distribution of the number density dN/dz of molecules per length dz as a
function of the lateral coordinate x. The blue curve presents the distribution in the actual
bubble. The red curve is for an imaginary bubble with homogeneous pressure distribution
P(h(z)) = Pp. (b) Bubble shape for an incompressible "gas" in comparison with the
classical bubble.

case of the homogeneous pressure but the integral difference in the number of
molecules is just 3%.

In the classical bubble the vdW interaction is contracted to a line that is the
contact line. Without pinning this line can move freely. If the interaction has
a finite distance range the contact line moves inward to balance the distributed
forces. When the interaction range increases the classical bubble will shrink
more and more. To be sure that this is the case let us rescale the distances
h — Ah in the potential (2.13), where A is a scaling factor. This rescaling can
be absorbed by the change of the parameters: A%, = Ag/A\? and R, = he/).
Note that this transformation preserves the basic relation (2.2). With this
transformation we can change the magnitude of interaction (or equivalently
the range of interaction) but keep the same y. The case A — 0o corresponds
to the classical bubble. In Fig.2.3 the bubbles for A =4 and A = 256 are
presented by dashed and dash-dotted curves, respectively. The actual bubble
corresponds to A = 1. An important observation is that the bubble approaches
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the classical shape rather slowly when A increases.

It is possible to check also what happens if the bubble is filled in with an
imaginary medium that is an incompressible "gas". For that one has to return
to Egs. (2.4) and (2.7), where we cannot use the equation of state and have to
keep the concentration as a constant: n(P,T) = ng. The only change in the
Gibbs free energy is the volume term in the effective potential (2.15) khP(h)
that has to be changed by xhP,, where P, = kTngy is a constant with the
dimension of pressure. The resulting functional, of course, coincides with that
for drops (2.1). The parameter P, was chosen to be equal to the pressure
in the classical bubble P§. The condition of constant number of molecules
is equivalent to the condition of constant volume. The result is presented
in Fig.2.4(b). One can see that the bubble is practically coincides with the
classical bubbles except for the behavior near the very edge. Moreover, even
the small difference quickly disappears with the increase of the scaling factor
A

We can conclude that the contraction of the bubble in comparison with the
classical one in Fig.2.3 is the result of both the finite interaction range and
the gas compressibility.

2.3.3 Pinned bubble

If the substrate is not homogeneous the bubble size can be determined by the
effect of pinning. Pinning of the contact line keeps the lateral extension L
so as the footprint area of the bubble fixed. This is a crucial assumption for
stability of the surface nanobubbles [7-12]. In this paper we assume that the
bottom of the bubble is homogeneous and the inhomogeneities happen at the
contact line. This is a reasonable assumption because anyway the interaction
is important very close to the bubble edge. Within this approach we cannot,
however, describe the effect of contact angle hysteresis, which is also related
to inhomogeneities on the surface [18, 38]. To describe the hysteresis we have
to explicitly introduce the dependence of the Hamaker constant on the x —y
coordinates.

According to Eq. (2.22) the bubble is defined by the function AU (h), which
via eq. (2.15) depends on the parameter k. This function for three different
values of k is shown in Fig.2.5. At h = H the function is zero by definition.
It has a maximum when the disjoining pressure becomes comparable with the
Laplace pressure. At even smaller heights it has also a minimum when the
repulsive interaction becomes comparable with the attraction. Solutions of
Eq. (2.22) exist only for AU(h) > 0. There is a minimal value of x such that
for every k < Kpmin the function AU becomes negative and solutions cease to
exist. This minimal value is defined by the same condition AU(h*) =0 we
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Figure 2.5: Function AU (k) in units of v for H =5nm and Ay = 1.36 x 10720 J. Curve 1
corresponds to the case kK = Kyin, which describes the bubble on a homogeneous substrate.
Curves 2 and 3 correspond to kK = 1.05Kin, and kK = 1.1k in, respectively.

used to determine the "unpinned" shape. Hence the critical case coincides
with the homogeneous unpinned bubble. Expressing s, from the condition
AU(h*) =0 we find
_ w(H)—w(h)

fmin = T P(H) — h*P(h*)’
where, as before, h* is the precursor film thickness. The critical function
(curve 1) touches the horizontal axis in one point h = h*. Because the solution
(5.12) is singular in this point, it can be reached only at infinity (z — o0)
so that the domain of heights h. < h < h* is not accessible. When & > Kknin
the minimum is positive and all the heights h. < h < H are available. The
functions AU (h) for k = 1.05Kmi, and 1.10k,;, are presented by the curves 2
and 3, respectively.

Three pinned bubbles of the same height H = 5nm and different size are
shown in Fig.2.6. The curve 1 shows the bubble, which is very close to the
critical one. It corresponds to 6k = K — Kmin = 1 X 1074, where Kypin = 0.9412.
The size of this bubble L = 43.8 nm is very close to that for the critical bubble.
One can see a distinctive shoulder that remains from the critical bubble but
has now a finite length. The curves 2 and 3 are presented for éx = 0.01 and
0.02, respectively. The bubble sizes in these cases L = 39.8 nm and 35.2nm

(2.26)
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are smaller than for the critical bubble as was expected. It has to be stressed
that for pinned bubbles one cannot demand the continuity of the gas-liquid
interface. At the point of pinning this continuity is broken due to presence of
external pinning forces. This is why the derivative A’ stays constant in the last
point of the bubble in contrast with the bubble on the homogeneous substrate.

X (nm)

Figure 2.6: Pinned bubbles at a fixed height H = 5nm and Hamaker constant
Ag=1x 10729 J for three different values of ok = k — Kmin- The curves 1, 2, and 3
correspond to 0k =1 x 10_4, 0.01, and 0.02, respectively.

2.3.4 Critical aspect ratio

With the increase of s the bubble size decreases as one can see from Fig.2.6 or
deduce from Eq.(2.25). It means that the bubble with K = Ky, corresponds
to the largest possible bubble for a given height and Hamaker constant. In this
sense we call this bubble a critical bubble. Therefore, the interaction restricts
the aspect ratio R = L/H of the surface nanobubbles: with the increase of
R the surface tension cannot sustain anymore the increasing interaction. The
largest aspect ratio R, is realized for the critical bubble. Figure 2.7 shows R,
as a function of the bubble height H for three different values of the Hamaker
constant. Actually instead of Ay we have used in the figure an equivalent
parameter fy, which is related to Ay by Eq.(2.2). When H becomes large
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R saturates at the values shown by the dashed lines. This limit can be found
analytically.
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Figure 2.7: Critical aspect ratio L/H for different Hamaker constants
Ap =0.87,1.36,1.97 x 10729 J, which are equivalent to Young’s angles 6y = 20°, 25°, 30°.
The curve shown by open circles was calculated with 6y = 25° for an incompressible "gas".
The dashed lines give the asymptotic values (H — oo) for the critical aspect ratios.

As we already mentioned at H — oo the precursor film thickness is reduced
to h* — h, and pressure P(h*) — Py. Then for £, in this limit we find from
(2.26)
w(he)
HPy’

The aspect ratio in the same limit can be determined from Eq.(2.25). At
the top of a large bubble the interaction does not contribute and we find
dU/dh|,_;; — —kFy. Substituting to Eq. (2.25) together with kK = Kyin we
find for the critical aspect ratio

1 0
Reop — 24| S5 o) (2.28)
1 —cosfOy

where instead of the potential w(h.) we introduced the contact angle according
to the relation v(1 —cosfly) = —w(h.). It has to be stressed that this aspect

Kmin — — H — oo. (2.27)
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ratio is equivalent to the classical boundary condition: the contact angle is
equal to Young’s angle, (L /2) = 0y, where 6(L/2) is the contact angle at the
bubble edge.

For small heights the critical aspect ratio R, deviates from the classical
limit (2.28) as Fig. 2.7 demonstrates. For example, even for H = 200 nm the
deviation from the classical limit is above 2%. Such a strong sensitivity to
the interaction was already stressed for the bubbles with a fixed number of
molecules and it is related to the compressibility of the gases. We did similar
calculations for an incompressible "gas" keeping all the other properties of
the gas unchanged. The result is strikingly different as demonstrated by the
curve shown by the open circles. In this case 2% deviation is reached only for
"bubbles" with the height H < 5nm.

2.4 Axisymmetric bubble

5 .
(a)

4} ]
£
~ 3t S
< £
5 o
2 3 \2 \ 1 -
< h

1 s o

O T o P ] O n n

0 5 10 15 20 25 0.85 0.9 0.95 1
r (nm) K

Figure 2.8: (a) Pinned axisymmetric bubbles for three different values of dk = kK — Ky at
fixed H and Ag. The curves 1, 2, and 3 corresponds to dx = 1 X 10_4, 0.01, and 0,02,
respectively. (b) The dependence of the size L on x for 2D and 3D cases. The dots
correspond to kK = Kyin-

In the previous section a significant part of the analysis was done analyt-
ically that simplified understanding of the physical picture. In the case of
axisymmetric bubbles the possibility of an analytical treatment is restricted
but we can use the physical intuition developed in the previous section for
interpretation of the results.

Variation of the total Gibbs free energy (2.14) results in the equation on
the shape of an axisymmetric bubble:

/
. W dU
I === 2.2
r(rx/1—|—h’2> dh’ (229)
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where h = h(r) is a function of the in-plane radius r and "prime" means the
derivative with respect to r. As in the case of 2D bubbles the boundary condi-
tions at the top of the bubble are h(0) = H and h'(0) = 0. For the axisymmetric
bubble the problem cannot be solved analytically because Eq.(2.29) does not
have a first integral similar to (2.21).

We expect that on a homogeneous substrate there is a continuous transition
at infinity to a precursor film of thickness h*, h — h*. Then the boundary
condition at 7 — oo is ' — 0. Continuity demands also that the curvature at
infinity has to be zero that is equivalent to the condition dU/dh — 0. Then
asymptotically at large r Eq. (2.29) is linearized

, h B .
h +?—;(h—h ) (2.30)

where B is a constant defined by the effective potential AU. The solution
of this equation is proportional to the modified Bessel function K(r\/B/7v),
which asymptotically at large r has the form

h(r)=h"+ %exp (—r@) , T — 00, (2.31)

where A is an integration constant. The situation here is completely similar
to that for the 2D bubble on the homogeneous substrate. The height h = h*
can be reached only at r — oo. On the other hand, the physical size L is
determined by the equation similar to (2.25) with an additional factor 2 on
the left hand side, which reflects the existence of the two principal curvatures.

The problem was solved numerically using Runge-Kutta method with the
"initial" conditions h(0) = H and h’(0) = 0. The parameter x was chosen to
satisfy the condition A’ — 0 at infinity. This bubble describes the critical bub-
ble, which corresponds to the minimal value x = K;,;,. Any bubble with larger
k but with the same height and Hamaker constant is a pinned bubble. Figure
2.8 shows three bubbles for H = 5nm and Ay =1 x 1072°J corresponding to
different values of k. The bubble shown by the curve 1 is close to the critical
one and corresponds to0 9k = Kk — Kmin = 1 X 1074, where K, = 0.9658. The
curves 2 and 3 are given for dx = 0.01 and 0.02, respectively. In comparison
with a similar Fig. 2.6 for the 2D case one can see that the bubble size decreases
faster with the increase of k. It has pure geometrical reason. In the inset the
dependence of the bubble size on k, which follows from Eq. (2.25), is shown
for both 2D and 3D cases. The minimal s are indicated by the dots on each
curve. The difference between the 2D and 3D curves originates from different
factors in the Laplace pressure (1 vs 2). Nearby k = Ky, the derivative dL/dk
is larger for the 3D case. This explains faster variation of L with k.
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The critical aspect ratio as a function of bubble height for axisymmetric
bubbles is shown in Fig.2.9 for three different values of Young’s (or three
different Hamaker constants). Since in the classical limit H — oo the same
relation (2.28) for R, holds true, the asymptotic limits shown by thin dashed
lines are the same as for the 2D case. One can see that the curves behave
similar to those for the 2D case. However, for axisymmetric bubbles the tran-
sition to the classical limit happens even more slowly. This is again related to
the geometrical reason.

12,
9Y=20
% 10t i
| asymptotic value
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g 9Y=25
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o |
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Figure 2.9: Critical aspect ratio for the axisymmetric bubble as a function of the bubble
height. Three presented curves correspond to different Young’s angles 6y = 20, 25, and 30°
(different Hamaker constants). Thin dashed lines define the classical limit for each Young’s

angle.

2.5 Conclusions

In this paper we considered influence of the disjoining pressure on the shape,
aspect ratio, and pressure distribution inside of the surface nanobubbles. The
disjoining pressure was considered as an external field for the thermodynamic
characteristics of the gas filling the bubble. This external field is the reason
for inhomogeneous pressure distribution in the bubble. We characterized the
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bubble with the Gibbs free energy that includes the standard surface contri-
bution and nontrivial volume contribution. The latter took into account the
gas compressibility with nonuniform pressure distribution. Minimization of
the Gibbs free energy allowed for the determination of all the characteristics
of the bubble.

The resulting bubble shape slightly deviates from the classical bubble (de-
fined by the Young contact angle 6y ) with the same number of molecules, but
preserves nearly spherical-cap shape. The deviation is a combined effect of
the finite interaction range and the gas compressibility. We found that for a
fixed Hamaker constant the bubble aspect ratio L/H (size/height) has to be
smaller than a critical value R..(H ), which depends on the bubble height H.
Due to the interaction the bubble with a small height cannot exist. For large
bubbles (H — o) the critical aspect ratio approaches that given by the Young
contact angle. We found deviations from this classical limit and established
that this effect is related to the gas compressibility. Finally we stress that the
physical idea and the main finding of ref. [11] — namely pinning and a stable
balance between Laplace pressure and gas overpressure as origin of the stabil-
ity of surface nanobubbles — remain unaffected by the results of the present
paper.

We did explicit calculations for a van der Waals interaction although the
method applied in this paper is much more general. It can be easily gen-
eralized to include different contributions that are typically associated with
the disjoining pressure. The surface charges on the solid surface or on the
gas-liquid interface also could be included.
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How a surface nanodroplet sits on the
rim of a microcap

The location and morphology of femtoliter nanodroplets that nucleate and grow
on a microcap-decorated substrate in contact with a liquid phase was itnvesti-
gated. We experimentally examined four different wetting combinations of the
flat area and the microcaps. The results show that depending on the relative
wettability, the droplets sit either on the plain surface, or on the top of the
microcap, or on the rim of the microcap. The contact angle and, for the last
case, the radial positions of the nanodroplets relative to the microcap centre
were characterised, in reasonable agreement with our theoretical analysis which
is based on an interfacial energy mimimization argument. However, the ex-
perimental data show considerable scatter around the theoretical equilibrium
curves, reflecting pinning and thus non-equilibrium effects. We also provide
the theoretical phase diagram in parameter space of the contact angles, reveal-
ing under which conditions the nanodroplet will nucleate on the rim of the
microcap. !

!Based on: S. Peng, 1. Devi¢, H. Tan, D. Lohse and X. Zhang, How a surface nanodroplet
sits on the rim of a microcap, Langmuir 32:5744-5754, 2016. Numerical work is part of the
thesis
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3.1. INTRODUCTION

3.1 Introduction

Nucleation and growth of sessile nanodroplets on a microstructured surface is
of high relevance to a wide range of fundamental and practical processes [1-4].
It is an essential step in water collection [5, 6], highly efficient cooling systems
[7, 8], antifog or antifreeze [9, 10], liquid manipulation in microfludic systems
[11], corrosion [12-14], among many others. Intensive research interest has
been drawn to the control of droplet formation by tailoring surface microstruc-
tures [10, 15-17]. Biomimetic structures often possess exceptional wetting
properties, such as the structures of lotus leaves, butterfly wings, desert beetle
back, insect eyes or spider fibers [6, 18-20]. Among natural structures with
amazing wetting properties, spherical bumps appear to be a commonly shared
morphological feature over different length scales, for instance in lotus leaf,
Namib desert beetle back or moth eyes[6, 18, 21, 22]. Therefore, manipulation
of droplets on a surface will benefit from a better understanding of wetting
properties of a nanodroplet on spherical microcaps. The understanding is also
beneficial for advanced materials in which nanodroplets on a desired position
relative to a microsphere have been used as effective templates in fabrication
of particles with unconventional shapes [23-26].

Although wetting phenomenon of nanodroplets on topographically struc-
tured substrates have been theoretically studied [2, 27-30], experimentally, not
so much work has been done, as it is not simple to place nanodroplets near
a microstructure due to their very small volume. In contrast to the standard
top-down approach by depositing the droplet from a bulk liquid, in a bottom-
up approach nanodroplets nucleate and grow in-situ on the microstructure
by interfacial phase transition and diffusion interaction with the surrounding
phase [31]. In our recent work, we found that nanodroplets preferentially nu-
cleate at the rim of polymeric microcaps sitting on a flat substrate coated
with the same polymer [32]. The droplets therein were produced by solvent
exchange where a good solvent for the droplet liquid was displaced by a poor
solvent [33-35]. The volume of those nanodroplets was as small as a few atto-
liters to femtoliters, depending on flow conditions and solution compositions
[32]. An optical snapshot of various of these nanodroplets sitting around mi-
crocaps and on the plane surface is shown in Figure 3.1 a. Figure 3.1 b shows
the three-dimensional fit of an AFM image (details will be provided later) of
three nanodroplets sitting around a microcap. An example for a single droplet
sitting on the rim of a microcap is shown in Figures 3.2 a (AFM image) and
b (SEM image), taken from ref. [32]. In that work we also found spontaneous
pattern formation of multiple surface nanodroplets simultaneously growing on
the rim. The (relative) azimuthal position of these nanodroplets on the rim
of the microcap has been discussed in detail in ref. [32]. In this work, we will
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focus on their radial positions and on their contact angles. In order to better
understand the wetting properties of nanodroplets on microcaps, we will cover
four different macroscopic wetting conditions for the droplet liquid where the
chemical composition and morphology of the microcaps were varied.

Figure 3.1: a) Optical microscopy image of nanodroplets sitting on the rim of microcaps or
on the plane substrate. b) Three-dimensional fit of an AFM image of three nanodroplets
sitting on the rim of a microcap.

Figures 3.2 ¢ and d give sketches of the sideview and the topview of the
nanodroplet sitting on the rim and the notations used in this paper. L is the
contact diameter of the microcap, H its height, and « its contact angle. Corre-
spondingly, ¢ is the contact diameter of the nanodroplet sitting on the rim and
h its height. The contact angle of the nanodroplet on the microcap is defined
as Op,c, whereas the contact angles on the flat surface is 6¢,. Finally, ¢5/2 the
distance between the centers of (spherical) contact areas of the microcap and
the nanodroplet and ¢,,/2 the distance between the center of the microcap and
the projection of the contact point between microcap and nanodroplet, which
is closest to the apex of the microcap, down onto the plane of the substrate.

The microcap’s morphology is characterised by L and «, and the nan-
odroplet’s by ¢ and 0, (or alternatively its volume). We will use these as
control parameters and then experimentally and theoretically determine ¢
and /,, i.e., determine how far the nanodroplet will creep over the microcap.
The experimental results are in reasonable agreement with a theoretical analy-
sis of the droplet morphology that is based on a minimization of the interfacial
energy of the system. However, there is quite some scatter of the experimental
data which we ascribe to the central role of pinning at the droplet boundaries
and thus to non-equilibrium effects. Note that we will restrict ourselves to
cases in which the apex of the nanodroplets at the rim was controlled to be
above 100 nm, so that a large portion of the droplets is beyond the range of
intermolecular interactions.
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Figure 3.2: (a, b): AFM and SEM images of one nanodroplet sitting on a microcap. Taken
from ref. [32]. (c, d): Sketch of the geometry of the nanodroplet-microcap system and axis
orientations as seen from the sideview c¢) and the top view d). The sketches also give the
notation used in the paper.

