UNIVERSITY OF TWENTE.

Applications of Fuzzy Cognitive Mapping in climate change impact and adaptation research

Approaches, experiences, and methodological issues

Dr. Diana Reckien Assistant Professor for Climate Change, University of Twente, The Netherlands

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

My background

Specialization: interface of climate change and urban research

- Climate change impacts, social vulnerability, adaptation across socio-economic groups, climate change gaming, climate change migration, and climate change policy and practice
- ... in large urban areas in Europe, India and the US
- ... particularly concerned about equity and equality aspects
- Often combined with methods development for applications in climate change policy and planning

Selected Methods

 Qualitative Differential Equations; Fuzzy Cognitive Mapping, Statistics; Text analysis and coding, Interview techniques, Questionnaire surveys, Scenario techniques

Previous approaches/ FCM precursors

- Qualitative differential equations (QDEs), Kuipers 1992
 - Similar to cause-effectnetworks with increase/decrease/no influence interconnections
- Impact pathway approaches with "adaptation influence ranges":
 - First-order, second-order, third-order impacts
- FCMs: Introduction by Wildenberg/ Bachhofer, who developed the FCMappers software (xls-based)

Outline

- 1. Case study 1: Assessing differential impacts of climate change and adaptation options in Delhi, India
- 2. Case study 2: Assessing differential climate change impacts and socially sensible adaptation options in Hyderabad, India
- 3. Case study 3: Climate change impacts across New York City and Chicago
- 4. Comparative study 1: Generating FCM with different interview methods
- 5. Other aspects/ issues/ problems

References

Reckien D, Wildenberg M, Deb K (2011): Understanding Climate Change Impacts and Adaptation Options in Indian Megacities. In Otto-Zimmermann K (Ed): Resilient Cities - Cities and Adaptation to Climate Change, Proceedings of the Global Forum 2010, Dordrecht: Springer, ISBN 978-94-007-0784-9, pp 15-34.

Reckien D, Wildenberg M, Bachhofer M (2013): Subjective realities of climate change: how mental maps of impacts deliver socially sensible adaptation options. Sustainability Science, 8 (2): 159-172. DOI: 10.1007/s11625-012-0179-z.

Reckien D (2014): Weather extremes and street life in India – Implications of Fuzzy Cognitive Mapping as a new tool for semi-quantitative impact assessment and ranking of adaptation measures. Global Environmental Change, 26: 1-13, http://dx.doi.org/10.1016/j.gloenvcha.2014.03.005.

Reckien D (2016): Comparison of stakeholder-generated FCMs across generation methods and metrics. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver/ Canada, forthcoming August 2016.

Reckien D (2016): Identifying most feasible adaptation options to heatwaves and heavy rain events in New York City: Fuzzy Cognitive Mapping as a versatile tool to investigate how to prepare for climate change. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver/ Canada, forthcoming August 2016.

1. Assessing differential impacts of climate change and adaptation options in Delhi, India

Methods:

Fuzzy Cognitive Mapping: Network statistics and scenarios

Data:

- Oral, single, face-to-face interviews to impacts of either 1) strong rain and 2) heat waves (N=131)
- 5 stakeholder groups,
 - Random selection of street scenes near the University
- Interviewers: Native speakers
- Time of year: February/ March (no heat, not a lot of rain)
- Time of day: not recorded

Objective:

 Explorative: impacts and effects of adaptation options
 UNIVERSITY OF TWENTE.

Data

- Planners (PI)/ City managers: NDMA, CWC, DDA, independent contractor
- Wallahs/ Street Vendors/ Small entrepreneurs (SE): vegetable w., icecream w., tea stall w., guards, housekeepers, auto rickshaw drivers, …
- Professionals: Teachers, IT service, architect, civil servants, government officials, HR manager, bank employee
- Researchers: TERI, IMD
- Students: TERI Univ.

UNIVERSITY OF TWENTE

Frequency distribution								
DELHI		Strong rain	Heat wave	Total				
	PLANNERS	7	4	11				
	WALLAHS	26	23	49				
	PROFESSIONALS	13	13	26				
	RESEARCHERS	7	8	15				
	STUDENTS	14	11	25				
				131				

 \rightarrow Different group size demands (form of) "normalization"

1.) Participative Mapping

2.) Analyses & Visualization with FCMapper

3.) Aggregation of Maps Simulation & Scenarios

- "What happens under strong rain events/ heat waves & how does this affect you?"
- Stakeholder names issues, indicates relations, directions, and weights
- Interviewer writes down

UNIVERSITY OF TWENTE.

• Network statistics (receiver, transmitter, outdegree, indegree, centrality)

- Aggregation (.xls-based own, self-written tool)
- Scenario analysis with <u>www.FCMappers.net</u> (developed by Bachhofer and Wildenberg, Uni Klagenfurt):
 - Kosko's inference and sigmoid squashing function

What are most numerous impacts per sector?

Aggregated maps: Concepts grouped to sectors (Column sum)

Code System	R_SE R_PI	R_Re R_Pr R_St	H_SE H_Pl	∣H_Re ∣H_Pr ∣H_St
🕀 🖅 Food security & agriculture		- + · · •	 	
🗄 🖅 🕞 Natural environment			 	- + + +
🗄 🖅 Public support functions (planning, policy, services)	· · ·			
🗄 🖅 Built environment, infrastructure, technology		+ + +		
🗄 🖅 🕞 Economy & finances (personal & public costs, work, sales) —				• • •
🗄 🖅 Way of life, consumption, social issues			· · ·	
🗄 🖅 Energy problems & insecurity		-		- # + +
🗄 🖅 🔄 Human health & body issues				
🗄 🖅 Traffic problems & restricted mobility			 	
🗄 🖅 Water problems & security				• • •
🗄 🖅 🔄 Climate parameters & physical forms				<u> </u>

→Impacts of strong rain differs ALSO across social groups (as in Hyde.)

→Heat waves affect people in similar ways

Strong rain	Wallahs/ Small entrepreneurs	City managers (Planners & Researchers)				
Causes = high	Rain	Rain				
out-degree	Local flooding	Local flooding				
	Contamination of/dirty water	Traffic jams				
	Electricity shortcuts	Bad drainage				
	Bad drainage	Water borne diseases				
	Working problems/affected	Time to reach destination				
Consequence	Income	Irritation=routine disruption				
= high in-	Diseases, health impacts	Work productivity				
degree	Discomfort	Diseases, health impacts				
	Affected mobility	Local flooding				

How to compare data/ normalize it for different *n*?Aggregated INTENSITY maps (w_{ij} > 0.8)

Network statistics of '	'Intensity Maps" I (0.8)		
Socio-economic	Indices	Weather	event
group		Strong rain event	Heat wave
Small local	Density of map	0.008129	0.019376
entrepreneurs	Total number of nodes,	<u>83</u>	46
& service providers	Unconnected nodes, nr [%]	36 [43.4]	13 [28.3]
	Arcs	56	41
City managers	Density of map	0.007340	0.005792
(planners,	Total number of nodes,	71	<u>67</u>
researchers)	Unconnected nodes, nr [%]	35 [49.3]	39 [58.2] e
	Arcs	37	26

... one form of normalization, or..

Increasing certainty: 2+ and 3+ networks (see further down)

- → Heat has strong and equal impacts for SEs; and small and rel. equal impacts for CMs
- → Rain has medium strong and diverse impacts for both groups

Results: Small Entrepreneurs during strong rain

Results: City Managers during strong rain

Results: Adaptation scenarios

0) Base run

- 1) CC run (more T & Tvar increase; more strong rain)
- 2) CC & Adaptation run (CC + certain adaptation options)
 - (i) Improving the water and sewage infrastructure (all related concepts fixed throughout iterations to 1)
 - (ii) Self-help solutions for street vendors (all 1)
 - (iii) Increasing the ease of mobility and increasing public transport (all 1)
 - (iv) Investment in the electricity infrastructure (all 1)
 - (v) As in (iv) but with "illegal access", i.e. electricity tapping (all 1)
 - (vi) Investment in the health infrastructure (all 1)

Case 1: More CC impacts \rightarrow Where to place adaptation?

Case 2: More CC impacts + Adaptation \rightarrow How CC affects adaptation efforts?