3.2 Experimental section

Chemicals and materials

One side polished silicon wafers were purchased from UniversityWafer, Inc.
(South Boston, MA). Octadecyltrimethylchlorosilane (OTS, >90%), crosslinker
(1,6-hexanediol diacrylate, HDDA), monomer (2-(dimethylamino)ethyl methacry-
late, DMAEMA), and photoinitiator (2-hydroxy-2-methylpropiophenone) were
from Sigma. Organic solvents like chloroform (AnalaR), toluene (AnalaR), and
ethanol (100%) were from Merck Pty Ltd. All chemicals were used without
further purification unless otherwise specified.

Preparation of hydrophobic OTS-Silicon (OTS-Si) substrates

In the preparation of OTS-Si substrates, polished silicon wafers were cleaned
in piranha solution (H2SO04(70%) : H202(30%) ) at 75°C for 20 min. All
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glassware used for the solution was dried for 2 h under 120°C in an oven. The
silicon was dried at 120°C for 1.5 h and soaked in 0.5 vol % OTS in toluene
for about 2 h in a sealed dry container at room temperature. After 12 h,
the OTS-Si substrates were rinsed with chloroform, sonicated in toluene and
ethanol, dried with nitrogen, and then stored in a clean container. Before use,
the OTS-Si was cleaned in ethanol and water by using an ultrasound bath.

Preparation of patterned surfaces

Patterned surfaces with hydrophobic circular domains on hydrophilic back-
ground were prepared by photolithography method [36]. Briefly, photoresist
was spun coated on precleaned silicon substrates and subsequently exposed
to UV light through a photomask. After rinsing the substrates in developer
solution and DI water, the unprotected circular domains were exposed and
chemically modified by OTS, resulting in circular hydrophobic domains with
diameters ranging from 3 to 10 um. The hydrophilic background was then
exposed by removal of the top photoresist coating. The average roughness of
the OTS-coated microdomains is about 2 nm and the water contact angles
in air on the hydrophilic and hydrophobic domains were found to be 10° and
118°, respectively..

Formation and characterization of microcaps and nanodroplets

The detailed procedure for the preparation of polymeric microcaps by solvent
exchange method was descripted in our previous work [32, 34, 37]. Precursor
polymerizable monomer nanodroplets were generated on hydrophobic OTS-Si
substrates by the solvent exchange method. The polymeric microcaps were
obtained after the photopolymerization. On the prepatterned substrate, the
droplets formed selectively on the circular microdomains [36]. After the poly-
merisation, those microcaps in the regular array were used as the substrate
for the nanodroplet formation. The nanodroplets were also produced by the
solvent exchange using solutions corresponding to the droplet liquid. The
droplets were also photopolymerized before the characterisation.

The microcaps and polymerized nanodroplets were examined by optical mi-
croscope, scanning electron microscope (SEM) (FEI Nova, NanoSEM, Oxford
X-MaxN 20 EDXS), and atomic force microscope (AFM) (MFP-3D, Asylum
Research, Santa Barbara, CA). The geometrical properties and in particular
the cross-sectional profiles of the nanodroplets and microcaps were extracted
from AFM images by 3D spherical-cap fitting. Here cut-off distances of ei-
ther 10 nm or of 20 nm were introduced near the foot of the microcaps and
the nanodroplets, to eliminate disjoining pressure effects, but the results were
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found to be independent of the exact value of the cut-off. The detailed fitting
methodology will be reported in another manuscript in preparation.

3.3 Experimental results

We studied the position and morphological features of the nanodroplets around
the microcaps for four different cases summarised in Table 3.1. The microcap-
decorated substrate in case 1 is shown in Figure 3.3 a-d. The footprint diame-
ters of the microcaps ranged from 4 to 8 pm, and their heights from 50 to 300
nm, while the contact angle was around 7° — 8° for all microcap sizes. In case
2 the contact angle of all microcaps was also around 8° as shown in Figure 3.3
e-h, while the footprint diameters of the microcaps varied from 4 to 8 um,
and their heights from 100 nm to 1 gm. The substrate and the droplet liquid
for case 3 were chemically the same as for case 2, but the microcap contact
angle was much larger, namely about a ~ 50° rather than 8° as in case 2, see
Table 3.1. In case 4 the microcaps sat on a hydrophilic substrate with a lateral
diameter of 10 um and a height of 750 nm. After the completion of the solvent
exchange on the above substrates, nanodroplets were polymerised before the
morphological characterisation.

Microcap Droplet liquid | Mean o | Mean 0
Case 1 | PHDODA HDODA ~ 8° ~ 26°
Case 2 | PDMAEMA DMAEMA ~ 8o ~ 45o
Case 3 | PDMAEMA DMAEMA ~ 500 ~ 450
Case 4 | PHDODA HDODA ~17 N/A

Table 3.1: Employed liquids for the microcap and droplet formation and resulting contact
angles for the four analysed cases.

3.3.1 Casel

The optical image in Figure 3.1 a shows the polymerised nanodroplets and the
microcaps on the substrate. Nanodroplets formed on the rim of the microcaps
as well as on the flat area. The former are referred to as 'droplets on rim’, and
the latter as ’ isolated droplets’. There are also some pearl necklace-like struc-
tures made of several alternating microcaps and closely spaced polymerised
droplets. Regular Newton rings observed on both microcaps and nanodroplets
were denser on the later than on the former, suggesting that the aspect ratio
of microcaps is smaller than that of polymerised droplets [37].

Based on the spherical cap fittings of the nanodroplets in AFM images, we
obtained its essential features: the contact angles on both the microcap surface

38



CHAPTER 3. HOW A SURFACE NANODROPLET SITS ON THE RIM
OF A MICROCAP

(a).... @~ .'.
© ‘oe®
©°%0 . @

5
0.2

= 0.1
0
(e)
P
@®
(9) (h)
1 5114
0.8 09} S
0.8 mo
=06 0.7} o © 10
= Sadl 0@ T 8
= <05+ 8 o
= 0.4 . ~
2° = 0.4} g8 0 6 ©
= ) ®
0.2 0.3 @@@ 4
02 &%
N R W, . 0.1} 2
0 2 4 6 8 10 12 0 0
Lateral coordinate [pm] 5 10 15 20
L[pm]

Figure 3.3: Properties of the microcaps in cases 1 and 2. Substrate in case 1 (a-d): In a)
and b), optical microscopy and AFM images of PHDODA microcaps are shown; ¢) shows
the cross-section profiles of three microcaps indicated in b). The circles show our cross
section analysis from AFM data and the solid lines are corresponding spherical-cap fitting;
In d), the height and the contact angle are plotted as function of lateral size of the
PHDODA microcaps. The later plot reveals the sharp distribution of the contact angle;
(e-h) are the corresponding characterizations of PDMAEMA microcaps in case 2.
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and on the flat area, 0,,. and 0y, respectively, the footprint diameter ¢, the
height, and the relative position of the droplet centre to the microcap center,
expressed by £, and {y. In Figure 3.4 ¢ and e, we compare the results of our
spherical cap fittings and cross section analysis of both ’isolated’ nanodroplets
and 'nanodroplets on rim’.

The plots in Figures 3.4 f and g show that the height of the isolated nan-
odroplets and the nanodroplets at the rim increases nearly linearly with the
footprint diameter. The contact angles of the nanodroplets on the rim formed
with the flat area and with the microcap and the ones of the isolated nan-
odroplets were all approximately 26°, independent of the nanodroplet size.
The length scales ¢y and ¢, which characterise how much the nanodroplet has
creeped over the microcap, are given in Figures 3.4 h and i. These data are
rather scattered — we will argue below that this is due to pinning effects —
but we can extract that the larger the relative size of the nanodroplet with
respect to the microcap, the larger is the distance between the droplet and
microcap base centre, and the less it creeps on the microcap, compared to the
nanodroplets length scale (contact diameter ¢).

3.3.2 Case 2

For case 2 we observed a drastically different behavior of the nanodroplets.
Both optical and AFM images (Figures 3.5 a and b) shows that the nan-
odroplets are scattered over the entire surface. Some nanodroplets sit on the
top of microcaps while others are on flat area. There was no preference to
the rim of the microcaps. In the contrary, it seemed that the nanodroplets
somehow avoided the rim, as evidenced by the absence of nanodroplets sitting
next to the microcap. While the morphological features of the microcaps were
similar in cases 1 and 2, the contact angle of the droplets on the flat area in
case 2 was 35— 50° as measured from the AFM images, which is larger than
the contact angle in case 1 (26°). The different locations of the nanodroplets
in case 1 clearly reveal that, for the same (flat) morphologic features of the
microcaps, the nanodroplets will preferentially nucleate at the microcap rim if
the droplet liquid can wet the substrate well. The different contact angle 60
of the nanodroplets on the surface thus disfavours or even prevents their nucle-
ation at the rim of the microcaps, for which we will provide energy argument
in the theoretical analysis of the system.

3.3.3 Case 3

Now we look into case 3, in which the polymerised droplets of case 2 acted
as the microcaps on the substrates. The contact angle of the microcaps was
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Figure 3.4: Case 1: a) and b) AFM images of an isolated nanodroplet and a nanodroplet
sitting on the rim; c¢) and d) are their corresponding cross-section profiles; The height e)
and the contact angle 04 f) are plotted as function of the lateral size of the isolated
nanodroplet and of the nanodroplets on the rim; g) and h) Experimental data for ¢y/L as
function of ¢/L (red circles) in comparison with our theoretical result (blue curve,

Ofs = Ome ~26°, o= 8%).
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Figure 3.5: Case 2: DMAEMA nanodroplets on surface decorated with PDMAEMA
microcaps: Optical a) and AFM b) images of DMAEMA nanodroplets sitting on the top of
the PDMAEMA microcaps and on the flat surface. In ¢) the corresponding cross-section
profile of an isolated nanodroplet and a close-by microcap is shown; In d) the contact angle
0t is plotted as function of the lateral size of the isolated nanodroplet.

40° — 60°, much higher than for the microcaps in case 2, while the droplet
liquid was the same as in case 2. This time we again found (as in case 1) that
the nanodroplets preferentially sit on the rim of the microcap. In fact, all mi-
crocaps are accompanied by one or more nanodroplets as shown in Figure 3.6.
2 Clearly, in case 3 the rim of the microcaps is preferred for the nanodroplet
nucleation.

The cross-sectional profile of the nanodroplet-microcap composites in Fig-
ure 3.6 d show a part of the spherical-cap-shape of both the microcap and
the nanodroplet. Interestingly, there is large difference in the contact angles
of the nanodroplet on the side with flat surface (6ts) and with the microcap
(Ome). The former is 35° to 55°, which is the same as the contact angle of the
isolated nanodroplets, but the later surprisingly is larger, varying from 50° to
70°. The length scales ¢y and ¢, are given in Figures 3.6 h and i, showing a
similar trend as in case 1, but now with much less scatter. The result clearly
suggests that the morphology of the microcap (i.e., its contact angle «) has
significant influence on the positioning and morphology of the nanodroplets

2We can distinguish our nanodroplets from microcaps by doping the droplet liquid with
a fluorescent dye. Our fluorescent images revealed that those individual structures were
fluorescent. So they are not lonely microcaps, but isolated nanodroplets.
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around them.

3.3.4 Case 4

Finally, we analysed case 4 which is different from the above three cases in
terms of the wettability of the flat area. The microcaps in case 4 consisted
of the same material as in case 1, but the flat area was lyophobic. After the
solvent exchange, all of the nanodroplets were exclusively located on the top of
the microcaps. Examples are shown in Figure 3.7. Part of the nanodroplet rim
overlapped with the microcap rim, suggesting that the nanodroplet nucleated
from the microcap rim and grew over the top surface of the microcap.

3.4 Theoretical analysis

3.4.1 Procedure

What physical principle does the morphology and position of the nanodroplet
determine? One may be tempted to immediately answer that it would be
the principle of minimal surface energy together with Young’s equations [38]
(which in fact reflects the minimal energy condition) for the equilibrium con-
tact angles — and indeed we will later perform a corresponding calculation.
However, before we do so, we would like to caution the reader: During the
growth process of the nanodroplets due to solute oversaturation the system
strictly speaking is not in equilibrium. In fact, for (temporarily) oversaturated
systems (leading to a growth of the nanodroplets) the resulting contact angles
depend on length and strength of the oversaturation pulse and the pinning
features of the droplet on the surface and thus on the chemical and geometri-
cal surface inhomogeneities [4, 35, 36]. In fact, in ref. [36], thanks to different
oversaturation pulses and given pinning sites, nanodroplets with different con-
tact angles are produced, though they consist of the identical liquid and sit on
the identical surface. Obviously, in that case Young’s equation is irrelevant.

Here we will first assume that pinning effects will not play a major role and
that the contact angles of the nanodroplets are given by Young’s equation.
To be more precises, there are two Young angles, namely the one for the
nanodroplet on the flat substrate

costlrs = Jsto — Vst (3.1)

Yot

and the one for the contact of the nanodroplet on the microcap,

cos e = V5t — V5L (3.2)

Vet
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Figure 3.6: Case 3: DMAEMA nanodroplets sitting on the rim of PDMAEMA microcaps:
a) Optical microscopy image of DMAEMA nanodroplets on the PDMAEMA microcaps; b)
AFM images of the isolated nanodroplets and the nanodroplets sitting on the rim of the
microcap; In ¢) and d) their corresponding cross-section profiles are given; In e) and f), the
height and the contact angle are plotted as function of the lateral size of the isolated
nanodroplets and the nanodroplets on the rim; (h,i) Experimental data for ¢o/L as
function of ¢/L (red circles) in comparison with our theoretical result (blue curve,
0fs~43°, Ome ~ 60" and a ~ 50°).
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Figure 3.7: Case 4: The nanodroplets are exclusively sitting on the top of the microcaps, as
the background surface is hydrophilic: Optical microscopy images of microcaps before a)
and after b) nanodroplet formation; c) shows a SEM image of nanodroplets sitting on the

top of microcaps.

Here v;; is the surface tension between the ¢ and j phases and s denotes the
solid phase of the flat substrate, S the solid phase of the microcap, ¢ the liquid
phase of the nanodroplet and ¢, the liquid phase outside of the nanodroplet
(outer phase), see Figures 3.2 ¢ and d.

From the direct AFM measurements we know that the microcap is spherical-
cap-shaped (orange colour in Figures 3.2 ¢ and d). The same holds for the
nanodroplets (blue colour). The reason is that gravitational effects are neg-
ligible (i.e.., small Bond number) and no other forces apart from capillarity
play any role. Therefore in our calculation we can assume that the microcap
and the nanodroplet are (part of) a spherical-cap, i.e., are locally sphere-like,
which follows from surface energy minimisation, once the energy is dominated
by capillarity.

The nanodroplet sits on the spherical-cap-shaped microcap with given foot-
print diameter L and contact angle o (and thus also given radius of curvature
R). As control parameters of the problem we take the given nanodroplet vol-
ume, and — according to table 3.1 — the given nanodroplet contact angle 0
on a flat surface (resulting in some footprint diameter ¢ and some radius of
curvature ), and the given nanodroplet contact angle 6,,. on the microcap?.
We will then calculate the radial position of the nanodroplet on the microcap.

To describe this radial position of the nanodroplets on the microcap, we
define all geometric parameters as shown in Figures 3.2 ¢ and d. In particular,

3Note that O does not vary along the contact line between nanodroplet and microcap,
due to the assumed nested spherical cap shapes.
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¢,/2 is the distance between the orthogonal projections (on the plane of the
flat substrate) of Sy,. (S),.), which is the center of curvature of the footprint
area for the microcap, and P,, which is the contact point of the nanodroplet
and the microcap closest to the apex of the microcap. Further, ¢y/2 is the
distance between the orthogonal projections of the centres of curvatures on
the plane of the flat substrate.

The length scales ¢, and ¢y fully characterise the radial position of the
nanodroplet on the microcap. Given Young’s laws (3.1) and (3.2) and the
requested locally spherical shape of the nanodroplet, which both reflect the
minimal energy condition, for given contact angles 05 and 0,,. and given
nanodroplet volume, they follow from a straightforward numerical calculation.

Before we will discuss the results, we would like to point out that, alterna-
tively to this approach, one can also directly calculate the interfacial energy
and minimise it under constraints, which will lead to exactly the same results.
The interfacial energy of the nanodroplet sitting on the microcap is given by

E = A1(vse —Vsty) +A2ve,e + As(vse — Vse, ) (3.3)

with Ajg representing the contact surface of the nanodroplet with the other
phases depending on the value of the index k (1 for flat substrate, 2 for outer
phase, 3 for microcap). We normalise Eq. (7.10) with 7., and use Egs.
(3.1)-(3.2) to obtain

~ E
E=—=—Ajcosls+ Ay — A3cos 0. (3.4)
Ve 0

In case 1 and 2 where the microcap and the flat substrate are of the same
material (0¢s = O =6), Eq. (3.4) reduces to
E = Ay — (A1 + A3) cosh. (3.5)

We then calculate the contact areas Aj, Ag, and Az in Eq. (3.4) for this
nested spherical-cap geometry. The expressions for these contact areas of the
nanodroplet are derived in the Appendix. They read

. 2 ino 2
A= (rsin9f3)27r— @(Pmc—smpmc) - %(Pd—smpd)a (3.6)
0,
Ay = 2021 (1 — cosByy) — 17 / pa(0)sinddo (3.7)
0a
and N
Ay = R? / penc (8)sinf 0. (3.8)
0a
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Here p,,. and pg are defined as the angles at which we see line segment EF
from S7,. and S/, respectively, see Figure 3.2 d. The corresponding volume of
the nanodroplet (which is imposed as constraint) is calculated by numerical
integration of the volume integral.

To minimise the interfacial energy Eq. (3.4) for a given value of the volume,
we now proceed as follows: We construct a family of spherical cap solutions
satisfying Young’s equation (Eq. (3.1)) in the point P, [39, 40] and at the
same time the volume constraint. In order to search for the dependance of Eq.
(3.4) as function of the position of point P,, we then determine which position
of the point P, minimises Eq. (3.4), which also defines the value of the contact
angle of the nanodroplet at point P,. The latter is indeed the Young angle
Ome (Eq. (3.2)) as required and from the position of P, we calculate the radial
length scales £y and £,,.

2.5 :
—0 =21
mc
—0 =26
2 me”
0 =31
mc
245
S
1
0.5 0.
0 0.5 1 1.5 0 0.5 1 1.5

oL ¢/L

Figure 3.8: Theoretical results for the distance length scale ¢y/L and the position length
scale ¢p /L as function of the microdroplet size /L, obtained from minimising Eq. (3.4) for
three different relative wettabilities 0, (namely 26°, 21°, and 31°) of the spherical-cap
shaped microcap. For all calculations we set 0, = 26° and o = 8°.

Results of theoretical analysis

The resulting radial length scales ¢y and ¢, — consistently obtained with either
of the above sketched methods — are shown in Figure 3.8, for three scenarios,
namely for one in which both the flat substrate and the microcap are made
of the same material (same Young angle), one for which the microcap is more
lyophobic (larger Young angle), and one for which the flat substrate is more
lyophobic. We see that all three scenarios have a common property: As ex-
pected, the nanodroplets asymptotically approach the rim of the microcap as
the volume of the nanodroplet approaches zero. For the case of the microcap
being more lyophilic than the flat substrate (6,,. < 0¢s, blue curve), we notice
that nanodroplets will tend to cover even the apex of the microcap (i.e., £, <0)
if the volume is large enough. Note the little kink in the curve which occurs at
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¢y, =0 (i.e., only for preferred wetting of the microcap as compared to the flat
surface 0, < 05 and at the same time very large nanodroplet volumes and
correspondingly negative ¢,), reflecting that in the calculation the position of
the point P, can never be exactly on the apex of the microcap.