Results: Adaptation scenarios

11.62

CASE 1 – DELHI: ... effects on "Quality of life"

Adapt	ation strategies: Investment in	1) Water and sewage infra- structure	2) Ease of mobility	3) Health infra- structure	4) Electricity infra-structure		5) Self-help solutions	Total structural measures
					Current costs	No costs		
Strong	Street vendors	2.87	5.52	1.07	1.56	2.11	2.28	11.01
rain	City managers	1.58	2.66	1.03	0.92	n.a.	n.a.	6.19
Heat	Street vendors	3.70	1.11	2.33	1.87	2.49	2.60	7.9
waves	City managers	3.47	n.a.	0.67	3.16	3.61	n.a.	7.3

CASE 2 – DELHI

DAIN	Adaptation	Adaptation & CC
KAIN	8,840217	-6,495086

 \rightarrow CC renders adaptation useless, reduces perceived situation relative to today

9.29

CC increases burden substantially

2. Assessing differential climate change impacts and socially sensible adaptation options in Hyderabad, India

Methods:

Fuzzy Cognitive Mapping: Network statistics and scenarios

Data:

- Oral, single, face-to-face interviews to impacts of 1) strong rain and 2) heat waves (N=376); Order effects were accounted for
- Interviewees: mostly small entrepreneurs on Hyderabad streets (N=188)
- 6 stakeholder groups, unified by "flooding hotspot" (via flood modelling & media analysis) and socio-economic/ income level, divided by income and affectedness (entrepreneurs on streets) versus influence (planners)
- Two interviewers: One native speaker (Muslim; male), one (international/ white) English speaking note-taker (female)
- Time of year: February (no heat, not a lot of rain); we selected days without rain and without exceptional heat
- Time of day: during 'normal' business hours (from 10-4pm)

Objective: Representative study to differential impacts between street sellers (impacted) and planners (could influence it)

UNIVERSITY OF INVENTE.

Same approach & process

1.) Participative Mapping

2.) Analyses & Visualization with FCMapper

3.) Aggregation of Maps Simulation & Scenarios

- "What happens under strong rain events/ heat waves & how does this affect you?"
- Stakeholder names issues, indicates relations, directions, and weights
- Interviewer writes down

UNIVERSITY OF TWENTE.

• Network statistics (receiver, transmitter, outdegree, indegree, centrality)

- Aggregation (.xls-based own, self-written tool)
- Scenario analysis with <u>www.FCMappers.net</u> (developed by Bachhofer and Wildenberg, Uni Klagenfurt):
 - Kosko's inference and sigmoid squashing function

Does the impacts of rain and heat differ?

Yes. Strong rain causes more factors (M=4.72, SE=.165) than heat waves (M=4.19, SE=.150), t(182)=-3.724, p<.001, r=.27) and has stronger impact relations (M=.56, SE=.02) than heat (M=.52, SE=.01), t(182)=-2.583, p<.05, r=.19).

0.56

0.20

2.42

Does impacts differ across locality?

Differences remain when testing for heat and rain independently, heat: (*F*(5,169)=4.18, *p*<.01); rain:
 (174)=6.16, *p*<.001).

UNIVERSITY OF TWENTE

Rain is a significant larger burden than heat on average & for low-income people.

936

5.76

193

Partners"

TOTAL

Does religion, age, gender matter?

- Religion is a significant covariate (*F*(1,352) = 20.44, *p*<.001, *r*=.23) of weather events (*F*(1,352 = 9.25, *p*<.01, *r* = 0.16) with regards to the number of impacts mentioned. Muslims report higher number of concepts.
- Age is a significant covariate of weather events with regard to the weights. Older people state relations to be <u>less</u> strong (*F*(1,360=5.51, *p*<.05, *r*=.12).
- Gender: small but insignificant differences (too small *N*)

Results

Is locality important?

Most Muslims live in the Old City, which is run down and of poor infrastructure. Excluding data of the Old city, religion remains as a significant covariate (F(1,292)) = 6.10, p < 0.05, r = 0.14) of weather event (F(1,292) = 5.63, p < 0.05, r = 0.14).

However, testing a more equally distributed sample (i.e. Jambagh) reveals that differences cannot be attributed to religion per se.

Religion acts as a proxy for location.
Muslims live in places more affected or they are less adapted to it.

Is locality important?