Next, we compare the results from our energy minimisation procedure with
the experimental results for cases 1 and 3, in which the nanodroplets are sitting
on the rim of the microcap. For the contact angles a and 0, we take the
respective values from Table 3.1. The contact angle 6,,. on the microcap side
is obtained from our 3-D spherical fitting of the AFM data (we take the average
value). In case 1 it is roughly the same as 0y, (see Figure 3.4f), whereas in case
3 O is about 209 larger than 0y, see Figure 3.6 g, presumably due to contact
line hysteresis and pinning. We then calculate ¢y and ¢,,, which are shown in
Figures 3.4 g, h and 3.6 h, i together with the respective experimental data.

In general, we find reasonable agreement with the experimental data, giving
support to our simple macroscopic energy minimisation approach and the
assumption of the validity of the Young laws. However, the experimental data
show quite some scatter around the theoretical equilibrium curves, presumably
reflecting pinning effects and the violation of the equilibrium condition.

From the Figure 3.4 h and Figure 3.6 i we see that pinning to physical or
chemical heterogeneities causes nanodroplets of the same footprint diameter
to have quite some deviations in the values of /,. As already mentioned above,
it is this pinning which leads to the scatter of our experimental data around
the theoretical predictions, along with the individuality of the microcaps and
the nanodroplets (variations in values of a and contact angles), which cannot
be avoided by the solvent exchange method in experiments [41]. Since our
theoretical predictions are functions only of the contact angles «, 65 and 8,
(Eq.(3.4)), we calculated them with the average values of the contact angles in
our experiments and there is no way to normalise our data with the individual
Young angles to collapse them on one line.

To better understand our theoretical results, we show, in Figure 3.9 a and
b), interfacial energy values of the nanodroplet satisfying a volume constraint
(V =28.41um3) and the Young’s angle in point P, (675 = 26°) as a functionf
of the position £y of the center of the nanodroplet. We set 6,,. to be 21° in a
and 31° in b). We also plot the interfacial energy values of the nanodroplet of
the same volume, in cases where the nanodroplet completely wets either the
flat substrate or the microcap, provided that these wetting states can occur
with the corresponding Young angle as contact angle of the nanodroplet. The
global energy minimum, for different values of «, is located either on the rim of
the microcap or on the more lyophilic surrounding of the rim of the microcap,
depending on the values of the Young angles 6, and 6,,.. In Figure 3.9 d, we
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Figure 3.9: a) Interfacial energy as a function of the ratio ¢y/L for nanodroplets with
constant volume and Young’s angle (f¢5 = 26°) in point P, and Young’s angle 0, = 21°.
The values of « are 4° (red line) and 10° (blue line). If the nanodroplet is either
completely wetting the flat substrate (right hand side of plot) or the microcap (left hand
side of plot, dashed line), the values of the interfacial energy are constant . In b) we change
the value of O to 31°, while all other parameters are kept the same. With dashed lines
we show the values of the interfacial energy of the nanodroplet which is completely wetting
the microcap. Since for the same value of ¢y/L, we can construct both the spherical cap
shape satisfying our before mentioned conditions (volume, 67, in point P;) and the
spherical cap shape which is completely wetting the microcap, with the contact angles on
both sides being Oy, there are two distinctive energy lines. In c) we show a sketch of these
two spherical cap shapes (65 =26°, Omc =31°, @ =10° and ¢o/L = 0.5; blue line from b)).
All the calculations were done with the value of the footprint diameter of the microcap set
to 10um?> (L). In d we show the phase diagram in the (0 fs —Bmc) versus a space, revealing
which configuration has the global minimum of the interfacial energy. Cases 1 and 3 are in
the domain in which the nanodroplets nucleate on the rim of the microcap.

49



3.5. CONCLUSIONS

show the phase space of the nanodroplet-microcap system, where the wetting
configuration with the global minimum of the interfacial energy is indicated.
The nanodroplet will nucleate on the rim of the microcap only if the contact
angle a of the microcap is larger than the absolute difference of Young’s angles
Hmc and 6 fs

o> |05 — Omel (3.9)

In cases for which this condition is broken, from the energy minimisation
approach we find that there is no local energy minimum for the nanodroplet,
which is wetting the rim of the microcap, but a global energy minimum in
one of the two asymptotic cases, namely either the nanodroplet completely
wetting the flat substrate or the microcap. In the phase diagram, we see that
for cases 1 and 3, where nanodroplets nucleated on the rim, the contact angle
condition is satisfied (Eq. (3.9)), while for cases 2 and 4, where there was no
nucleation on the rim, we could not measure either the contact angle 64 (case
4, no nucleation on flat substrate) or the contact angle 6,,. (case 2, scarce data
of nanodroplets nucleating on the microcap).

3.5 Conclusions

The findings in this study provide insight into the nanodroplet nucleation
mechanism and their morphology on microstructured surface, and give guide-
lines for the design and engineering of microstructures for controlled droplet
position. We have experimentally and theoretically investigated the shapes
and locations of nanodroplets sitting on the rim of microcaps. Their locations
are determined by the interfacial tensions and the resulting contact angles,
as well as the volume of the nanodroplet. The positions of the nanodroplet
observed in the experiments roughly follow the trend of the theoretical predic-
tions, which are based on an equilibrium assumption. However, we also find
major scattering of the experimental data around the theoretical equilibrium
curve. The origin of this scattering is presumably pinning, leading to non-
equlibrium effects and hysteresis. For equilibrium cases, we also provide the
phase diagram, which shows us under which conditions the nucleation of the
nanodroplets will be positioned on the rim of the microcap.
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3.6 Appendix: Calculation of the interfacial areas and the
nanodroplet volume

Referring to the top view of the system represented in Figure 3.2 d, we subtract
the intersection area of the microcap and the nanodroplet footprint area, from
the footprint area of the nanodroplet and obtain

(Rsina)?
2

(rsinfyg)?

A= (rsin9f8)27r— 5

(Prme —sin pre) — (pa —sinpg). (3.10)

In order to calculate As, let us define the spherical coordinate system (r =

2 2 2 — .z — Y . .. :
Va*+y*+z4, 0 = arccos T ¢ = arctan £) with the origin of the co

ordinate system located in S,,.. In Figure 3.2 ¢ we represent the geometry of
our system on a flat substrate. If we performed a horizontal cross-section of
the nanodroplet-microcap system above the flat substrate, we would obtain
the same geometrical scheme with L, [, p;,. and pg being the functions of 6.
If we denote polar angle (0) of point P, with 64, we can write A3 as a result
of the surface integration in the spherical coordinate system,

A3:R2/0 P (0) sin 0.d0. (3.11)
A

To calculate ppc(0), we denote the coordinates of the centres of curvature with
Sime(Tmes Ymes 2me) and Sq(xq,yq, 24) and then calculate the x,+ and y;p,: coor-
dinates of the intersection, by calculating the intersection of the nanodroplet
with the microcap, where we obtain z;,; as function of z (Eq.(3.12)), where
z goes from zero to point P,. Then we calculate y;,; by solving the sphere
equation of either the microcap or the nanodrop (here origin of the coordinate
system is in Sp,c),

rg R2—1?— (24— 2me) (22 — Zme — 24)

in = — . 3.12

Pini(2) = T+ e (3.12)
We then obtain )
Yint\ 2

me(0) = 2arctan . 3.13

Pmec(0) p—p (3.13)

However, if the nanodroplet covers the apex of the spherical microcap, then
the integration eq. (3.11) will not result in the total contact surface, because
part of the spherical microcap above the point P, will not be included in this
integration. Hence, we must “manually” add the value of the surface area of
the spherical cap above the point P, on the spherical microcap. In the same
way we can calculate As: we first calculate the surface area of the nanodroplet
captured beneath the surface of the spherical microcap, and subtract it from
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the full spherical cap surface area of the nanodroplet. We can do that by
reverting the z and y axes orientation and placing the origin of the spherical
coordinate system to S;. Also, we switch the places of the microcap and the
nanodrop terms in the Eq. (3.12) to calculate pg(6). The final result is

Ofs
Ag = 2r*71(1 —cosfys) — 7“2/9 ! pa(0)sind do (3.14)
A
To numerically calculate the volume of the nanodroplet, we first calculate
the volume of a part of the full spherical cap of the nanodroplet, that is beneath
the surface of the microcap (V'). To do so, we denote the intersection surface
of the drop and the microcap on the flat substrate (Figure 3.2 d, top view
intersection area) as A;,;. The microcap and the nanodroplet surfaces are
denoted as zpc(z,y) and z4(x,y). Then, we numerically evaluate

V= [ minfae(xy), 7Gx )] 44" (3.15)
Aint

Finally, we substract V' from the value of the full spherical cap volume to
obtain the reduced volume of the nanodrop wetting the rim of the microcap.
firstinits=true|unsrt
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Sessile nanodroplets on elliptical
patches of enhanced lyophilicity

We theoretically investigate the shape of a nanodroplet on a lyophilic elliptic
patch in a lyophobic surrounding on a flat substrate. To compute the droplet
equilibrium shape we minimize its interfacial free energy, using both Surface
Evolver and Monte Carlo calculations, finding good agreement between the
two methods. We observe different droplet shapes, which are controlled by the
droplet volume and the aspect ratio of the ellipse. In particular, we study the
behaviour of the nanodroplet contact angle along the three-phase contact line,
explaining the different droplet shapes. While the nanodroplet contact angle is
constant and fized by Young’s law inside and outside the elliptical patch, its
value varies along the rim of the elliptical patch. We find that due to pinning
of the nanodroplet contact line at the rim of the elliptical patch, which has
a non-constant curvature, there is a regime of aspect ratios of the elliptical
patch, in which the nanodroplet starts expanding to the lyophobic part of the
substrate, although there is still a finite area of the lyophilic patch free to be
wetted.!

!Based on: I Devié, G. Soligno, M. Dijkstra, R. van Roij , X. Zhang and D. Lohse,
Sessile nanodroplets on elliptical patches of enhanced lyophilicity, Langmuir 33:2744-2749,
2017. Gradient descent calculation is part of the thesis
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4.1. INTRODUCTION

4.1 Introduction

Equilibrium shapes of nanodroplets, which are positioned on a patterned sur-
face, are of great interest to both fundamental research [1-8] and many in-
dustrial applications such as printing [9], microfluidics [10] and catalysis [11].
If the nanodroplet is deposited on a homogeneous substrate, it will form a
spherical cap, with a contact angle dictated by Young’s law. However, if we
pattern the flat substrate with chemical heterogeneities, the nanodroplet will
no longer form a spherical cap, but another equilibrium shape with constant
mean curvature, which is determined by the Young-Laplace equation.[12] If the
length scale of the chemical heterogeneities is much smaller than the length
scale of the nanodroplet and if the heterogeneities are regularly and densely
distributed over the substrate, the nanodroplet has the apparent contact angle
predicted by a modified Cassie-Baxter law.[13, 14] However, when the chem-
ical heterogeneities are of the same length scale as the nanodroplet itself, a
strong coupling of droplet shape and surface heterogeneities emerges. In such
a case, we have to numerically minimise the interfacial free energy of the nan-
odroplet, as in three dimensions the minimisation problem can often not be
solved analytically.[15, 16]. The numerical techniques used in calculating the
nanodroplet equilibrium shapes include the gradient descent method [17, 18],
metropolis stochastic calculations [19], hybrid energy-minimizations [20] and
lattice Boltzman calculations [21]. Wetting experiments and calculations on
isolated chemical defects, such as circular islands [22] and single stripes [23—
26], have shown that the contact angles along the three-phase contact line are
determined by the local properties of the substrate, which will be discussed in
more detail in the "Results" section.

State B

N -
Spherical cap state State A State D

State C' Spherical cap state

Nanodroplet volume

N
7
Figure 4.1: Graphical representation of all possible droplet states as seen from top view.

In this paper we analyze the morphology of a nanodroplet on a single
lyophilic elliptical patch on a flat substrate. The single elliptical patch is
an intermediate case between a circular island and a single stripe, but it is
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02 yL}

z x

Figure 4.2: Geometry of an elliptical patch defined by semi-axises a and b, with Young’s
contact angle 1 inside the patch and 65 outside the patch.

qualitatively unique, since the rim of the elliptical patch has a non-constant
curvature, which affects the nanodroplet equilibrium shape and shape transfor-
mations, via the Young-Laplace equation. In Figure 4.1 we show the possible
nanodroplet states we expect to find in this system, which will be explained
in more detail further on in the paper. These states are analogous to those
of the nanodroplet positioned on a single finite lyophilic stripe [24], with the
exception of the long cylindrical drops, which cannot be obtained due to the
curvature of the rim of the elliptical patch. We expect two possible pathways,
either through state B or through state C, as the contact line of the nan-
odroplet has the tendency to pin itself in the region of the sharp transition of
wettability (rim of the elliptical patch), which determines the value of one out
of the two principal radii of curvature.

4.2 Theoretical definition of the problem

Due to the small size of a nanodroplet, we can neglect the effect of gravity.
Moreover, for simplicity we ignore line tension contributions. Therefore, the
shape of the nanodroplet is controlled by the surface tension between the three
phases present in the system [27] (s-solid, ¢-liquid and v-vapor). If the droplet
is in contact with a flat substrate, described by the plane z =0, with patterned
chemical heterogeneities, we can write the interfacial free energy E as

E= ’VévAév +/ (Vsé(xa y) — Vsv (55'7 y)) dA (41)

AsZ

where v;; denotes the surface tension between phase ¢ and j, while A;; rep-
resents the area of the interface between these two phases. Normalizing the
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interfacial free energy E with 74, and using Young’s law for the contact angle

cosby (x,y) = Ysol2:y) = Yse(2,Y) , (4.2)

Yeu

we obtain the expression for a reduced interfacial free energy E

E= £ _ Agy —/ cosBy (x,y) dA. (4.3)
Yew Ase

4.3 Numerical methods and procedure

We minimize Eq.(4.3) under the volume constraint to obtain the equilibrium
shape of the nanodroplet. The geometry of our system is presented in Figure
4.2, where the origin of the coordinate system (x,y,z) is in the center of the
elliptical patch, with large semi-axis a and small semi-axis b. We define ¢
as a viewing angle, where the value zero corresponds to the direction of the
x-axis, while R(¢) denotes the distance from the center of the elliptical patch,
with which we will describe the contact line of the nanodroplet. We define the
Young contact angle in our system as
01, if (x y)€%+£<l
ey:{ T ay b3 = (4.4)
02, if (z,y) € HZ+4z >1

where 60, is always smaller than 02, so the surface of the elliptical patch has
an enhanced lyophilicity compared to the rest of the flat substrate.

We minimize Eq. (4.3) numerically with the Surface Evolver [17, 18] and
with Monte Carlo [19] calculations. Surface Evolver is a free software package
for minimizing the interfacial free energy, developed by Brakke, which was used
with great success to calculate equilibrium wetting morphologies [13, 23, 24, 28,
29]. After setting the initial shape of the droplet, Surface Evolver triangulates
the interface of the nanodroplet and moves the points of each triangle with
an energy gradient descent method. The contact area Agy is omitted from the
Surface Evolver calculation and we replace it with the integral of the second
term of Eq. (4.3). In the Monte Carlo calculation we use a simulated annealing
method to calculate the global minimum of the interfacial free energy (Eq.
(4.3)), with the fluid-fluid interface represented by a grid of points. During the
Monte Carlo simulation, a random shift in the morphology of the nanodroplet
is introduced, and the interfacial free energy values (Eq. (4.3)) before and after
the shift are compared. If the value of the interfacial free energy is smaller
after the shift, we accept the new morphology. If it is larger, we assign a
probability of accepting the new morphology weighted by a temperature-like
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parameter T'. This procedure is repeated continuously while T' is gradually
lowered, and the simulation ends when 7" =0 (Metropolis algorithm) [19]. In
all the presented calculations we use the large semi-axis a as our unit of length,
while we consider different aspect ratios b/a by tuning the small semi-axis b,
and different volumes V/a? of the nanodroplet. The values of the Young’s
contact angles in all calculations are set to #; = 30° (lyophilic patch) and
02 = 60° (lyophobic surface). Firstly, we position the nanodroplet center of
mass above the center of the elliptical patch and we set the nanodroplet initial
volume to V = 0.01a3. After calculating the nanodroplet equilibrium shape,
i.e. corresponding to the minimum of the interfacial free energy, we increment
the nanodroplet volume by AV = 0.01a> and recalculate its equilibrium shape.

We repeat this process until we reach V = a3.

4.4 Results

When the nanodroplet is sufficiently small to have the whole three-phase con-
tact line inside the elliptical patch, or when it is large enough to have the whole
contact line outside the elliptical patch, the nanodroplet has a spherical-cap
shape, with the contact angle defined by Eq. (4.4). We analytically calculate
the threshold volumes V,,;, and V4. of the nanodroplet, for which the nan-
odroplet is, respectively, too large for forming the spherical-cap shape inside
the patch or sufficiently large for forming the spherical-cap shape completely
covering the elliptical patch, namely

b3

Vinin = 381117;91 (cos® 01 —3cos by +2), (4.5)
a’m 3

Vinaz = 3sin% 0y (cos® Oy — 3cosby +2), (4.6)

which correspond, using §; = 30° and 6y = 60°, to Vyin ~ 0.4310% and V00 ~
1.007a3. For all the values of the nanodroplet volume between threshold
volumes Vi and V4., the nanodroplet will be in one of the following four
possible morphologies:

o Droplet state A: the nanodroplet has a part of the three-phase contact
line pinned at the rim of the elliptical patch, while the rest of the contact
line is located inside the elliptical patch. As we increase its volume, the
nanodroplet can evolve to the droplet state B or C, depending on the
aspect ratio of the elliptical patch.
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Figure 4.3: Equilibrium shapes (blue grid) of a nanodroplet with increasing volume on an
elliptical patch (red area) with aspect ratio b/a = 0.7, as obtained from Monte Carlo
calculations. The respective right figures show a top view of the three-phase contact line
(blue line).

e Droplet state B: the nanodroplet partially spreads outside the elliptical
patch, although the elliptical patch (which is more lyophilic) is not fully
wetted.

e Droplet state C: the whole three-phase contact line of the nanodroplet
is pinned at the rim of the elliptical path.

e Droplet state D: part of the nanodroplet contact line is still pinned to
the rim of the elliptical patch, while the rest of the contact line is outside
of the elliptical patch. Both state B and state C undergo a morphological
transformation to state D, once the volume has become sufficiently large.

In Figure 4.3, we present results for the equilibrium shapes of a nanodroplet
on an elliptical patch of aspect ratio b/a = 0.7 as obtained from Monte Carlo
simulations for varying droplet volumes V' as labeled. The results as obtained
from the Surface Evolver are very similar (Figure 4.4). We find that the shape
transformation proceeds via droplet state C to state D as anticipated in Figure
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Figure 4.4: Position of the contact line R(¢) and the local contact angle 8(¢) of the
nanodroplet wetting an elliptical patch of aspect ratio b/a = 0.4, as a function of the
viewing angle ¢ and for varying droplet volumes as labeled. We show R(¢) and 6(¢) for the
nanodroplet in state A in a) and b), for the nanodroplet in state B in c¢) and d), for the
nanodroplet in state D in e) and f). Solid lines show results from the Surface Evolver
calculation, while the markers present results from the Monte Carlo calculations.

4.1 upon increasing the droplet volume V. We now focus on the properties of
the three-phase contact line and the local contact angle of the nanodroplet.
In Figure 4.4 we show the position of the contact line R(¢) and the local
contact angle 0(¢) as a function of the viewing angle ¢ for different volumes
of the nanodroplet, corresponding to different droplet states. For the chosen
aspect ratio of the elliptical patch b/a = 0.4, the nanodroplet will undergo the
transformation from droplet state A to state B, therefore avoiding state C'.
We notice from these results, that along the contact line of the nanodroplet,
the local contact angle is exactly the Young’s angle predicted from Eq. (4.4),
if the contact line is locally either inside (61) or outside (f3) the elliptical
patch. However, when the contact line is exactly at the rim of the elliptical
patch, Young’s law cannot be obeyed [12, 24| and the local contact angle has
a value between 6; and 65. Although Young’s law cannot be obeyed, the net
force exhibited on the nanodroplet is zero, due to the inversion symmetry of the
system with respect to the x and y axes. When the nanodroplet volume reaches
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a) b) c)

b/a=0.4 b/a=0.7 b/a=1.0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
V/a® V/a®

Figure 4.5: Expansion of R(¢) into a harmonic series as described in Eq.(4.7), for different
values of the volume of the nanodroplet (V/a®) and different aspect ratios of the elliptical
patch: (a) b/a=0.4, (b) b/a=0.7, and (c) b/a=1. Results are presented in the same way as
in Figure 4.4: solid lines correspond to Surface Evolver calculations, while the markers
correspond to the Monte Carlo calculations.

the value of V,,,;,,, the contact line starts touching the rim of the elliptical patch,
and at this point, the local contact angle starts increasing and the nanodroplet
transforms from state A to state B. As we further increase the volume of the
nanodroplet, once the value of the local contact angle reaches 65, the contact
line of the nanodroplet will locally leave the rim of the elliptical patch and will
move outside the patch. Since the rim of the elliptical patch has a non-constant
curvature, the nanodroplet cannot have an equilibrium morphology where the
local contact angle has a value of f2 and is constant along the contact line
in regions where it is pinned to the rim. This fact determines whether the
growing nanodroplet will go through state B or state C. For a given volume,
when R(90°) = R(270°) = b and 0(90°) = 0(270°) = 09, if R(0°) = R(180°) < a,
the nanodroplet will undergo the morphological transition from state A to
state B. Instead, if R(0°) = R(180°) = a, the nanodroplet will be in state
C. Both state B and state C' eventually go through the transition to state
D. Once the nanodroplet volume reaches the value of V,,,4., the nanodroplet
equilibrium shape is a spherical cap with Young’s contact angle 6-.

We can study the transitions in a clearer way if we expand the function
R(¢) into a (truncated) harmonic series as

R(¢)

a

1=4
=co+ Z cicos (2i¢) (4.7)
i=1

In Figure 4.5, we present coefficients from Eq. (4.7) as a function of the vol-
ume of the nanodroplet, for three different aspect ratios, which represent three
different scenarios of droplet states. As already mentioned, for the value of
the aspect ratio of the elliptical patch b/a = 0.4 (Figure 4.5a), the nanodroplet
cannot wet the elliptical patch in state C, while for the value of b/a = 0.7 (Fig-
ure 4.5b), the nanodroplet cannot be in state B, which is visible from constant
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V/a

0.4 0.6 0.8 1
b/a

Figure 4.6: State diagram of the droplet morphologies as a function of the aspect ratio b/a
of the elliptical patch (with in-side patch contact angle §; = 30 and out-side patch contact
angle f2 = 60) and the reduced volume V/ a® of the nanodroplet. Solid lines present volume
thresholds calculated in the Surface Evolver calculation, while dashed lines (in good
agreement with the solid lines) present Monte Carlo results.

coefficient values for different values of the volume of the nanodroplet (contact
line has the same position for different values of the volume of nanodroplet).
Once the value of the coefficient c¢; reaches its global maximum, the nan-
odroplet goes through a morphological transition from state A, to either state
B or C, depending on the value of R(0°) and R(90°) when 6(90°) and 6(270°)
reach the value #>. As the volume becomes larger, all the higher harmonics
go to zero, as the nanodroplet becomes a spherical cap again.[22] We notice
that for a circular patch, where b/a =1 (Figure 4.5¢), all the higher harmonics
remain zero, for any volume of the nanodroplet, since the nanodroplet has a
spherical cap shape for any volume. Small deviations of the harmonics close to
the nanodroplet volume V = a? are a numerical artefact from Surface Evolver,
due to a complicated definition of the interfacial energy on the flat substrate
for this particular system. We summarise all of our results in the state diagram
presented in Figure 4.6, where we show the nanodroplet morphological states
with respect to the nanodroplet volume V' and the elliptical patch aspect ratio
b/a. Note that the presented state diagram holds for inside-patch and outside-
patch Young’s contact angles given by 6; = 30° and 6 = 60°, respectively, so
it can be quantitatively different for other combinations of these two values.
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4.5 Conclusion

We have calculated the equilibrium shapes of nanodroplets, on elliptical patches
of enhanced lyophilicity with two different numerical methods and obtained
good agreement between the two methods. With this work, we have connected
the equilibrium shapes of a nanodroplet on isolated circular islands and the
single stripe with all the intermediate cases with varying aspect ratio b/a of
the elliptical patch. We calculated all the threshold volumes at which a mor-
phological transition occurs for the given Young angles (61 = 30° and 63 = 60°),
which are summarized in Figure 4.6. The droplet states we observe are simi-
lar to those reported on single lyophilic stripes [23-25]. However, due to the
curvature of the rim of the elliptical patch, we do not observe long cylindrical
drops on the elliptical patch. For practical applications of the elliptical patch,
such as in catalysis, the separation of the aspect ratio of the elliptical patch
into two regimes, where either the state B or state C occurs, is an important
result. If we think of chemical patterning as an investment in the substrate
to be more efficient (isolation of certain liquid on the patch), then the expan-
sion of the contact line of the nanodroplet outside of the elliptical patch when
there is still area available inside the elliptical patch is an inefficient way of
patterning.
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Stable shapes of sliding drop across a
chemical step

Energy minimisation of a droplet under the influence of a body force is
performed. Employing Surface evolver, we simulate the system of a sliding
droplet, since it represents the most trivial example for an auxiliary body force
and introduces a chemical step into the system, with the body force pushing
the droplet from the lyophilic part to the lyophobic part of the substrate. We
present phase diagrams, in which we show for which droplet sizes there are
dynamically inaccessible equilibrium shapes. We also identify what physical
laws determine the threshold volume. While this given system was studied pre-
viously in the literature using contact angle hysteresis laws, we present the full
static thermodynamical solution of the interfacial energy including the contact
energy, while omitting the hysteresis effects from the contact line. !

!Based on I. Devi¢, J. M. Encarnacién Escobar and D. Lohse, submitted
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5.1 Introduction

Droplet wetting on chemically patterned surfaces has a wide range of appli-
cations and correspondingly raises both scientific [1-4] and industrial interest
[5-7]. In the case of small scale systems such as catalysis [7] and microfluidics
[5], the wetting properties dictate the efficiency of the system, while in the case
of large systems, small wetting effects on the substrates can cause changes in
the macroscopic flow in setups such as in wall-bounded flows [8]. Although
most of these processes are dynamical, there are also still a lot of unanswered
questions when it comes to stable (equilibrium) droplet shapes.

To obtain the equilibrium shape, by definition one has to minimise the
interfacial energy of the droplet, which on a flat homogenuous substrate results
in two important qualitative results: the droplet interface has a constant mean
curvature which is a function of the droplet volume (Young-Laplace equation)
and the contact angle is uniquely defined via three separate surface tensions
on the three-phase contact line (Young’s law). While the equilibrium shapes
of the droplet on the chemical patterned substrate are visually very distinctive
from the spherical cap, the previous two qualitative results are still present in
those shapes [9-13].

The biggest problem in finding droplet equilibrium shapes on chemically
patterned substrate is due to the geometrical complications which start to
arise, because the droplet contact energy with the substrate becomes a function
of the location of the contact area. The only exception to this is in the case
of a regularly patterned (dense and periodic in space) substrate, where the
Cassie-Baxter law application for chemically patterned substrates[14-16] is
still valid, resulting in a nearly spherical-cap shape with the apparent contact
angle predicted as an average contact angle of all chemical species present in
the substrate, weighted by the respective species percentage of area it covers
on the substrate. If one decreases the size of the droplet on that type of
substrate, one will reach a critical volume at which the Cassie-Baxter law will
not produce valid results, since the length scale of the contact area becomes
similar to the length scale of the pattern; therefore, from the perspective of the
droplet, the substrate can then be considered as strongly heterogeneous [14—
16]. To obtain the droplet equilibrium shape in that regime, many numerical
tools have been employed such as gradient descent methods [9-11, 17], Monte-
Carlo calculations [18] and molecular dynamics [19].

In this paper we want to explore under what conditions a stable equilib-
rium shape exist for the geometry of a chemical step on a substrate and in
addition a body force acting on the droplet. The most common example of
this kind of problem is a sliding drop on a tilted chemically patterned sub-
strate. This system has recently been explored quite a bit [20-24], however,
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Figure 5.1: Properties of the system in which we are searching for stable shapes. The tilted
substrate consists of two parts, in which the Young’s angles are 64 and 0,,, respectively.

in many cases it was done by removing the contact area contribution to the
interfacial energy of the droplet and instead of it, local contact line hysteresis
laws were introduced. The common name for such dynamical models is "con-
tact line friction method", which will from now on be abbreviated as CLFM
[22, 25]. CLFM can produce stable shapes and they were experimentally con-
firmed by Semprebon et al.[23] for values of Bond number smaller than 1.6,
while for the larger Bond numbers CLFM results started to deviate from the
experimental data. In various surfaces the contact angle hysteresis is small,
so one approaches the limit where the contributions of the contact area to
the interfacial energy has to be included and values of the advancing and the
receding contact angle reduce to the value of Young’s angle. Another common
approximation in the analysis of sliding drops is to neglect the normal grav-
ity component to the droplet, which basically means that those results are
applicable to nano/micro-droplets, but once the length scale of the droplet
becomes larger than the capillary length scale, the normal gravity component
starts to deform the droplets significantly. In this paper we will perform both
the analysis with and without the normal gravity component, to quantify its
effect.

Using Surface Evolver [26, 27], the free gradient descent software, we will
calculate the stable droplet shape on the tilted substrate with the chemical
step, as shown in Figure 5.1. The tilted substrate consists of two parts, where
the part below and above the chemical step respectively have the lyophobic
Young’s angle 6; and the lyophilic Young’s angle 6,,. Here the indices d and
stand for down and up, respectively. In the case of ; < 6,, the droplet would
prefer to travel down the chemical step even without the gravity, therefore we
will explore the phase space where 6; > 6,,. The substrate slope a denotes
both the angle which the tilted substrate makes with the horizontal plane
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and the connection between the gravity force and its components in the z — z
coordinate system.

5.2 Energy functionals

5.2.1 Omission of the normal gravity component

We will first consider the case where only the tangential gravity component
plays a role, g, = gsina. To write down the total droplet energy, we must
combine both interfacial and gravitational contributions, which results in

E = Yop Av + (1s6(2) = Y0 () Ast + P /V dV (5.1)

where v and A respectively denote surface tension and interfacial area, while
their indices indicate between which two phases the surface tension and the
interfacial area are defined, where s stands for solid (substrate), ¢ for the liquid
of the droplet and v is used for the outer (e.g. vapor) phase. The last term on
the right side of the equation is the potential energy of the droplet under the
influence of the body force, where p is the droplet density and V' the droplet
volume. To nondimensionalise Eq. 5.1, we divide the whole equation bly the
surface tension 7,y and the square value of volume length scale ¢}y = V'3 and
obtain

3 B 3 _ 3
E 5 :Avg—cosﬁy(:i)Asﬁ—Bom/ zdV (5.2)
7@€£V \%

where we have used Young’s law for the equilibrium contact angle,

cosfy (Z

) _ rYSU(‘,i) _756(”%) . {Qd, if <0 (5.3)

Yol B 0., if >0

and we have introduced the Bond number Bo, = pgxﬁ%/ /Yo, where index z
indicates that it is defined with the respect to the tangential body force acceler-
ation. Dimensionless quantities are labeled by tildes. By choosing the volume
length scale as a characteristic length scale, we perform the minimisation of
the Eq. 5.2 on the unit volume. Because of this, instead of looking at the Bond
number as the ratio between capillary and gravitational forces, it is more con-
vinient to think of Bond number as a squared ratio between the capillary and
the volume lengthscale, since it can be expressed as Bo, = (3, /(2,, where (.,
is the capillary length scale £, = \/7Yv¢/pg. determined by the influence of the
tangential gravity component g,. The second term, the contact energy term,
in the dimensionless energy is the qualitative difference from CLFM, since this
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term is used instead of the local contact angle hysteresis laws. In CLFM calcu-
lations, minimisation of the dimensionless energy without the contact energy
term is performed, while the contact line is fixed and afterwards one would fix
the interface position and update the contact line position by hysteresis law.
This process is repeated until the stable shape is obtained. In our calculation,
we minimise the dimensionless energy in a single take. The local contact an-
gle in CLFM has an allowed range between the receding and the advancing
contact angle and there is a hysteresis force locally acting on the contact line.
When the droplet reaches its stable state, the net local hysteresis force along
the contact line is a force with the opposite direction and the same value as the
body force applied to the droplet.[22] The contact angle in our calculation is
locally in a mechanical equilibrium, which means that the local contact angle
always equals 0y (Z). The mechanical equilibrium of the outer interface is the
same in both CLFM and our calculation, since the curvature has to satisfy
the Young-Laplace equation, which is

2vk = Ap — pxg, (5.4)

where Ap is the pressure jump across the interface at x =0 and & is the mean
interface curvature. In non-dimensional form Eq. 5.4 reads

2% = p— Bo, i (5.5)

where p = Ap = ¢y Ap/7,¢ denotes the dimensionless pressure jump at T = 0.
Although in Eq. 5.5 we are expressing the mechanical equilibrium, the im-
portant geometrical result is that 0k/0% = —Bo, /2, which will start playing
a dominant effect in the cases of small value of ,,, since the droplet will try
to spread itself on the substrate, increasing the range of values of Z for the
contact line. In general, the value of p cannot be obtained analytically.

5.2.2 Inclusion of the normal gravity component

As already stated in the introduction of the paper, many studies so far have
neglected the normal gravity component g, = gcosa, due to the small size
of the droplet and neglectable deformations caused by g.. To include this
interaction in the energy functional, we must add one term to the right hand
side of Eq.5.1, which results in

E = vorAug + (150(2) = Yoo () Ast + 3 /V 2dV + pgs /V [V (5.6)
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Eq. 5.6 is non-dimensionalized with the volume length scale ¢y as the charac-
teristic length scale and outer surface tension ~,, as the characteristic surface
tension. The resulting dimensionless equation is

_ E _ _ . .
E 5 = AUE—COSG}/(:E)A%—FBO%/ i‘dV—i—BOZ[ zZdV (5.7)
Yool 1% 1%

Similarly to the Young-Laplace equation (Eq. 5.4), the curvature x has to
follow

2vk = Ap— prg, — pzg. (5.8)

which in dimensionless from becomes

2k =p— Bo,Z — Bo,2 (5.9)

where p is now the pressure at the x = 2 = 0. In this case, the curvature has
to satisfy two geometrical relations, namely: 0k/0% = —Bo,/2 and 0k/0Z =
—Bo, /2. We can express the total Bond number Bo as

52
Bo= ”VQ—KV — \/Bo2 + Bo2. (5.10)
v

We can thus express our parameter space either via (Bo,,Bo,) or via
(Bo, ).

5.3 Numerical details

To minimise equations 5.2 and 5.7 under the unit volume constraint, we have
used Surface evolver [26, 27], which is a free energy minimisation software,
which represents interfaces through a triangular mesh and locally moves tri-
angle vortices in the energy descent direction. We initialise the cube with the
unit volume and position it such that the one side of the cube lies in the plane
Z = 0, while the rest of the cube is above the lyophilic part £ > 0. Initially,
we let Surface evolver minimise the energy functional without gravity terms
for a few times to relax the initial shape, which leads to a spherical cap like
shape where the contact line is positioned partially on the lyophilic part of
the substrate £ > 0 and partially on the chemical step. Afterwards, we include
the body force to the droplet and let the system equilibrate. To detect stable
shapes, we repeat series of energy minimisations, followed up with refinement
of the mesh, until the difference in energy between two cycles becomes less
than 0.005%. When convergence reaches the target value, we check the sta-
bility of the solution by introducing stochastic noise along the interface and
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letting the process repeat itself. Using the above described algorithm, we have
determined threshold values of Bond numbers Bo; for which stable solutions
are still obtainable with the bisection method. Throughout the calculation,
refinement of the triangular mesh is done in the way that we introduce the
dimensionless length scale £,,.sn, and split edges whose length is longer than
limesh, While we delete all the edges smaller than 0.44,,.s,. In all calculations,
we keep the value of 7,5, set to 0.1.

5.4 Results

We will firstly explore properties of stable droplet shapes when the normal
gravity component g, is neglected. In Figure 5.2 we show examples of such
shapes for the respective values of Young’ angle set to 6, = 60° and 6; = 120°,
since we can describe what is qualitatively happening with the droplet shape
once we start increasing Bo,. For Bo, =0, the droplet will form a spherical
cap in the region £ > 0 with the contact angle 6,. Once we introduce the
tangential body force to the system, part of the contact line moves to the
chemical step and the local contact angle on the chemical step ranges from 6,
to 4. As visible in Figures 5.2 a and b, for small Bond numbers, the front
part of the contact line is positioned on the chemical step and as we increase
the Bond number, the droplet is more strongly pushed towards the lyophobic
side. Eventually, part of the contact line will leave the chemical step and start
to spread on the lyophobic area with the constant contact angle 6;, while
the remaining part of the contact line still remains on the chemical step, as
visible in Figure 5.2.c. This behaviour of the contact line and the contact angle
is completely analogues to the droplet wetting of a single chemical pattern,
without the body force applied to the droplet [9-13]. This behaviour is very
different from CLFM calculations, since the contact line will not cancel out
the body force applied to the droplet itself [22], but rather the stable shapes
are realised via self-deformation where the mechanical equilibria of the contact
line and the interface are satisfied.

In Figure 5.2.d we show the stable morphology very close to the threshold
Bond number Bo;, which is the largest Bond number for which the equilib-
rium shape is observed. For the given value of Young’s angles (6, = 60° and
64 = 120°) the threshold Bond number is Bo; = 1.735. A numerical problem
which arises around the threshold Bond number is that the part of the con-
tact line which is positioned on the chemical step becomes so small, that the
droplet morphology cannot realise the transition from the value of the local
contact angle 6, to 6; along that part of the contact line. Therefore the stable
smooth morphology, which satisfies the mechanical equilibria expressed via

75




5.4. RESULTS

Young’s angle (Eq. 5.3) and the Young-Laplace equation (Eq. 5.5), cannot be
obtained. For the values very close to the threshold Bond number Bo,;, Surface
Evolver cannot resolve the smooth transition of the contact angle along the

chemical step. However, if we apply a small transitional shift to the droplet
morphology towards negative x-direction, the whole morphology retreats back

to its original shape, meaning that the local energy minimum is present, but
the transition is below the length scale of our mesh.
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Figure 5.2: Series of shapes for Young’s angles values of §; = 120° and 6, = 60°, for
different values of Bond numbers. Threshold Bond number is Bo; = 1.735 for given values
of Young’s angles. The camera position is same in every image, but as visible droplets can
migrate a little in the direction perpendicular to x — z plane, since energetically this does

not change the energy value

The above described contact line behaviour towards the threshold equi-
librium shape is not the same once the value of 6, becomes relatively small
compared to the value of 6;. In Figure 5.3 we show the threshold shape for
a system of values 6; = 120° and 6, = 10°. We see that the contact line
length on the chemical step is still substantial. However, once we observe the
droplet shape from a side view, we see that the droplet cross section has an
inflection point and that the value of the curvature on the back end of the
droplet has a negative value. If we would increase Bond number a bit, part of
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Figure 5.3: Threshold shape for Young’s angles values of 6, = 120° and 60,, = 10° for a value
of the threshold Bond number value Bo; = 3.232 from a tilted view (a) and side view in
which the striped line is =0 (b)

the triangulation mesh would sink below the substrate (z < 0) and the whole
morphology diverges to a nonphysical shape. This indicates that geometrical
conditions which arise from solving Young-Laplace equations is an additional
limiting factor in obtaining stable shapes. In Figure 5.4.a we show values of
the threshold Bond number Bo; (beyond which stable equilibria are no longer
possible) as a function of the equilibrium contact angles 6,, and 64. The general
rule for the threshold Bond number Bo; is that it increases with increasing
difference in wettability, but the threshold Bond number is not only a function
of 85— 0,, since as we show on the threshold equilibrium shape in Figure 5.3,
the droplet interface curvature also plays a role. For the case of 8; = 6, there
is no stable equilibrium shape, since the functional represents the case of a
tilted homogeneous substrate, where the energy minimum cannot be obtained
due to the gravity terms present in our energy functionals, which are functions
of position.