Row sum: Example Rain

Column sum: Example Rain

Code System	HY_R_Jam	HY_R_Old	HY_R_Tar	HY_R_Bar HY_R	_Srin HY_R	Mad HY_R_HMDA
⊡ ·· 🔄 Agriculture & food security	-	•	•	-	•	
🕀 🖅 🕞 Natural environment	•		•		-	• •
E Public support functions (planning, policy, services)				-	-	
🗄 🔄 Built environment (infrastructure, property, technology) –				• •		
Economy & finances (personal & public costs, work, sales)						• • • • • • • • • • • • • • • • • • •
🕀 🔄 Way of life, consumption, social issues			-		-	•
Energy problems & insecurity	-	-	-		-	•
🗄 🔄 Human health & body issues	•	•	-	•		• •
🗄 🔄 Traffic problems & restricted mobility	-				•	•
🕀 🔄 Water problems & insecurity	•	•	-		•	•
🗄 🔄 Climate parameters & physical forms						I

→ Sectors Economy/ Finances and Built environment see most impacts UNIVERSITY OF TWENTE.

Results

What are best adaptation options?

Two scenarios tested:

- 0) **Base** run/ Current/ Steady state:
 - Initial state vector set to 1
 - Kosko's inference rule; sigmoid squashing function

1) Increasing extreme weather events vs. current state:

- T & Tvar = 1;
- Strong rain = 1 throughout all iterations
- 2) Comparison of adaptation options with and w/o CC
 - Traffic management; water management; health management; electricity management; self-help>>>

Water management		Traffic		Health management		Electricity		Self help	
		management				management			
Bad drainage	0	Affected mobility	0	Medical expenses	0	Electricity costs	0.1	Flooded, leaking houses/ shops	0
Contamination of drinking	0	Bad roads	0	Water borne diseases	0	Electricity	0	Houses damaged	0
water/ dirty water						infrastructure damage			
Drinking water shortage	0	Buses late	0	Chikungunya	0.2	Electricity shortcuts	0	Buy drinking water	1
Local flooding	0	Flooded roads	0	Cholera in slums	0.2	Precautionary power shutdown	0	Care for flowers	1
Nallahs [open drain]	0	Road damage/ potholes	0	Dengue	0.2	Transformers damaged	0	Carry drinking water	1
Sewage overflow	0	Stranded vehicles	0	Diarrhoea, dysentery	0.2	Efficiency of cooling appliances	1	Fortify roofs	1
Water problems	0	Traffic jams	0	Diseases among kids	0.2	Hydro energy production	1	Go to village	1
Water shortage	0	Accidents	0.2	Diseases, health impacts	0.2			Increase in air coolers	1
Drinking water tankers	1	Auto-rickshaw not working	0.2	Doctors' attendance	0.2			Keep shade for customers	1
Groundwater recharge/ table	1	Engine failure	0.2	Epidemics	0.2			Keep/seek shade	1
Water management	1	Speed	1	Fever	0.2			Leave Andhra Pradesh	1
Water saving	1	Vehicle breakdown	0.2	Fever among kids	0.2			Manual drainage	1
		Infrastructure planning/ management	1	Gastroenteritis in slums	0.2			Number of bore wells	1
		Mobility	1	Gov. hospital attendance	0.2			Sleep on roof	1
		Traffic discipline	1	Hospitalization	0.2			Special clothing/ protection	1
		Traffic management	1	Infectious diseases	0.2			Take private loans	1
		<u> </u>		Malaria	0.2			Private power generation	1
				Nausea/ Vomiting	0.2			Use of A/C	1
				Shivering	0.2				
				Smallpox in slums	0.2				
				Vector-borne diseases	0.2				
				Viral diseases	0.2				
				Health	1				

What are best adaptation options?

Scenario output on: Quality of life

1) Increasing extreme weather events vs. current state:

Quality of life	Barkat- pura	Jam- bagh	Old City	Srina- gar	Tar- naka	Madan- napet	HMDA	Expert Partners
HEAT WAVE + CC	-1.61	-1.42	-1.06	-1.33	-1.21	-1.34	-1.08	-0.61
STRONG RAIN + CC	-1.78	-1.68	-2.68	-1.40	-1.78	-1.22	-0.64	-0.20

2) Comparison of adaptation options with and w/o CC

→ Investment in water and sewage infrastructure most important, despite current impact experience

3. Climate change impacts in New York City & Chicago

Methods:

Fuzzy Cognitive Mapping: Network statistics and scenarios

Data:

- Online interviews to impacts of 1) heavy rainstorm and 2) heat waves
- Qualtrics Survey Software
- Sample: Random selected via MTURK community
- Place: wherever, but (probably) mostly at home
- Date: 02.02.-13.03.2013
- Time: any time during the day

Objective:

 Try to 'ease' gathering of FCM interviews + comparison across conduction methods (also related to Carvalho, 2013: what are people actually giving you? Probability, Certainty ...????)

Data

	NYC	Chicago
Sample	N = 168	N = 176
Females	92	66
Males	76	110
Number of people in the household	M = 2.49 +/- 0.12	M = 3.02 +/- 0.14
Residence in NYC	M = 13.87 +/- 0.92	M=15.65 +/- 0.91
Age	29.10 +/- 0.60	27.92 +/- 0.62

Aim: 105 participants = 35 responses from NYC and Chicago each

- 3 surveys, differing in the way the connections and weights were elicited:
 - **0.1-1 Strength** (asking for the "strength" of relation when assigning weights, ranging from 0.1 to 1),
 - 1-100 Strength (asking for the "strength" of relation when assigning weights, ranging from 1 to 100), and
 - 1-100% (asking for the "percentage" of occurrence as a measure to assign the weights, ranging from 1 to 100).
- Qualtrics Survey software; MTurk participant panel.

Do weights differ across weighting methods?

	C1	C2	C3	C4	C5	C6	C 7	C8	C9	C10	C11	C12	C13	C14	C15	C16
		Maps	# of Nodes/ map				# Edges	# of Edges/ map			Weights/ map	# of Nodes/ map		Density		
		N	N	x	Range	SD	N	x	Range	SD	x	Range	SD	x	Range	SD
NY,	01strength	44	229	5.20	2-9	1.91	407	9.25	1-37	7.23	.72	.27-1	.18	.39	.176	.11
by	0100strength	44	290	5.00	2-9	1.74	493	8.50	1-32	6.01	.62	.25-1	.18	.40	.177	.12
line	0100percent	44	311	4.71	2-9	2.25	527	8.11	1-38	7.80	.60	.10-1	.22	.44	.10-1	.19
	Sum	168	830	4.94	2-9	2.00	1427	8.54	1-38	7.05	.64	.10-1	.20	.41	.10-1	.15
CH,	01strength	62	314	5.06	2-9	2,38	656	10.93	1-61	12.53	.80	.33-1	.18	.44	.14-1	.19
by	0100strength	62	325	5.24	2-9	1.78	668	10.77	1-40	7.92	.70	.29-1	.18	.45	.188	.15
line	0100percent	52	227	4.37	2-9	1.76	365	7.02	1-27	5.79	.61	.15-1	.19	.46	.17-1	.18
	Sum	176	866	4.92	2-9	2.03	1689	9.71	1-61	9.41	.71	.15-1	.20	.45	.14-1	.17

- 0-100% method had the highest completion rate, followed by the 0-100strength method and the 0.1-1strength method → "Easiness"
- Weights differs significantly across weighting methods (F(2, 338)= 19.60, p<0.001))

 highest weights for the traditional 0.1-1 strength method; lowest weights for 0-100 methods ("the fear of large numbers")

Do weights differ? What does weights represent?

- Moreover, weights on arcs correlate positively with the perceived severity of a weather event (t = 0.12, p<0.01) and all problematic after-effects (t= 0.19, p<0.001).
- The percent of mentioned impacts that are classified as being a problem is negatively related to the total number of factors (t=-0.13, p<0.001).
- \rightarrow Burden/ problems from climate change are (more) related to weights.

	NYC	Chicago
Sample	N = 168	N = 176
Number of impacts	M = 3.94 + -0.15	M = 3.92 +/- 0.15
Percent of impacts posing a problem	M = 63% +/- 2.45%	M = 63% +/- 2.60%
Weight of problems	M = 45.27 +/- 2.12	M = 50.31 +/- 2.22
Average weight on edges	M = 0.64 + - 0.02	M = 0.69 +/- 0.02

Heat in New York City

Increasing certainty for small *N*?