In the case of neglecting the normal gravity component in the energy func-
tional, we can analytically calculate a relation between the size of the droplet
and the maximum slope of the substrate ;... Let us revisit the definition of
Bo,, which has to be smaller than Bo;. After some rearranging, we can write

BOtgg

e (5.11)
ty

sina <

where . = \/7vy¢/pg is the capillary length determined by the total value of
the gravity acceleration g. For the case when £y < \/Bo/,, the droplet has the
stable shapes for any given substrate slope «, but in the case of ¢y > /Bo/,,
the fraction on the right hand side of the Eq. 5.11 has the value smaller than
one. Therefore, there is a maximum substrate slope a4z, as shown in Figure
5.4.b. We can write the solution of Eq. 5.11 as
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Figure 5.4: a) Threshold values Bo; as a function of both Young’s angles 6, and 6,. Once
we obtain those values, we completely describe the range of the substrate slope a as a
function of the size of the droplet in b), where ¢y, denotes the volume length scale.

1, if ¢y < \/Bo,
SIN Qypar = BETM%> it 0y > VBorl, (5.12)
14

With the result shown in Figure 5.4, we have completely solved the problem
of threshold values for the case of the energy functional expressed in Eq. 5.2,
for both the droplet size and the substrate slope.

From now on, we are going to include the effect of the normal gravity
component g,. Since we are now introducing one more parameter (either Bo,
or «) to our analysis, we will limit our attention to cases with the fixed value
of the lyophobic Young’s angle 6; = 90°, while we will still change the value
of the lyophilic Young’s angle 10° < 64,, < 90°, where the case of o = 90° was
already previously calculated and summarised in Figure 5.4.a. In Figure 5.5.a
we show what happens with the contact line for the unit volume droplet, once
we fix the value of Bo, = 1.5 and change the value of Bo,, for the lyophilic
Young’s angle 6,, = 40°. Intuitively, one would expect for the increasing value
of Bo, that the droplet shape is going to be more spread and flat, but what
we observe is that in this given system, the droplet contact line is retreating
from the lyophobic part to the chemical step and the contact area with the
lyophilic part increases. To observe threshold equilibrium shapes, once the full
gravity effect is included, we define Boj as a threshold value of the total Bond
number Bo and in the Figure 5.5.b we show the value of Bo; as a function of
the substrate slope a and the lyophilic Young’s angle 6,,. For the substrate
slope value of o =90° we just use the previously calculated threshold values
of Bo;. Once the difference between Young’s angles becomes substantial, we
observe that values of Bo; go above ten. For the case of a = 0°, the value
of the threshold total Bond number Bo; diverges as they should, since the

78



CHAPTER 5. STABLE SHAPES OF SLIDING DROP ACROSS A
CHEMICAL STEP

equilibrium shape is a pancake-like morphology on the lyophilic part of the
substrate. For almost perfectly wettable substrates and the small substrate
slope, droplets have equilibrium wetting shapes even with the volume length
scale way bigger than the capillary length scale. As stated in the introduction,
the CLFM calculation was verified for values of the Bond number ranging
between 1.0 and 1.6, while for larger Bond numbers the threshold values of
phase transition are deviating from the experimental data.[23] In Figure 5.5.c
we show the difference between the tangential component of the threshold
total Bond number Boj and the threshold Bond number Bo; obtained for the
case of omission of the normal gravity component. It is immediately clear
that with the increasing value of the normal gravity component, the threshold
tangential gravity component also becomes larger, due to the contact line
effect explained in Figure 5.5.a. Observation of this result might indicate
that instead of deviation from the experimental data being a CLFM flaw, it
might be an experimental measurement error. By ignoring the normal gravity
component, we immediately underestimate the Bond number values, since
it is immediately clear that an interaction of the normal gravity component
with the droplet changes the landscape of equilibrium shapes. Larger droplets
can also deform to the mechanical equilibrium, since the droplet tends to
retreat to the lyophilic part of the substrate with the increasing normal gravity
component. The driving mechanism for the existence of the threshold volume
is the same as in the case of neglecting the normal gravity component. For
small differences in values of Young’s angle, it is the Young’s law itself which
cannot be satisfied smoothly, while for the case of large differences, we still
run into the problem of a droplet having the tendency to go "beneath" the
substrate, i.e., to nonphysical solutions.

5.5 Conclusions

Equilibrium shapes of the sliding droplet on the substrate patterned with
chemical steps are obtained using Surface evolver. For the case of nano/micro
droplets we calculate the threshold volume for which the droplet will not be
able to be at the chemical step and we analytically connect this result to the
maximum substrate slope for which the stable shapes can still be observed.
Once we introduce the full response of the droplet to gravity, we observe that
for the same value of the gravitation tangential component, the larger normal
tangential component helps the droplet to retreat to the lyophilic part of the
substrate. Qualitatively, we show that in the case of large difference between
Young’s angle, it is Young-Laplace equation which causes the existence of the
threshold droplet volume for which the stable shapes can be observed, while
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Figure 5.5: a) Contact line position of stable droplet shapes for a fixed value of Bo, and
for the increasing Bo.. § denotes the spatial coordinate along the chemical step, but the
energy functionals expressed in Eqs. 5.2 and 5.7 do not depend on it. b) Threshold values
Boj of the total Bond number Bo for which the droplet can still obtain an equilibrium
shape. c¢) Increase in the threshold value of the tangential gravity component, once the
normal gravity component interaction with the droplet is included.

in the case of a small difference in wetability, we identify that the mechanical
equilibrium of the contact line cannot be satisfied without singularities present
in the same contact line.
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Solid-state dewetting on grooved
substrate

Once we heat a solid to the sub-melting regime, the capillary interaction be-
tween the solid interface and surrounding phase starts the atom surface dif-
fusion along the same interface. The common name for this process is solid-
state dewetting. The contact line behaviour during the solid-state dewetting has
been analysed numerically for homogenous substrates, but an open fundamental
question is how does the contact line behave, once we introduce patterning to
our system. In the present work, we have investigated influence of the physical
inhomogeneity on the contact line, mainly, how long does contact line pinning
last and how does the global dynamics get affected. To answer these ques-
tions, we developed marker code for the solid-state dewetting on the grooved
substrate for which the solid and the substrate length scales are of a similar
order. We identify two different ways of convergence to the equilibrium shape
and depending on the scenario, the contact line will either remain pinned in
the inhomegeneity or it will unpin itself very quickly. We also provide estima-
tion for the material constant of the copper, but the precision of the estimate
is up to factor of three, due to imperfections in experiments such as fingering
instabilities and groove boundaries.
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6.1 Introduction

When a solid film is deposited on a substrate and exposed to a sub-melting
temperature environment, the solid interface becomes capillary unstable and
a surface diffusion process of atoms starts deforming the solid. If the substrate
has a relatively high melting temperature and remains stable, the solid film
will start to dewet that same substrate, with a developed three-phase contact
line similar to ones observed on sessile droplets. Solid-state dewetting is the
phenomenon which has many industrial applications such as catalysis and
nanopatterning [1, 2]. From a scientific point of view, many fundamental
questions still remain unanswered, although the phenomenon is known for
longer than half of century [3]. Solid-state dewetting poses a two-way problem,
since it may start an unwanted deformation in many nanosystems, but it might
be used to produce desired solid nanopatterns.

a) b) 4

20 40 60 80
ag

Figure 6.1: a) Geometrical definitions of variables describing the substrate. b) Initial state
of the solid film deposited under the angle ay. ¢) Visual representation of the "shadow"

principle, which determines x(s.,4,0). d) On y axis, we show the area fraction initially
covered by the solid film on the left side of the groove.

Solid-state dewetting also has many similarities [4-6] to thin liquid film
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dynamics [7], which can be adressed with general liquid wetting theory [8-
10]. However, the driving dewetting mechanism differs a lot. In the case
of wetting/dewetting liquid systems, one has to solve Navier-Stokes equation
with proper boundary conditions, while the solid-state dewetting is completely
governed by surface diffusion, once the temperature of the system is sufficiently
high to make the solid interfacial layer sensible to the capillary interactions,
but the temperature must still not be so high that the whole solid melts. Even
though different mechanisms drive dewetting processes in liquid and isotropic
solid systems (weak crystallography effects), an additional striking similarity is
that the final equilibrium shapes belong to the same family of shapes; namely
they are solutions to the Young-Laplace equation, which implies a constant
curvature equilibrium shape along with the equilibrium contact angle, more
commonly known as the Young’s angle.

Solid-state dewetting on the patterned substrate was experimentally stud-
ied by many authors [2, 11-15], while the numerical research was concentrated
on smooth curved substrates [16]. Since the Young’s angle and the constant
curvature shape are direct result of minimising the interfacial energy of the
system, we will use the same argumentation in providing boundary condition
for the inhomogeneity on the physically patterned substrate, which for liquids
was studied on both chemical [17, 18] and physical [9] patterns. In previous
work of some of the authors, van den Beld et al. [15] performed the experiment
of the copper dewetting on a grooved silicone substrate (Figure 6.1.a), where
the contact line pinning was observed at the groove edge. In the present work,
we will explore given geometries with the two dimensional numerical scheme.

The grooved substrate and all of parameters are introduced in Figure 6.1.a,
along with the properties of the initial state of the solid film. The grooved
substrate consists of a flat part which has width a and the groove which
is characterised by the width b. To completely define the system geometry,
we need the value of the groove angle ;. We use the same properties of the
substrate as van den Beld et al. [15]; namely, we will fix the value of the groove
angle to 54.7° and we will set the ratio between b and a to 2.5. With these
restrictions, the only control parameter for the substrate geometry is the length
scale a (Figure 6.1.a). In the experimental study, the copper thin film was
deposited on the substrate by the e-beam evaporation under different angles,
resulting in different initial profiles of the copper film over the flat substrate
and the left groove wall (Figure 6.1.b). If we deposit a film of height H (the
length scale with which we normalise spatial and time coordinates) under
the deposition angle oy, the deposited film has two different dimensionless
heights: the film height above the flat part of the substrate hf = cosay and
the film height above the groove hy = cos(ag — y). To determine how much
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of the groove is covered by the solid film initially, we define two conditions.
If ag < (90° — ag), we set that 95 percent of the groove wall is covered by
the solid film, so that we do not have to deal with the presence of the right
groove wall in the initial stages of the dynamics, since in experiments, the left
groove wall was never fully covered initially [15]. However, if ag > (90° —ay),
we have to determine using the "shadow principle" (Figure 6.1.c), with which
we predict the position of the contact line by calculating how much area of
the left groove wall was not exposed to the e-beam evaporation in experiments
[15]. In Figure 6.1.d we show the area fraction of the left groove wall which is
initially covered by the solid film. For the left side of the solid film, we always
initially set the contact line in the left groove edge point. To summarise, with
the width of the flat part of the grooved substrate a we define the substrate
geometry, while with the deposition angle oy, we define the initial shape of
the solid film.

For isotropic solids (surface tension is constant on the solid interface), the
chemical potential is linearly proportional to the curvature [19] and the solid-
state dewetting is governed by|3]

it = BV*K (6.1)

where 4 is the interface velocity in the direction of the interface normal vector
i (Figure 6.1), K is the interface curvature, while the material constant B is
defined as B = yDv$2?/kgT, where 7 is the solid surface tension with the outer
phase, D is the surface diffusivity, v is number of moving atoms per unit area
in the interfacial layer, () is the atomic volume, kp is the Boltzmann constant
and T is the temperature of the system. To make Eq. 6.1 dimensionless, we
will normalise all spatial coordinates with the solid film height H, while we
will normalise time with H*/B. The resulting dimensionless equation is

u=VK (6.2)

where u is the dimensionless interface velocity and K is the dimensionless
curvature. The dimensionless equation reveals an interesting property about
the material constant B. While it affects how fast the solid-state dewetting
happens, it does not play any role on temporary morphological states of the
solid film.

Let us describe the film interface with functions z(s,t) and y(s,t), where s is
the dimensionless arc length parameter (Figure 6.1.b) and ¢ is the dimension-
less time variable, while x and y are spatial coordinates in the dimensionless
space. We set the origin of the (x,y) coordinate system in the left groove edge
point (2(0,0) =0). Additionally, we define the arc length parameter to start
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from the left contact line (s = 0), to the right contact line (s = s¢pq). Firstly,
we need to set the contact line on the substrate, hence we impose:

0(0,1) = {O, if 0 <z(0,t) <a (6.3)

(a—z(0,t))tanay, if a<z(0,t) <a+b

In the same fashion, we define the boundary condition for the position of
the contact line on the right side of the film

0, if 0 <x(sepa,t) <a
Y(Sendst) = , (sena;) (6.4)
(@ —x(Send,t))tancy, if a < z(Send,t) <a+0b
On both ends of the film, we set the zero-flux boundary condition
oK oK
el - =0 (6.5)
Os s=0 ds S=Send

which is a sufficient condition to impose mass conservation on the solid film.

To mathematically close the problem, we need one more condition, which
is the contact angle boundary condition. The equilibrium contact angle for
the solid film during the solid-state dewetting process is Young’s angle, which
is uniquely defined by three separate surface tensions present at the contact
line. If we denote Young’s angle with fy, we can define the contact angle
boundary conditions for the left side of the solid film;

Jy(s,t)
0x(s,t)

:{mn@3 if 0 <x(0,t) <a (6.6)
(s=0)

tan(fy —ay), ifa<z(0,t) <a+b

while for the right side of the solid film, the contact angle boundary condition
18

0y(s,t)
0x(s,t)

(6.7)

_ | —tanby, if 0 < z(Send,t) < a
(5=5end) —tan(fy —ay), if a <x(sepd,t) <a+b

However, there is a specific boundary condition we have to define for the
groove edge (x = a). Since the contact angle boundary condition is completely
analogous to the liquid wetting theory, we are going to implement the scheme
of that theory in handling contact line dynamics on the groove edge. We
will explain this boundary condition for the left contact line, once it arrives
to the groove edge point z = a,. Once the contact line reaches z(0,t) = a,
it will have the Young’s contact angle, but if we calculate next time step of
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the dynamics (Eq. 6.2), we are facing a situation where we cannot satisfy
the boundary conditions represented in Eqgs. 6.3 and 6.6 at the same time.
Therefore, we will fix the position of the contact line in the groove edge point,
until the film morphology rotates enough, so that the combination of boundary
conditions for the left contact line can be satisfied. Let us denote the slope
0y(0,t)/0x(0,t) with . We can ten write the last boundary condition as

z(0,t) = a,if Oy >0 > b0y —ay and x(0,t) =a (6.8)

For the case when the left contact line is positioned in x = 0, we define the
similar boundary condition, but we would like to note that this happens very
rarely in early stages of dynamics

z(0,t) = 0,if 0y <0 < by +ay and x(0,t) =0 (6.9)

Although we are just fixing the contact line in the edge point, this is indeed
the contact angle condition which will make solid-state dewetting to behave
analogues to the quasi-steady growth and shrinkage of droplets and bubbles
on both physically and chemically patterned substrate [9]. Even though the
solid-state dewetting is qualitatively different than the liquid dewetting, ener-
getical argumentation for using the boundary condition expressed in Eq. 6.8
is identical to the Young’s angle boundary condition, which we are imposing
on homogeneous parts of the substrate (Eqs. 6.6 and 6.7).

6.2 Numerical scheme

To solve the solid-state dynamics (Eq. 6.2), we used a marker numerical
scheme, similar to the one developed by Wong et al. [20], where we describe
the solid film interface by positioning points (markers) on the interface. We
evaluate the normal velocity u for each marker using Eq. 6.2 and then we
perform forward time integration to calculate new positions of the markers.
To evaluate the dimensionless curvature, we calculate the divergence of the
normal interface vector along the solid film interface. Since the curvature is a
function of x and y, which are functions of the arc length parameter and of
time, we can rewrite the Laplacian present in Eq. 6.2 to obtain

_°K
~ Os2

For calculation of the curvature and its Laplacian, we use central-difference
spatial derivatives for unevenly spaced points. Although some sources claim
[21] that one of the biggest flaws of marker methods is the need to make points
equidistant at every time step, which makes needed computational power even

u

(6.10)
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bigger, we do not perform this process on every time step. However, if we
do not make points equidistant at all during the calculation, we will face
problem of having small time steps in our calculation, which also slows down
the calculation, which means that we need to balance this two effects, to
optimise the code. Since Eq. 6.2 is a fourth-order partial differential equation,
we have to take into consideration that our maximum time step dt will be
proportional to the fourth power of the smallest distance between points on
the whole interface min(ds). We can express this as

min(ds)*
— N\ A1
dt 8 (6.11)

where C' is a constant which cannot be uniquely defined for any fourth-order
differential equation solving method, but depends on mathematical stability
of all the numerical schemes used during the calculation [22]. We report that
our finite difference scheme was stable for value of C'=10. We make points
equidistant every 5000 time steps with the spline interpolation, since the re-
sulting interpolation function will be continuous, not only for x and y, but
also for the curvature.

To validate the present numerical scheme, we will compare our results to
the groove boundary dynamics in which the analytical solutions is known
[3] and for the case of the semi-infinite solid film [20] for which the contact
line in later stage of dynamics asymptotically approaches scaling x(0,t) ~ t3
as Young’s angle goes to zero. For both cases the analytical solution was
obtained using the small slope approximation. In Figure 6.2.a we show that the
groove boundary aspect ratio (ratio of the groove boundary width w and the
groove boundary depth d) is constant throughout the dynamics as predicted

by Mullins [3]. In Figure 6.2.b we confirm t5 scaling law for the contact line
dynamics of the semi-infinite film.

6.3 Results

In Figure 6.3, we show the time evolution of the dimensionless interface and
curvature for fixed values of the groove length scale a, the deposition angle
agq and Young’s angle ¢,. What is immediately noticeable on the curvature
time evolution, is that the behaviour of the system is local, which results in
propagation of the curvature along the interface in a wave-like fashion. The
initial details of the system become important once these propagations of cur-
vature collide. In the given system, there are two big initial sources of these
kind of wave-like behaviour of curvature values: contact angle boundary con-
dition (Egs. 6.6 and 6.7) and singularity points present in the initial interface
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w/d
(0,t)
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Figure 6.2: In d we show comparison of our numerical scheme to the Mullins’s analytical
solution for thermal grooving. Mullins predicted that the ratio of the groove width w and
the groove depth d is constant throughout the grooving process. For the case of the 100°
groove angle, with the red line we show Mullins’s prediction [3], while with the blue line we
show the value of this ratio in our numerics. The spiky nature of the blue line is due to the
finite element representation of the interface and interpreting the marker with the highest
value of y as the groove apex. In b) we validate the scaling predicted by Wong et al. [20]
for the late stage solid-state dewetting of the semi-infinite film.

(points of discontinuous curvature). Dornel et al. [23] showcased that this
kind of curvature interplay can cause a finite solid film on a flat homogeneous
to split into isolated islands or remain compact as one body.

We are interested in exploring the phase space of variables a, fy and a4, for
which the solid remains compact as one body and for which there is only one
contact line. In Figure 6.4 we show qualitatively morphologies, which break
up the body or create a new contact line. For the cases where the substrate
length scale a and the deposition angle a4 are too small, the solid is too big
to form the equilibrium shape inside the groove, so the new contact line is
formed on the right groove wall, once the solid interface touches it. However,
if these two parameters are way too big, then the solid interface will touch
the groove edge (x = a) and the solid will split into two isolated solid islands.
In the regime, where the solid stays as one body and doesn’t form additional
contact lines, we are interested how the Young’s angle affects the dynamics.

The boundary condition expressed in Eq. 6.8 fixes the position of the con-
tact line, while the interface rotates enough to satisfy contact angle boundary
condition either inside or outside of the groove. Since the interface markers
only move in the direction normal to the solid interface, the neighbouring
marker of the one fixed in the groove edge, will move along the circular path
(up to numerical error). If we denote the velocity of that marker with u;, we
can write

up = V2K (s = s1,t) (6.12)

where s; is the value of the arc length parameter of the first neighbouring
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Figure 6.3: Time evolution of the interface in the dimensionless space (left column) and the

evolution of the dimensionless curvature (right column). In the first row, we showcase the

initial state for the values of a =2, 6, = 130° and ay = 50°. Initial singularities are quickly

smoothened by the solid-state dewetting and the curvature information starts propagating
along the interface.
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2 ‘ New contact line

0 1 2 3 0 2 4 6

Break up

15|

-20 L . .
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x
Figure 6.4: Qualitative shapes of all possible results of the solid-state dewetting. In a) we
show the case where the new contact line is formed (a =1.0,0y = 100° and oy = 10°). The
compact bodies, which are main interest of this work, form spherical caps on the left side of
the groove as shown in b)(a = 2.0, §y = 100° and oy = 10°). In the case of a large value of
the substrate length scale a, such as the one shown in ¢), the break up of the body happens
at the groove edge.

marker. In terms of the contact angle, since u; = 31%, this equation can be
expressed as

a0 V2K (s = s1,t)
ot S1

(6.13)

If we recall that the mass conservation boundary condition expressed in
Eq. 7.5 and the local behaviour of the governing equation (Eq. 6.10), we
can shed more light on the behaviour of the interface, once the left contact
lines becomes pinned in the groove edge x = a. In discretised representation
of the solid interface, second derivative of the curvature is defined via cur-
vature values in a marker in which we are evaluating the curvature, along
with curvature values in the neighbouring markers. Therefore, the velocity
uj only depends on the curvature gradient (implicitly) between the first and
second neighbouring marker of the contact line marker. However, since the
curvature has the wave-like propagation along the interface, curvature gradient
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informations arrives to the contact line, where due to the mass conversation
boundary condition, those gradients start to diminish. With this in mind, we
can state that the time evolution of the velocity u; depends on the curvature
profile along the interface. If we look at the contact angle evolution which is
explicitly expressed in Eq. 6.13, the pinning boundary condition (Eq. 6.8)
starts revealing interesting properties of the solid-state dewetting dynamics,
once physical inhomogeneities are present in the substrate. What this implies
is that if the curvature profile is very close to obtaining constant curvature
shape, there may not be enough of the curvature gradient close to the contact
line to unpin from the groove edge, while if the solid still has large curvature
gradients, it will unpin easily. This is observable in analysing final shapes
of the dynamics, which are obtained once the difference between highest and
lowest curvature value has a deviation of less than 0.5%, since the dynamics
become really slow afterwards. For small values of the substrate length scale
a, the equilibrium shape has the contact line pinned in the groove edge, while
once we start increasing the substrate length scale, in the moment when the
contact line touches the groove edge there is much more curvature gradient and
the contact line unpins at the later stages of the dynamics and the contact line
of the equilibrium shape will be on the left groove wall (for both left x(s=0,t)
and right z(s = Sepq,t) contact line). If we continue increasing the substrate
length scale, we will eventually finish up in the regime where the solid splits in
two isolated islands (Figure 6.4.c). Although we describe this phenomenon in
respect to the substrate length scale a, it is not this length scale alone which
dictates pinning/unpinning scenarios. If we observe curvature profiles for the
given dynamics, once the solid starts final stage of converging to the constant
curvature shape, there are two scenarios how the equilibrium shape is ob-
tained. In Figure 6.5 we show curvature profiles of two different systems, once
they reach the convergence of the 1%, where we identify two different scenarios
of the convergence. In the first case, which we will call two-way convergence,
there is a curvature global extreme for 0 < s < s.,,q While the curvature value
for s =0 and s = s¢,,q are almost equal. Since the atoms migrate from higher
chemical potential to lower chemical potential regions, it is visible that there
are two present fluxes of atoms in the system, where both fluxes either bring
atoms away from or towards to both contact lines. In second case, one-way
convergence, function K (s) is monotone, so the flux of atoms is directed from
one contact line, either left or right, to the other contact line. This two cases
affect the system as it is visible in the Figure 6.5.e, where we show {4, which is
the value of dimensionless time variable t once the solid shape has converged to
the constant curvature shape, as a function of substrate length scale a, where
we see that there is a local maximum for any given value of the deposition
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angle or the Young’s angle. If we compare values of t.; to the time in which
contact line remains pinned t,;, (Figure 6.5), we notice that local maxima for
both values are around the same value for the substrate length scale, meaning
that the pinning itself dictates how long it will take for the solid to reach the
equilibrium shape via solid-state dewetting and wether or not, the equilibrium
shape will have pinned contact line. In the case of the two-way convergence,
the left contact line will continue to migrate deeper down the groove, but since
the solid-state dynamics slow down over time, it will take long time for the
solid to become constant curvature shape, although two-way convergence is
happening until the end.

Since in the experiments, the width of the system (third dimension) is
much larger than the substrate length scale or the height of the initially de-
posited solid film, the two-dimensional approximation is appliable, but the
fingering instabilities and groove boundary are observable and important in
third dimension, but even if we would extend our numerical scheme to be
three-dimensional, these two effects would have to be included either in the
initial shape of the solid film or include them in stochastic fashion. Due to the
high temperatures in which the experiment is performed, it is still not feasi-
ble to observe experimentally solid-state dynamics, but we can only analyse
the initial and the final state of the solid in the experiments. Because of this
limitations, we can only try to evaluate the material constant B of copper.
To perform this evaluation, we will compare the position of the left contact
line in the experiment, which is performed for 15 minutes, with the numeri-
cal data which has full time dynamics information stored in functions x(0,t).
We will measure standard deviation of the function x(0,¢) compared to the
experimental data for the corresponding value of the substrate length scale
a and we are searching for a time tz; for which the standard deviation is at
minimum. In Figure 6.6.f we showcase tr; as a function of deposition angle
values g used in the experiment. As we can notice, the variable t;;; stays in
the same order of magnitude and it has tendency to decrease with the higher
deposition angles ay. For higher deposition angles, initial heights of the solid
hf and h, are smaller compared to the substrate length scale a, so the groove
boundary affects the system to a higher degree than when these heights are
of similar size to the pattern substrate. In the current literature, so far there
are no reports on the exact values of the material constant B, rather reported
values deviate up to an order of magnitude [2, 24, 25|, which is the accuracy
exhibited in comparing our numerical results to the experimental data. Al-
though the reported values are for the silicon (S7) solid-state dewetting on the
silicon dioxide (Si03) substrate, the existing problem in precisely evaluating
the material constant B is not unique for that system alone. Once we plot

94



CHAPTER 6. SOLID-STATE DEWETTING ON GROOVED

SUBSTRATE
CL) ‘ : : : b) 0.572
oK
0.7 0.571
0.57
0.698 - 0.569
N NS
0,696 0.568
0.567
0.694 [ Atom migration: 0.566
.
: ‘ ‘ : 0.565 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
sls sls
end end
C) 130 : ‘ ‘ d) 200
—a=2
120 —a=38
150+
110
® 100 _&100¢
90
50+
80
70 0
0 20 40 60
t
6) 200

150

_8100

Figure 6.5: a) Curvature profile for the one-way convergence for the case of a = 2,
0y = 130° and oy = 30°, once the maximum deviatation of curvature is 1%. Atom
migration of the solid in this case happens from the right to the left contact line. b)
Curvature profile for the two-way convergence for the case of a =3, 6y = 130° and
ag = 30°, once the maximum deviatation of curvature is 1%. Atoms migrate away from the
contact line. ¢) Time evolution for the interface slope at the contact line for cases
expressed in a and b part of the figure. d) Pinning time of the contact line for a different
values of the deposition angle ay and the substrate length scale a. e) Time necessary for
system to converge to the constant curvature shape.

x(0,t ;) for all substrate length scales versus the experimental data, we can
observe that the pinning effects are indeed stronger in the experiment than
predicted by theory for smaller substrate length scales, where in numerics the
unpinning scenario occurs. We do not report the comparison of the phase
space in which the pinch-off happened, since the phenomenon is influenced by
imperfections in the experimental setup and in the experiments, for a set val-
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Figure 6.6: In subplots a) —e) we show the comparison of the experimental data from van
den Beld et al. [15] with the present numerical results. Red markers represent
experimental measurements, while the solid blue line represents (0, ;) for different
values of the substrate length scale a. Deposition angle ay for the subplots a) —e) is
respectively 25°, 35, 45°, 55° and 65°, while the reported Young’s angle is 103° [15]. We
assume that dimensionless time corresponds to the dimensional time of 15 minutes and we
estimate ;4. In f) we show estimated values of ¢y;; versus the deposition angle ay.

ues of the deposition angle and the Young’s angle, the results are not unique
on the substrate with the fixed length scale a, which means there is a hys-
teresis effect present in the experiments. To summarise, in the regime where
there is only one contact line (experiments were not performed in this regime)
and the solid remains compact, we manage to obtain values of the material
constant B, which deviate up to a factor of about three, while the order of the
material constant is 1073um?/s. Although there seems to be trend between
the deposition angle ay and ¢;;, we do not intend to make any claims on the
physics of it, since the source of this trend may be pure numerical.
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6.4 Conclusion

In the present work, we have investigated the effect of physical inhomogeneity
on the substrate and its influence on the solid-state dewetting. Since there is
no migration of atoms inside the solid, but only along the interfacial layer of
the same solid, qualitative difference to the liquid wetting/dewetting dynamics
become even more exposed in the case of contact line pinning. We identify two
different mechanisms of convergence to the constant curvature shape, which
determine how fast the equilibrium shape is resolved and whether the contact
line unpins itself from edges of the geometry. All of the qualitative descriptions
of phase states have also been observed in the numerical results, however, the
quantitive agreement is still not present, since the experiments themselves
still do not give reproducible results, due to the substrate heterogeneities,
fingering instabilities and groove boundary effects which might nucleate along
the interface. In a regime, where the solid still remains compact with a single
contact line, we show that by comparing experimental results after fifteen
minutes to the numerical data, we might be able to evaluate the material
constant B for a given material systems. The deviation of our estimates are
of factor three, however due to the technical limitations, this improves the
predictions from the literature which so far were only able to provide estimates
up to the order of magnitude.
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Solid-state dewetting on chemically
patterned surfaces

While solid-state dewetting has recently been investigated numerically and ex-
perimentally, the direct effect of the substrate on the dewetting dynamics is
still not completely clear. To shine light on this effect, we investigate solid-
state dewetting on chemically patterned substrate, namely on patterns with
lines. Such a substrate introduces new contact line dynamics and complicates
the phase space of equilibrium shapes, not only due to the existence of multiple
energy minima under the volume constraint, but also because of limitations
in phase space where the same equilibrium shapes can be formed on aforemen-
tioned substrate. We directly compare the static solutions of the Young-Laplace
equation to the dynamics equilibrium solutions of the solid-state dewetting,
which reveals that the solid-state dewetting selection between energetically pos-
sible equilbrium shapes, is not driven by the value of the interfacial energy, but
rather purely by contact line dynamics.
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7.1 Introduction

If a thin solid film is deposited on a substrate and the system is heated to a
sufficient temperature, the solid film can become unstable. Due to capillary
interactions, the solid will minimise its interfacial energy by diffusing atoms
via surface diffusion. The described process is called the solid-state dewetting
and up to date, many fundamental aspects of it remain unanswered, although
there are many industrial applications in which the precise control of the pro-
cess would enhance many systems.[1, 2] The capillary interaction along the
interface also results in the existence of a three-phase contact line and, just
as in the case of liquids [3-5], the equilibrium contact angle is formed accord-
ing to the surface tensions of all three phases. Although there is no detailed
experimental study of the contact line dynamics in the literature, since it is
hard to perform accurate measurements in the high temperature environment,
phenomenological experimental observations indicate that the global dynam-
ics is in many way driven by the local contact line behaviour. Some of the
indicators are the pinning effects which arise in solid-state dewetting [6], along
with the observations of hole formation and dewetting fronts inside those holes
[7-9], which are qualitatively similar to the outer contact line in solid films.
In our recent work [10], we showed that contact line pinning at a geometric
singularity causes the solid to locally rotate around the pinning singularity,
which eventually leads to the existence of two types of convergences to the
final equilibrium shapes: the atoms travel from one side of the solid film to
the other or they migrate from both contact lines to the solid film centre.
The obvious follow-up question is: What is the influence, on the of the other
liquid-like contact line behaviours on the macroscopic dynamical properties.
To analyse a related scenario of solid-state dewetting, in this paper we
focus on a chemically patterned surface. To our knowledge, there is not yet
a single experimental study of such a system. In their recent review, Leroy
et al. [2] summarised all combinations of film/substrate which were used and
they indicate that there are only three systems which can be considered a
model one, out of which silicon-on-insulator (SOI) systems are known due
to the lack of grain boundary effects in those systems|[11], while setups of
Ni/MgO][12, 13] and Ni/Aly03[14] have been recognised as such in the recent
years. The presence of only three combinations of material which can be
studied experimentally as model system may explain why there are no studies
yet with chemical patterns. Not only will one have places where the contact
line would have interactions with all four phases present in the system, but
the merging point between two chemical species must not reflect the groove
boundary effect. Despite of all technical difficulties present in realising such a
system, the motivation for exploring the phase space of such a system also is to
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improve the fundamental understanding of the complex behaviour of the solid
film contact line, such as slip effects or macroscopic effects of wetting different
chemical species locally along the contact line. The same type of boundary
conditions can be realised through the physical patterning of the substrate,
such as grooves or pillars, but geometrical problems starts to arise such as
break-ups of compact solid films or the creation of the new contact line, along
with the dependance of boundary conditions on way too many geometrical
parameters.

a) L

x=0.25 =075
' '

Y-
T

s z=0 wm=1

Figure 7.1: In a) we define geometrical properties of the substrate and the initial solid film
morphology. 6,1 and 6,2 respectively denote the Young’s angle of periodic stripes. The
solid film is initially a rectangle of height H and length L. With s we define arc length

parameter which has a zero value on the left solid side. In b) we characterise equilibrium
shapes of solid-state dewetting with the contact radius r and the contact angle 6. The
point CM (Zem,Yem) is positioned in the solid centre of mass.

In Figure 7.1.a we show the schematics of the system with all spatial coor-
dinates made dimensionless by the spatial period of the chemical pattern £..
Substrate is patterned with periodic stripes of two different material, where
each individual stripe has a width of /., /2. Throughout the calculation, we
set the Young’s angles to 6,1 = 120° and 6,2 = 100°, respectively. To properly
define Young’s angle, we write

0, = {eyl, if 2 <0.25 or z*>0.75 (7.1)

Oy2, if 2> 0.25 and 2* < 0.75

where with the x* =| x| — || x| /¢:n| we denote the remainder of a division
between the absolute value of the spatial dimensionless coordinate x and the
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period of the chemical pattern /.. The solid film interface is described with
functions xz(s,t) and y(s,t), where s is the arc length parameter and ¢ is the
dimensionless time. We assume that the solid film does not change along the
third dimension, which makes current problem two-dimensional. The contact
line on the left side of solid film has value s = 0, while on the contact line on the
right side has value s = s¢p,4, where s.,,4 is the interface length (Figure 7.1.a).
In the case when the contact line crosses the symmetry point x = 0, such
as x(0,t) >0 and x(Sengd,t) < 0. To account for this problem in the analysis
ahead, we define for either left or right contact line

z*=|1—a| if 2(0,t) >0 or z(Sepg,t) <0 (7.2)

7.2 Theoretical and numerical details

There are three important aspects of the given problem which will be analysed
separately: solid-state dewetting, set of the specific boundary conditions we
need for describing transitions of contact line from one chemical species to the
other and the Young-Laplace equation. Solid-state dewetting is governed by
surface diffusion of atoms along the interfacial layer of the solid, in the direction
of the negative chemical potential gradient [15, 16]. For isotropic solids, such as
in the model systems which were mentioned in the Introduction, the chemical

potential linearly depends on the curvature and the governing equation reads
[16]

it = BV2*K (7.3)

where @ is the interface velocity in the interface normal vector direction,
K the curvature, @2 the surface Laplacian operator along the solid interface
and B =yDvQ?/kpT is the material constant which affects the time scale of
the whole system, while it does not alter the morphological landscape through
which the solid will go throughout the dewetting process. Material properties
which determine the value of the material constant B are the surface tension
of the solid with the outer phase 7, the surface diffusivity D, cross-section
density of migrating atoms v, the molecular volume €2 and the thermal energy
of the system kgT. To make the Eq. 7.3 dimensionless, all of the spatial
coordinates are normalised by the period of the chemical pattern /., while
the time is made dimensionless by normalising it with Eﬁh /B. The resulting
dimensionless equation is

u=VK (7.4)
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where w is the dimensionless interface velocity in the interface normal vector
direction, K is the dimensionless curvature, while V2 represents the dimen-
sionless surface Laplacian operator. Firstly, we will introduce only boundary
conditions which are already common for the solid-state dewetting. To ensure
the mass conversation of the solid, we have to set the curvature gradient on
the contact line to zero,

oK
0s

0K

$=Send

The contact angle boundary condition sets the contact angle to the value
of the local Young’s angle 6, (Eq. 7.1), for the case of the contact line position
not being positioned on the transitions from one chemical species to another

Dy(s,t) _ Oy(s,t)
0x(s,1) | (5=0) ~ Ox(s,t)

= tanf, (7.6)
(s=end)

where the opposite sign for contact line on the right and left side of the
solid film accounts for the opposite relative position between the contact line
and the solid contact area with the substrate. For the case of the contact line
positioned on the transition between chemical species there are four possible
scenarios: receding contact line motion from the smaller to larger equilibrium
contact angle, receding contact line motion in the opposite direction and the
advancing contact line motion for both cases.[17, 18] Values of the Young’s
angles in the current work define the region with the equilibrium contact angle
0y1 as an region with the higher equilibrium contact angle. Although there are
four possible scenarios of the contact line motion from one chemical species
to another, one of two contact line events will occur: slip or pinning. Pinning
occurs when the contact line recedes from the 6,1 region to the 6, region,
or when the contact line advances in the other direction. Pinning fixes the
position of the contact line in the transition point, until the local morphology of
the solid rotates enough for satisfying boundary condition expressed in Eq. 7.1.
This boundary condition is completely analogues to the case of the solid state
dewetting over the physical singularity and the liquid wetting of chemically
patterned substrate. In the case of the receding contact line motion from the
02 region to the 0,1 or the advancing contact motion in the other direction, in
the moment when the contact line touches the transition point, we abruptly
change the value of the contact angle, since the equilibrium contact angle
cannot be formed in that transition point. Here lies the big difference between
the behaviour of liquid drops and solids on chemically patterned substrates.
In the case of liquid drops, the nonzero slip length causes larger changes in the
morphology, since throughout the bulk there is an hydrodynamical flow, but
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in the case of solids, the slip is truly local and only affects the position of the
contact line. In many reports of either growing or shrinking droplet[19, 20],
stick-slip contact line motion is observed, while the experimental evidence of
the exact behaviour of the contact line slip for solids is nonexistent at the
moment. Let us denote the current contact angle absolute value on the left
side of solid 6, and with 6, on the right side. To mathematically summarise all
boundary conditions expressed in this paragraph, we will first express pinning
boundary conditions, where for the left contact line the boundary condition
reads

x(0,t) = x2(0,t — At), if z*=0.75 and s < 0y < 64 (7.7)

and for the right side the boundary condition is identical

T(Send,t) = T(Seng,t — At), if ¥ =0.75 and 65 < 6, < 64 (7.8)

where t — At represents previous time step in the calculation. The slip bound-
ary condition is more easily expressed in the terms of 6, and 6,. For the left
and the right contact line (6y,) we define

(7.9)

)

g, _ L0y, ifa"=025and 0y, =6y
7 8y2, if 2* =025 and 6y, = 6,1

With the set of boundary conditions expressed in Eqs. 7.5-7.9, we have
mathematically closed the problem for the case of a chemical substrate with
the local wettability expressed in Eq. 7.1. We would like to remind the reader
that inside the definition of x*, which is expressed in Eq. 7.2, we take into
account the case when contact line crosses the point of symmetry z = 0.