- To increase certainty of answers:
 - ALTERNATIVE/ SUGGESTION → 3+ networks: at least 3 people gave the same concepts and connections
- Here: NYC

 Scenario analysis with 3+ networks (not shown):
 larger impact of heat on
 Chicago & larger effect of management options (electricity or traffic)

3. ADD ON: Climate change impacts in New York City

Methods:

 Fuzzy Cognitive Mapping: Network statistics and scenarios (ANALYSIS NOT YET FINALIZED)

Data:

- Online interviews to impacts of 1) heavy rainstorm and 2) heat waves (N=762);
 Order effects were accounted for
- Interviewees: representative sample across NYC, with population-relative distribution per borough
- Qualtrics Survey Software; Qualtrics Survey Sample
- Objective:
 - Large, representative sample of online-generated FCMs, including order effecs (etc.); testing online methods

Confidence level: 95% Population: 8,336,697

Confidence Interval: 3.55%

ADD ON: Data

ADD ON: Do mentioned impacts pose a problem?

Across 5 boroughs:

 N_i = concepts = impacts = 2849 N_p = problematic impacts = 1128; i.e. 40%

ADD ON: Sectoral impacts and problems

Column Sum: BOROUGH VIEW

Heat

Rain

Code System	BR_i	BX_i I	MH_i	QU_i	SI_i_R _	BR_p_	BX_p N	1H_p QU	_p SI_p
Agriculture & food security	-			-	-			-	• • •
🗄 🖅 🔁 Natural environment			•	•	•	•	•	-	• • •
🗄 🖅 Public support functions (planning,policy,services)	-	-	•	-	-				
🗄 🖅 🔄 Built environment: infrastructure, property, technology —							•		
Economy & finances (personal & public costs, work,									• •
🗄 🔄 Way of life, consumption, social issues								•	•
Energy problems & insecurity						-	-	•	• •
🗄 🖅 🕞 Human health & body issues						-			• •
🗄 🖅 Traffic problems & restricted mobility									
🗄 🔄 Water problems & security						-			· •
Climate parameters & physical forms	•	•		•		-	-	•	•

- \rightarrow Problems differ across boroughs, not impacts (mostly)
- \rightarrow People give relative reliable/ similar answers in the FCMs

ADD ON: N=35 from one borough during heavy rainstorms

4. Generating FCM with different interview methods- Implications and issues

Survey #	Location	Time(s)	Number of (qualified) interviewees	# of interview attempts	Number of (useful) Networks (heat + rain)	Objective: Testing structure and content of networks	Number of socio-economic groups interviewed	Number of interview locations	Remarks
1	Delhi, India: 1 sub-urban location	2 interview slots: April 2010	126	144	126	Across weather events and socio- economic groups	 street vendors; 2) planners; 3) professionals; researchers; students 	3 locations (street location; planning office; research institute)	<pre>1 interviewee = 1 map. but # of maps per group and weather event uneven → group networks not comparable</pre>
2	Hyderabad, India: 7 locations across urban area	1 interview slot: Feb- April 2011 (05.02 30.04.2011)	193	Only documented for 1 location: 17 refusals for 30 qualified maps	386	Across urban locations, weather events and socio- economic groups	 street sellers; wholesale market sellers; planners 	5 street locations; 1 wholesale market; 1 planning office	1 interviewee = 2 maps, same 3 of people per group → single & group networks comparable
3	Chicago & New York City using MTURK sample 1	hicago & 19 5 125 10 ew York 26.12.2012 ity using MTURK ample 1		10	Across network elicitation and weighting method, cities, and weather events	A number of socio-economic markers: age, gender, income, residence time,	Across all of NY and Chicago	1) Line-by-line vs matrix AND EACH 1) 0-1 Strength 2) 0-100 Strength 3) 0-100 Percent	
4	Chicago & New York City using qualified MTURK sample 2	02.02 13.03.2013	172	485	344	Across weighting method, cities, and weather events	A number of socio-economic markers: age, gender, income, residence time,	Across all of NY and Chicago	See further down
5	New York City using Qualtrics Survey sample	05.11 08.12.2013	762	1178	938	Across boroughs and socio- economic groups	A number of socio-economic markers: age, gender, income, residence time.	Across all of NY	See further down