So far we were discussing dynamical properties of the system, but looking
at possible equilibrium shapes of the solid-state dewetting process reveals ad-
ditional nuances present in the system. As visible from Eq. 7.4, all of the
dynamics diminish once the curvature becomes constant along the solid inter-
face. Additionally, due to contact angle boundary conditions (Eqs. 7.5-7.9),
the local equilibrium contact angle is always the current contact angle, there-
fore, the final equilibrium shape is identical to the solutions of Young-Laplace
equation, which implies constant curvature shape along with the equilibrium
contact angle. To obtain all of those shapes, we must minimise the interfacial
energy which in dimensionless space is

m(send7t)
E = scn4 —/ cos B, dx (7.10)
2(0,t)
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Figure 7.2: Collection of all solutions of Young-Laplace equation expressed in V —r space
in a and in V — 6y in b subplot. With the blue colour we indicate local minima, while the
global one is denoted with the red colour. In the next three subplots we showcase where
these stable solutions can occur as a function of z¢m,, where the yellow colour represents
available phase space. In ¢ we show this phase space for the case of spherical caps with the
41 Young’s angle, while in d the same thing is shown for the spherical caps with the 0,2
Young’s angle. In e we show the total restriction effect of the present substrate on the
droplet position.

We will explore all of the solutions by controlling the position of the centre
of mass x,,. The main reasoning behind using the centre of mass as a control
variable is validated due to the properties of the interfacial energy, namely,
the energy remains constant if we shift the whole morphology towards any
orientation in x direction, as long as the contact line stays inside same stripes
on the both sides of the solid. To exclude additional unnecessary calculations,
we will minimise Eq. 7.10 for two cases: x¢, =0 and z., = 0.5. These val-
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ues where chosen so that the centre of the mass is positioned right above the
centroids of individual stripes and with this method we are able to detect all
the possible local stable shapes. The minimisation was performed in a fash-
ion that we construct a family of spherical caps under the volume constraint
and let the contact angle be a free variable. We report all minima present in
the calculation for both values of x.,, in Figure 7.2, where we summarise all
properties of the family of equilibrium shapes. Additionally, in Figure 7.1.b,
we define all geometrical parameters with which we characterise this family
of equilibrium shapes. For a dimensionless solid volume V', either the dimen-
sionless contact radius r or the equilibrium contact angle 6 are sufficient to
describe the shape, due to the constant curvature implication of the Young-
Laplace equation. As visible from Figure 7.2.a and 7.2.b, for a single value of
the dimensionless volume V', there is always more than one possible equilib-
rium shape, where for the very small volume ranges we only have two possible
states, while the number of minima increases with the increasing volume value.
We limit our phase space to 2 <V <10, so that we can focus on the part of
phase space where only three minima are available. Horizontal lines in Figure
7.2.a represent the equilibrium shape with the contact line being positioned at
the transition points which allow pinning scenario and the contact angle value
between two Young’s angles which characterise the system. This shape is the
global minimum for the solid, if it is available in the given phase space. In
Figures 7.2.c-e the additional interplay between the Young-Laplace equation
and the chemical substrate is revealed. For an equilibrium shape from Figures
7.2.a-b there is an restriction on the position of centre of mass for which con-
tact angle boundary conditions can be satisfied. The phase diagram for values
of x.m, larger than 0.5 is not shown, since there is a plane symmetry around
ZTem = 0.5 inside the single spatial period of the chemical substrate ¢, which
in dimensionless space is the unit length. For a case of the equilibrium shape
with the contact line positioned on transition points which allow pinning sce-
nario, centre of mass always has a value of either x., =0 or z., = 0.5. For
example, the solid of a volume V = 10 and the fixed position of the centre of
mass at ., =0, cannot form an spherical cap with the contact angle either
0y1 or 042, therefore unless the dynamics push away solid from that region, we
can only observe a formation of the global minimum.

To solve the governing equation Eq. 7.4, coupled with boundary conditions
expressed in Eqgs. 7.5-7.9, we use the marker numerical scheme[21], in which
we discretise the solid interface via markers and solve the governing equation
locally in every marker. The governing equation is a forth order partial dif-
ferential equation, so the largest value of integrating time step is defined as
dt = ds*/C, where for our code converging results occur only for a value of C
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up to ten. To optimise the numerical integration, we make markers equidis-
tant every 5000 time steps using the spline interpolation of functions x(s,t)
and y(s,t), since from given interpolations, curvature as a function is smooth.

7.3 Results

To explore the phase space of equilibrium shapes we fix the initial solid height
H =1 and we introduce an initial centre of mass parameter r; = xcm‘t:()‘ De-
pendance of the equilibrium shape on the initial state was not investigated
for heterogeneous substrates, but for anisotropic solids it is known that de-
pending on the initial state[22, 23], they will finish up in one of many so-
lutions of the so-called Winterbottom construction [24]. As already stated,
we keep the solid volume value between 2 <V < 10, which directly translates
to 2 < L <10, while values of z; range inside the single spatial half-period,
since the soild-state dewetting has same symmetries as energy phase diagrams
shown in Figure 7.2.c-e.

In Figure 7.3.a-b we show the contact line dynamics (V' = 3) for both left
and right contact line in the inital stage of solid-state dewetting. The pinning
scenario is visible via regimes of dynamics where the position of contact line is
constant for values * = 0.75 (x = —0.75 and = = 1.75), while the slip motion
of contact line is visible as a singularity point at z* = 0.25 (x = —1.25 and
x =1.25). After the slip occurs, the contact line accelerates its receding motion
since the curvature is locally created, but after a while, it relaxes to the normal
dewetting motion. Solutions of the Young-Laplace equation indicate that the
solid has to migrate to the zone in which the equilibrium shape can be formed.
In Figure 7.3.c we follow these dynamics and it is observable that for cases of
x; =0 and z; = 0.5 the centre of mass does not move throughout the dynamics.
The contact line behaviour is symmetrical with respect to plane x = x; and the
time it takes for these shapes to converge is of an order of magnitude smaller
than for other values of x;. Since contact line dynamics are symmetrical, the
same must hold for values of 6, and 6, because of the contact angle boundary
conditions which are symmetrical. If we start the solid-state dewetting for any
value of x; which is not positioned above centroids of stripes in the substrate,
the symmetry is broken and different values of 6y, and 6, can be observed. If we
define this difference as A0 = 6, — 0,., we can see on Figure 7.3.d that the sign
and the value of this variables is directly affecting the migration of centre of
mass, where for the case of A8 =0, the centre of mass for solid is fixed in space.
Huge difference in convergence times also indicate that symmetrical shapes
converge to the equilibrium by migration of atoms from contact line to the
centre, while for the other cases convergence is slow due to migration of atoms

109




7.3. RESULTS

a) b)
-0.6
-0.8
= —2,=00 T
1 —x; = 0.1 @«
212 z; =0.2 l
B —x; = 0.3 ~
—x; = 0.4 ®
1.4 @ =05
1.6
0 2 4 6
t
c) d
0.5
0.4 7 ]
0 — —
. 0.3 —i = 8(1) 1 <~ 5 —x; = 0.0
5 —;=0. 3 —a =01
0.2 Ti= 8§ 1 -10 2 =0.2
—; =0. —a =03
0.1 —z; =04 15 —i =04
. z; = 0.5] 20 ;= 0.5
0 -25
0 10 20 30 0 10 20 30
t t
e) ‘
—ux; = 0.0
5'8\7 —xz; = 0.1]]
5.7 L z; = 0.2]]
—x; = 0.3
56| —x; = 0.4]]
m 5.5 | x; = 0.5
5.4
5.3
52 \
5.1 S
0 2 4 6

t

Figure 7.3: Contact line dynamics are shown in a) for the left contact line and in b) for the
right contact line, where pinning and slip motion is qualitatively very clear. Migration of
the centre of mass (c)) is directly connected to the sign of the difference in contact angles

(d)) observed on both sides of the solid, allowing the solid to migrate to zones in energy
phase diagram where the formation of equilibrium shape is feasible. In e), we show the
evolution of the interfacial energy (Eq. 7.10), where the presence of other minima in the
system is visible due to the existence of singularity points in the same evolution (only
observable for z; =0 and z; =0.1).

from one side of the solid film to the other, which shows that chemical patterns
affect the solid-state dewetting in a same fashion as physical singularities do.
The evolution of the interfacial energy (Figure. 7.3.e) reveals that the solid
searches for available equilibrium shape locally (contact-line driven). Out of
six cases in Figure 7.3, five of them finish up as a spherical cap with the contact
angle 62, which in this case is the global minimum, while only for the case of
x; = 0 we observe formation of the spherical cap with the contact angle 8.
However, for cases x; < 0.2, there is a singularity point in the interfacial energy
evolution, which occurs in the same time as the slip occurs for the left contact
line. Since the slip for the case of x; = 0.0 happens later in time, it also implies
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Figure 7.4: Morphology evolution for solid films with different values of x; is shown. In a)

both solids have an identical interface since in both cases the contact line remained on the

same stripe during the dynamics (7'=0.1). Solids become morphologically different in b)

since the contact line for solid with x; = 0.1 slipped across the transition point (7'=0.4).

In ¢) both solids start converging towards attainable equilibrium shape (7'= 0.8), which is
shown in d)

that the slip happens once the solid morphology is closer to the equilibrium
shape and the solid-state dewetting quickly goes in the local minimum, due
to the two-way convergence, but if slip happens in earlier stages of dynamics,
contact line approaches the pinning point extremely fast, which by itself is
comparable to the stick-slip motion of evaporating droplets. While in the
case x; = 0 slip enables the solid to approach to the global energy minimum,
we can observe a complete opposite scenario on the behaviour of the right
contact line. The one case in which the right contact line experiences slip
(x; =0), the solid morphology converges to the stable local minimum, while
other cases experienced migration of solid towards positive x direction, due to
the sign of A6 in that stage of dynamics, which also resulted in the advancing
motion of the right contact line. Although in all non-symmetrical cases the
left contact line is positioned at the pinning point, the value of Af at the end
of the dynamics, along with interfacial energy value, reveal that this shape is
energetically identical to the symmetrical shape found in the case of x; =0.5.
In Figure 7.4 we show series of shapes for xz; =0 and z; = 0.1. Since the
qualitative behaviour indicates that the final equilibrium shape only depends
on the contact line dynamics, we would like to quantify this dependence by
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Figure 7.5: Phase diagram of equilibrium shapes obtained by solid-state dewetting.
Individual markers represent the type of equilibrium shape, while the solid lines indicate
threshold areas from the energy phase diagram shown in Figure 7.2.d.

comparing energy phase diagrams (Figure 7.2.c-e) with the phase diagram of
equilibrium shapes obtained by the solid-state dewetting, with different initial
positions of centre of mass and different lengths, where the solid length and
the solid volume are identical, since we keep the solid height fixed.

In Figure 7.5 we show the phase diagram, which is very similar to energy
phase diagrams from Figure 7.2, with the only difference that x.,, is replaced
from the x-axis and instead of it we write the centre of mass in the initial
moment of dynamics z;. From the quantitive difference between the two phase
diagrams we can immediately see the influence of the contact line on the
migration of the whole solid. There are two striking properties revealed by
observing equilibrium shapes: for a fixed volume, the solid will only be able to
access two minima for each value of the solid volume V', even if by the energy
phase diagrams there are three minima available; and the equilibrium shape
with the contact angle 0,2 is present for some values of x; for every volume
V. With the solid lines in Figure 7.5 we indicate threshold values from the
energy phase diagram (Figure 7.2.d) for equilibrium shapes with the contact
angle 6,2. When the value of x; corresponds to values of x,, for which this
equilibrium shape can be obtained, the solid does not migrate. When z; is
out of the range of available values of x.,, the solid will either migrate to the
part of the substrate where the equilibrium shape with the contact angle 0,2
or it will form different equilibrium shape. The tendency is that solid goes to
the global minimum (pinned state), unless the pinned state is not obtainable
(small ranges of volume around values V =3 and V =6). This qualitative
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behaviour additionally indicates the importance of the contact line dynamics
in the solid-state dewetting. For a fixed volume V', the spherical cap with the
smaller contact angle 6 will have larger contact radius r, but this implies that
on the substrate which we use in the current work, that for the solid to reach
the pinned equilibrium shape, the solid contact line has to have sufficient speed
over areas with the equilibrium contact angle 6,2 so the morphology does not
converge there. In the same fashion, for the solid to reach the equilibrium
shape with the contact angle 6,1 has to unpin from transitional points which
allow pinning scenarios. This behaviour explains the large disparity present
in area fractions of individual equilibrium shapes.

7.4 Conclusion

Solid state-dewetting on the chemical patterns has been numerically investi-
gated to clarify the effect of surface patterns on the contact line dynamics and
the macroscopical effect on the solid equilibrium morphology, which is affected
due to existence of multiple solutions of Young-Laplace equation. Taking in-
spiration from liquid capillary interactions, we introduce the stick-slip motion
of the contact line, but the effects of such a motion have more local effect in
the case of solids than in the case of liquids. As a result, the occurrence of
equilibrium shapes in the phase diagram are not affected by the energy value
of the same equilibrium (whether it is the global or the local minimum), but
by the geometrical availability either via restrictions of solutions of the Young-
Laplace equation or via converging to the first available energy minimum. In
the current framework it becomes clear that the migration of the solid bulk
only occurs when different values of the contact angle are observed on the
opposite solid sides, while in the case of the same contact angles, the centre
of mass remains stationary independent of the current solid morphology.
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Conclusions and outlook

8.1 Main results

In this thesis, we have investigated wetting interactions with many types of
patterned substrates and with various interactions such as a body force and
the disjoining pressure. Although the two core results of the wetting theory
(Young’s law and Young-Laplace equation) are always observed, many "side-
effects" are noticed as a patern complexity increases.

In Chapter 2 we have analysed interplay between wetting effects, the dis-
joining pressure and the gas compressibility. The given theoretical framework
has a diverging interaction at the substrate, therefore the current problem
cannot truly resolve the contact line properties. The distortion caused by
disjoining pressure is only observable very close to the contact line, where
the bubble obtains a shoulder-like shape, while the shape far away from the
contact line is a spherical cap. Main result is the existence of a threshold
aspect ratio for which boundary conditions are satisfied. The threshold aspect
ratio approaches the aspect ratio dictated by the Young’s law and the Young-
Laplace equation (without the disjoining pressure), as we increase the bubble
height.

Chapters 3 and 4 deal with wetting problems on patterned substrates. In
Chapter 3 we analysed the system of a flat substrate decorated with micro-
caps. The given geometry is convinient, since the droplet will have a truncated
spherical cap shape due to a symmetry of the sphere-sphere intersection. Anal-
ysis of equilibrium shapes reveals that the droplet position, whether it is on
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the microcap, the flat substrate or at the microcap rim, is only dictated by
values of surface tensions present in the system and are completely indepen-
dent of the droplet size. Although we obtain numerically a linear expression
for a threshold wetting scenario, this expression seems to be non-obtainable
analytically. In Chapter 4 we show that the curvature plays as important role
as does the equilibrium contact angle. Depending on the aspect ratio of the
lyophilic elliptical patch, the droplet in a quasi-steady grow will either com-
pletely wet the patch or it will start spreading on the lyophobic part of the
substrate, although there is a finite amount of the lyophilic patch available
to the droplet. Additionally, in this work we also show that the Metropolis
stochastic algorithm is capable of minimising the interfacial energy as precise
as the energy gradient method (Surface Evolver). In Chapter 5 we intro-
duce an external body force to the droplet. Although many experimental and
numerical studies were performed on sliding drops, hereby we present a full
thermodynamical calculation of equilibrium shapes. Qualitative difference be-
tween the present work and the literature is that we have included the contact
energy in our calculation, while so far a more common approach was to model
the contact angle hysteresis, instead of calculating the contact energy. We
identify two types of threshold shapes, where in one case the droplet cannot
satisfy Young-Laplace equation smoothly, while in the other case the droplet
would have tendency to go inside the substrate, due to the curvature becoming
negative at some parts of a droplet interface.

In Chapter 6 we have developed the marker numerical code for simulating
the process of the solid-state dewetting. We investigated the effect of substrate
physical singularities on the solid dynamics. The contact line behaviour at the
geometrical singularity shines light on a lot of novel qualitative properties of
solid-state dewetting, namely, the contact line will not unpin itself from the
singularity if the complete morphology is close to the equilibrium shape and the
convergence to the equilibrium shape has two modes, where the time needed to
reach the equilibrium shape can be an order of magnitude smaller in a faster
mode. Natural enquiry which arose is how does this effect affect the solid-
state dewetting once there are many possible solutions to the Young-Laplace
equation. This question was tackled in Chapter 7, where we introduce the
chemical patterning to the solid-state dewetting research. While this induces
many complex contact line behaviours, the main result of this chapter is that
the solid-state dewetting is completely a contact line driven problem. While
this result might not come as a surprise to some of you, solid-state dewetting
on a striped pattern shows that it does not prefer to go to the global energy
minimum, but rather it converges to the first available equilibrium shape,
independent of the energy value of that same equilibrium.
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8.2 OQOutlook

While there are still many unanswered questions in wetting, the future direc-
tion of the field should be of a multi-disciplinary approach. When it comes
to droplets and bubbles, the logical evolution of the field is to dwell in to the
interaction of many droplets or bubbles via diffusion. Since the time scale of a
diffusion is very long, a common approximation is to treat the droplet/bubble
evolution as a quasi-steady one, which implies that every temporary morphol-
ogy is the solution of the Young-Laplace equation. Another big unanswered
question which remains is the contact angle hysteresis. While the theoretical
framework used in this thesis immediately removes the hysteresis from cal-
culations, there are some problems where the implementation of hysteresis is
the only way of solving problems, however, these results eventually have to
converge with the "pure' thermodynamics used in this thesis. Implementing
the knowledge from fluids on the solid-state dewetting provided us with novel
results, which accidentally open up a lot more questions. While there is still
a fundamental problem with simulating anisotropic solids (crystals), the goal
should be to understand the interplay between crystallography and contact
line effects on patterned substrates, since most of solids are anisotropic. Con-
sidering that the anisotropic solid has multiple equilibrium states even on a flat
homogenous substrate, the complexity of this system increases with patterns
on the substrate.
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Summary

Wetting and dewetting effects of all phases are crucial for many scientific and
industrial applications such as catalysis, microfluidics and nanopatterning.
Although some of effects are known for a half of century, many details about
stable equilibrium shapes are still unknown to this day. The main goal of
this thesis is to explore stable equilibrium shapes of bubbles, droplets and
solids. We are interested in equilibrium shapes of aforementioned bodies once
they cover patterned substrates (physically or chemically) and once they are
under the influence of interactions such as the disjoining pressure or a body
force. To predict the equilibrium shape in the wetting system, one needs to
minimise the interfacial energy of a given body (bubble, drop or solid) under
the volume constraint. Additional interactions can be incorporated by adding
the potential energy of said interaction to the energy minimisation.

Additional complication arises with bubbles due to the gas compressibility,
which also has to be taken into account in the total energy, once a bubble is ex-
posed to an additional interaction. In Chapter 2 we investigated the interplay
between a single bubble and the disjoining pressure. Due to the gas com-
pressibility, nanobubbles and nanodrops with the same amount of molecules
will significantly differ in size. Additionally, a nanodrop will form a nearly
spherical cap shape under the influence of the disjoining pressure, while a
nanobubble will significantly deform close to the contact line. We reveal that
the disjoining pressure implies the existence of maximum nanobubble aspect
ratio. As the bubble height increases, this maximum aspect ratio asymp-
totically approaches the classical bubble shape (solution of Young’s law and
Young-Laplace equation for wetting a homogeneous substrate).

Droplets are incompressible, therefore the equilibrium droplet shape will
be identical to the classical bubble equilibrium shape of the same volume
(only surface tension dependent). In Chapters 3 and 4 we minimised the
droplet interfacial energy for a substrate decorated with microcaps and for
a single lyophilic elliptical patch respectively. Microcaps are solid spherical
caps which can have a different Young’s angle from the flat substrate. We
showed that the difference in Young’s angles (one for the microcap and one
for the flat substrate) and the microcap contact angle with the flat substrate
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determine the droplet nucleation location. In Chapter 4 we investigated the
droplet morphology on the single lyophilic elliptical patch. Since the patch
edge has a nonconstant curvature, there are two scenarios of a quasi-steady
droplet growth. Depending on the Young’s angles present in the system and
the patch aspect ratio, the droplet will either cover the whole patch at one
moment during the growth or the droplet will start to wet the lyophobic part
of the substrate even when there is an available lyophilic area to wet. In
industrial applications, this qualitative difference between the two mentioned
scenarios will determine whether the application is efficient or not.

We applied the body force to the sessile droplet in Chapter 5. The force
direction is chosen in a fashion that it pushes the droplet to a chemical step
which separates the substrate in two semi-infinite areas: a lyophilic and a
lyophobic half. Since we are pushing droplet from the lyophilic to the lyophobic
area, there are going to be droplet equilibrium shapes at the chemical step. If
we would increase the value of body force, which is controlled via the Bond
number Bo, we would encounter the maximum threshold Bond number for
which there are geometrically available energy minima. The value of threshold
Bond number increases with the increasing difference in Young’s angle values,
but once this difference becomes too large, the curvature also starts affecting
the value of threshold Bond number.

When solids are heated to the sub-melting temperature, they will start to
deform via a surface diffusion of atoms along the solid interfacial layer. This
process is called solid-state dewetting and we investigated it on patterned
substrates. Solid and liquid dewetting have qualitatively different dynamic
mechanisms, but the final equilibrium shape is identical. In Chapter 6 we
have investigated the effect of geometrical singularities present in a grooved
substrate on the solid-state dewetting. The contact line pinning which occurs
at the aforementioned singularity affects the solid macroscopically and it is
observable in a value of time required to reach the equilibrium. Due to the
macroscopic effect of the contact line on the solid, in Chapter 7 we introduce
the solid-state dewetting on a chemically patterned substrate, namely a striped
substrate. There are multiple available equilibria for a solid for the given
volume on the striped substrate and we revealed that the solid will go to the
global energy minimum if the contact line dynamics allow it. To track this
effect, we were changing only position of the initial solid centre of a mass and
we provided the phase diagram for given dynamics. We revealed that the solid
will go to the global energy minimum only if the contact line dynamics move
the solid to the part of the substrate where that particular equilibrium shape
can be formed.
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Samenvatting

Bevochtiging- en ontvochtigingseffecten van alle fases zijn cruciaal voor veel
wetenschappelijke en industriéle toepassingen zoals katalyse, microfluidica en
nanopatroonvorming. Hoewel sommige effecten al een halve eeuw bekend zijn,
zijn veel details over stabiele evenwichtsvormen tot op heden onbekend. Het
hoofddoel van dit proefschrift is om stabiele evenwichtsvormen van bellen,
druppels en vaste stoffen te verkennen. We zijn geinteresseerd in genoemde
evenwichtsvormen wanneer deze substraten met patronen (fysische of chemis-
che) bedekken en wanneer ze onder invloed van interacties zo als ontkoppel-
ingsdruk of een lichaamskracht zijn. Om de evenwichtsvorm in een bevochtig-
ingssysteem te voorspellen, moet men de grensvlakenergie van een gegeven
lichaam (bubbel, druppel of vaste stof) minimaliseren onder een voorwaarde
van behoud van volume. Aanvullende interacties kunnen worden meegenomen
door de potentiele energie ervan op te nemen in de energieminimalisatie.

Aanvullende complicaties ontstaan met bubbels door de compressibiliteit
van het gas, dat ook meegenomen dient te worden in de totale energie, wanneer
de toegevoegde interactie aanwezig is. In hoofdstuk 2 onderzoeken we wisselw-
erking tussen een enkele bubbel en de ontkoppelingsdruk. Door de compress-
ibiliteit van het gas verschillen nanodruppels en nanobubbels met dezelfde
hoeveelheid moleculen significant van grootte. Daarbij zullen nanodruppels
bijna een bolvormige dop vormen onder de invloed van de ontkoppelingsdruk
waar nanobubbels significant vervormen dicht bij de contactlijn. We onthullen
dat de ontkoppelingsdruk het bestaan van een maximum nanobubbel aspectra-
tio impliceert waarvoor deze nog steeds stabiel is. Wanneer de hoogte van de
bubbel toeneemt, benaderd de maximum aspectratio asymptotisch de klassieke
bubbelvorm (oplossing van Youngs wet en Young-Laplace vergelijking van het
bevochtigen van een homogeen substraat).

Druppels zijn niet-samendrukbaar, daarom zal een druppelvorm in even-
wicht identiek zijn aan de klassieke bubbel evenwichtsvorm bij hetzelfde vol-
ume (alleen oppervlaktespanning afthankelijk). In hoofdstuk 3 en 4 minimalis-
eren we de druppel oppervlakte energie voor een substraat gedecoreerd met
microkappen en een lyofiel ellipsvormige vlak, respectievelijk. Microkappen
zijn vaste bolkappen die een andere Youngs hoek kan hebben dan het vlakke
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oppervlak. We hebben laten zien dat het verschil in Youngs hoeken (en voor
de microkap en een voor het vlakke oppervlak) en de contacthoek van de
microkap met het substraat bepalend is voor de locatie van druppel nucle-
atie. In hoofdstuk 4 onderzochten we druppel morfologie op een enkel lyofiel
ellipsvormig vlak. Omdat het vlak een niet constante kromming heeft zijn
er twee scenario?s voor quasi-statische druppelgroei. Afhankelijk van Youngs
hoeken in het systeem en de aspectratio van het vlak, zal de druppel het hele
vlak bedekken gedurende het groeien, of beginnen met het lyofobische gedeelte
van het substraat te bevochtigen terwijl er nog een lyofiel gebied beschikbaar
is. In industriéle toepassingen bepaalt het kwalitatieve verschil tussen de twee
genoemde scenario?s of de applicatie efficiént is of niet.

We passen een lichaamskracht toe op de sessiele druppel in hoofdstuk 5.
De richting van de kracht is gekozen op een manier die de druppel naar een
chemische stap duwt die het substraat scheidt in twee halfoneindige opper-
vlakken: een lyofiele en lyofobe helft. Omdat we de druppel van het lyofiele
naar de lyofobe oppervlak duwen, zullen er evenwichtsvormen van de drup-
pel bestaan bij de chemische stap. Als we de lichaamskracht vergroten, die
bestuurd wordt via het Bondgetal Bo, zouden we een maximum drempel-
waarde voor het Bondgetal tegenkomen waarvoor er geometrisch beschikbare
energieminima beschikbaar zijn. De drempelwaarde van dit getal neemt toe
met een toenemend verschil in Youngs hoeken, maar wanneer dit verschil te
groot wordt zal de kromming ook de drempelwaarde beinvloeden.

Wanner vaste stoffen verhit worden tot een sub-smeltende temperatuur,
zullen ze deformeren via oppervlaktediffusie van atomen bij het grensvlak.
Dit proces wordt vastestof-ontvochtiging en we onderzochten dit op substraten
met patronen. Vastestof- en vloeistof-ontvochtiging hebben kwalitatieve ver-
schillen dynamische mechanieken, maar de uiteindelijke evenwichtsvormen zijn
identiek. In hoofdstuk 6 hebben we het effect van geometrische singulariteiten
aanwezig in vastestof-ontvochtiging op een gegroefd substraat onderzocht. Het
pinnen van de contactlijn dat voorkomt bij voorgenoemde singulariteit bein-
vloed de vaste stof macroscopisch. Het is meetbaar in de tijd die nodig is om
het evenwicht te bereiken. Door de macroscopische effecten van de contactlijn
van de vaste stof introduceren we in hoofdstuk 7 de vastestof-ontvochtiging op
een substraat met een chemisch patroon, namelijk een gestreept substraat. Er
zijn meerdere beschikbare evenwichten voor een vaste stof voor een gegeven
volume op een gestreept substraat en we onthulden dat de vaste stof alleen
naar het globale minimum gaat als de contactlijndynamica dat toe staat. Om
dit effect te volgen veranderden we de positie van het centrum van massa van
de initiéle vaste stof en voorzagen we in een fasediagram voor de gegeven dy-
namica. We onthulden dat de vaste stof alleen naar het globale minimum gaat
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als de contactlijndynamica de vaste stof verplaatst naar het gedeelte van het
substraat waar die specifieke evenwichtsvorm gevormd kan worden.
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am so sorry I didn’t listen back then, you were right.

Next step is to reflect on the location which brings me some of the happiest
memories from my life in the Netherlands, my office. The Magic quartet was
formed in early 2015 and up to the current day, chemistry level keeps on get-
ting higher. I am actually happy I am the first one leaving, since office without
any of you, is just another four-wall room. Dear Huanshu, my only officemate
with mutual scientific work. If only Detlef knew how many sleepless nights two



of us had because of NBA, he would fire us both. Every day of NBA season,
my working day would start with two of us fanboying over the highlights from
the previous night. Both of us are huge Kobe Bryant fans and I am so happy
your PhD defence was exactly on 24/8, two Kobe numbers (and my sister’s
birthday). Those two magical numbers also describe two of us: I like to think
I am 8, while you are 24. You know what I mean by this. We also played
basketball a lot together and for me, this is a sacred bond, my friend. Dear
Mathijs, two of us brought the geek culture to our office, probably in an over
the top fashion, but still it was so satisfying just to throw references around
the office and have someone recognise them. Thank you for translating my
Summary chapter and thank you for building my PC setup. Aside from being
geeks, two of us were also the musical half. Singing Britney Spears and Frozen
soundtrack will never be the same after you. I am so sorry we still didn’t
play a game of Starcraft, but at least you got to crush me in chess. But you
know how they say: "It don’t mean a thing, if it ain’t got that swing". Dear
Anupam, I feel so lucky two of us started and finished our Dutch adventure
around the same time. Since you were my theoretical brother in arms, we
shared so many struggles throughout my PhD, so much that I considered you
the living proof I am not crazy, but that my problems are pretty normal ones.
We were moving each other across Enschede, we were commenting each others
work, we were investigating ethanol flows together...simply put two bodies one
soul (sorry Kanishka). You have some of the most wonderful Facebook profile
picture I ever saw and sometimes just looking at them can make my day. I
always considered you one of the most talented guys around and I always en-
joyed our discussions about science. But to be fair, I enjoyed our non-scientific
discussions even more. I will forever remember when two of us lost three days
of our lives developing a dynamical theory, which was inspired by a Youtube
video of some stupid guy brutally injuring himself with a very long whip. This
is what science is all about.

If you step outside of the office for the second, you will notice a lot of "PoF-
ers" swarming around. If you look careful, you will notice a lot of intereseting
characters. Dear Yaxing, you are the best thing ever made in China. Two of
us are true Dota fans, so much that we spent four years of our life arguing
are Chinese or European teams better. Absolutely priceless. Our weekend in
Frankfurt was epic, during which you taught me the only Mandarin word I
know how to pronounce (niceuuuhhhh, I hope you spell it like this). I sincerely
hope you will live long enough to see a good Chinese football or basketball
team. Thank you for the Christmas card in 2014, I will never forget that one.
Dear Vamsi, I still hate you for being a second faster on the karting circuit



in Enschede. At least, I still hold better lap time than you in Oldenzaal, so
it is an even result. We need to choose a third track to finally settle this. I
suggest Nurburgring in tuned cars, do you accept? Also, next time we see
each other there will be no thesis pressure on our heads, so we might see a
Champions league game together again after so long. Dear Biljana, literally
thank you for existing, because without you, I would forget how to speak
Croatian. Our information exchanges about availability of ajvar in Enschede
are both hilarious and sad. And please, quit smoking, it is bad for your
health. You should know better by now. Dear Crossfit Dennis, may the force
be with you. You are now approaching the same deadline I am currently facing.
Remember, fear leads to the dark side. You need to teach yourself how to let
go. Let it go, Dennis, let it go. Dear Other Dennis, thank you for organising
board game nights and I sincerely hope in near future experimentalists are
going to listen to you. Dear Elise, if you ever need a ride in the morning, I am
your guy. As long as you complain the whole drive, I will take you anywhere
you want to go. Dear Maxime, boys have swag, guys have style, but real men
have class. I remember. Dear Sander, I really like your photos, but somehow I
always finish up ugly on them. Somehow. Dear Erwin, thank you for showing
me chill dudes can be successful. Dear Michiel, drop it like its hot. Dear
Alvaro, my limping brother, two of us have so much memories, yet I cannot
tell a single one here. Makes you wonder why, right? Dear Sr. Escobar, you're
simply the best. You're better than all the rest. Dear Myrthe, at first I was
afraid, I was petrified, kept thinking I could never teach without you by my
side. Dear Ricardo, you are the only colleague TA T don’t have a song with,
so we should definitely work on that. We still have to go for chess and pool.
Dear Diana, trust me when I say that you will enjoy last two years of your
PhD. Dear Anais, I am so sorry we didn’t get to collaborate earlier and thank
you for the experience of following World cup together. We knew from day
one we will meet in finals. Dear Carola, it is very rude to pursue career in
physics, yet you own a hairstyle which breaks all of thermodynamics laws.
Dear Jessica, you are next in the line. You will find out in few days what this
actually means. Dear Class-Willem, thank you for being a "big bro" so many
times. Dear Stefan, while your scientific input may seem minimal, it was still
crucial for this thesis. Dear Minori, I just sincerely miss you. As you can see,
there are so many people I had to remember and sadly I probably forgot few
names here. To compensate for that, if you didn’t find yourself in the text
so far, you are getting a title of "Unsung hero", which I hope will make you
happy sufficiently. Now there are few names which were skipped intentionally
so far, because some of them are more than "PoF-ers".

Dear PoF united, my forth favourite football team (the list goes Hajduk



Split, Croatia, Barcelona, PoF United), I still remember when I started play-
ing for you. It was the worst football I ever experienced in my lifetime. I still
remember being sad for days just because of this. But like a phoenix, we rose
from ashes. It was not until "The Flying Dutchman" Ruben took over the
ship and said I have an idea. I am faster than all of you, so lets play counter
attacks focused on me. I can only score about 10% of shots, so produce a lot
of them. Before you start laughing, it was not until this moment when we
finally started to score some wins. As wins started to amass, we attracted a
lot of football talent. "The Sultan of Swing" Ali is still causing vertigo feelings
to defences all across the University, although he is not here for more than
a year. '"The Caveman"' Pieter just looks frightening, but nothing compared
to the "Oligarch from the East" Mikhail. Unlike them, Jelle is injured way
too often for a cool nickname. If we need to become really serious during the
game, we just throw a "Hurricane" Nakul at the opposing team, while Alex
"Kahn" is guarding our back. All in all, very fun times which made my life
here so wonderful. If we were not playing football, basketball was the sport of
choice. And when it comes to basketball, there is only one Peter who looks like
a direct copy/paste of Tim Duncan. This is the biggest compliment anyone
has received so far in this chapter and you know it.

There is a famous trio of guys which simply deserve a separate paragraph
just for three of them. Los hermanos. Dear Rodrigo, our academic lives are
synced up, our love lives are synced up (sadly for both of us) and of course,
our epic guitar skills are sooooo synced up. By the way, do you remember that
epic Detlef Christmas e-mail? Yep, we’ve been through it all. Also, nouuuou.
Dear Enrique, you love Slavs and I love Latin people. Two of us getting along
was never in question. As in, we barely even tried and it worked. Europe
misses you man, come back here. Thank you for all of meals you prepared.
I still consider you "The Chef". Dear Rodolfo, you deserved a separate para-
graph, but your ego is already overblown. Thank you for trusting in me in the
start of my PhD. Whenever I needed an opinion, you were there, whenever I
was confused with academia, you were there, whenever I didn’t even need you,
you were there (we could work on this one). Something tells me our paths will
collide once more and I sincerely hope that it will happen.

Dear Joanita, you are everything to everyone. Simple as that. Dear Bas,
Gert-Wim and Martin, I didn’t bother you as much as other students did, but
I always loved when I had excuse to come chat with you. There are only finite
amount of people in PoF who understand what motorcycles, cars and rock n’
roll really mean.



Dear MCEC members, we should definitely collaborate.

It is time to move for a while back to Croatia, because there are so many
people who are part of this thesis. My family had to listen for hours about my
problems here and rarely did they complain about it. For that I thank you all.
Special mention will always go to my generation of Devi¢ family (siblings and
in-laws) because they made me the person I am today. However, I must admit
I started liking "next-gen" Devié¢ family much more, since they are helping me
to become a person I want to be in future and they are less boring compared
to us. Mala, you might not have official Devi¢ name in your documents, but
for pure act of tolerating my dear father, I hope you know you are included
by definition in this paragraph.

My dear friends from Split, you are one of the biggest reasons I want to
come back. Dear Panchos, you are more than friends. You are the way of life.

The academic title I will obtain here would be a distant dream if I didn’t
had guidance all the way throughout my life. Of course, this is the part where
I reflect on professors who effectively changed who I am. Dear Andrea Norac,
you are the zero-patient of this story. You were my first physics teacher ever
and that small detail lead my life to this point. Dear Antonio Vrbatovié, while
you are not so good in mathematics though, the skepticism you installed in my
head came very useful in my later years. It is your own fault that I became
so skeptical that even you cannot tolerate it anymore. Dear Ante Bilusic,
you were not only an academic father figure to me, but to all of us who had
pleasure to had you as our professor. All the fundamental physics knowledge
I posses is your influence. Simply put, thank you. Dear Leandra Vranjes
Markié, you were the first one to give me academic job (teaching assistant)
and the first one to push me out of my comfort zone. Thank you for trusting
in me. Dear Petar Stipanovi¢, thank you for showing me how to be efficient
with my numerical codes. Last but not least, dear Dejan Vinkovi¢, thank you
for supervising me before Detlef took over. You gave the "final touch" which
made me ready for the next step. And I would just like to remind you, if you
could graduate in Zagreb, so could I. I hope you remember the incident I am
referring with my last sentence.

Dear opponents, I am ready.
Dear all, until next time,
Ivan