Face to face: Delhi

C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15
	Maps	# of Nodes/ map			# of Edges/ map			Weights/ map			Density			Confusion (weights, or other)
HEAT	N	x	Range	SD	x	Range	SD	x	Range	SD	x	Range	SD	
Planners	4	12.25	6-17	4.57	14.50	6-24	7.37	.54	.2580	.23	.12	.0920	.06	80% (8/10)
Wallahs	23	6.61	3-10	2.19	9.39	2-10	5.33	.60	.1586	.23	.26	.1350	.10	Interviewer draw map
Profess	13	13	6-24	6.33	14.46	6-31	7.91	.58	.2875	.14	.12	.0537	.09	29% (4/14)
Research	8	9.75	7-14	2.67	12.50	5-25	6.39	.54	.3870	.11	.15	.0924	.05	25% (2/8)
Students	11	11	6-19	4.11	15.25	12-22	6.92	.62	.4478	.11	.13	.0521	.07	42% (5/12)
RAIN	N	x	Range	SD	x	Range	SD	x	Range	SD	x	Range	SD	
Planners	7	10.29	7-14	2.56	11.14	6-20	4.45	.54	.3671	.13	.12	.0921	.04	66% (8/12)
Wallahs	26	7.29	2-15	3.70	10.12	1-20	5.76	.61	.2095	.16	.22	.0950	.12	Interviewer draw map
Profess	13	13.69	5-27	7.16	16.15	4-44	10.95	.62	.4098	.16	.12	.0527	.07	31% (5/16)
Research	7	8.71	7-11	1.72	9.57	6-14	3.19	.57	.3082	.16	.14	.1121	.04	30% (3/9)
Students	14	11.07	6-22	3.97	12.86	6-22	4.55	.63	.5379	.08	.13	.0521	.05	21% (3/14)

Face to face: Hyderabad

C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14
	Maps	# of Nodes/ map			# of Edges/ map			Weights/ map			Density		
HEAT	N	x	Range	SD	x	Range	SD	x	Range	SD	x	Range	SD
Barkatpura	30	3.48	2-6	1.35	2.48	1-5	1.35	.50	.2580	.16	.21	.1425	.04
Jambagh	30	3.87	2-7	1.28	2.87	1-6	1.28	.56	.25-1	.19	.20	.1225	.04
Old City	30	4.70	2-8	1.64	3.80	1-8	1.77	.52	.1384	.20	.18	.1125	.04
Srinagar	30	3.32	2-7	1.42	2.39	1-6	1.47	.57	.1-1	.24	.22	.1233	.05
Tamaka	30	4.72	2-10	1.94	3.76	1-9	2.01	.55	.07-1	.20	.18	.0925	.04
Madannapet	30	3.76	2-7	1.68	2.79	1-6	1.72	.45	.0280	.21	.20	.1225	.05
HMDA	8	8.88	5-16	3.87	8.75	4-20	5.63	.39	.2558	.10	.12	.0816	.03
RAIN	N	x	Range	SD	x	Range	SD	x	Range	SD	x	Range	SD
Barkatpura	30	3.37	2-8	1.45	2.47	1-7	1.55	.64	.19-1	.22	.22	.1133	.04
Jambagh	30	4.40	2-8	2.52	3.43	1-8	1.72	.57	.23-1	.21	.18	.0831	.05
Old City	30	5.87	2-17	2.70	5.40	1-20	3.49	.58	.1098	.19	.16	.0725	.04
Srinagar	30	4.20	2-7	1.47	3.27	1-6	1.57	.58	.1-1	.21	.19	.1225	.04
Tarnaka	30	4.87	2-8	1.76	4.13	1-9	2.05	.57	.2291	.18	.18	.1131	.05
Madannapet	30	4.50	2-8	1.61	3.87	1-8	2.08	.45	.0578	.19	.19	.1325	.03
HMDA	8	8.88	4-17	3.87	8.50	4-17	4.17	.48	.2180	.19	.12	.0625	.06

Conclusion: Face to face interviews

- 2-17 concepts; # concepts increases with time/ education
- 0.1- 1: large range of weights:
 - lower income people put sign. larger weights
- Obstacles:
 - Many low-income respondents cannot write: interviewer draws (OK)
 - Unified language might 'filter' responses to Western/ English words
- Fuzzy linguistics (weak, medium, strong) was tried:
 - interviewees did not understand it; did not work. Used numbers instead.
- Different numbering scales were also tried, such a 0-10, 0-1, -10 to 10.
 - -10 to 10 did not work at all; the other options worked out alright.
 - 0-1 worked best (0-100 was not tested), although still difficult for a good share of the interviewees.
 - Experts feel more uneasy than lay people to give crisp numbers.

Online: Testing more generation methods

Approach:

- 1) Line by line for each possible connection, the direction, and weight
- 2) all this information into matrix.
- → Quality issues: large number of uncompleted tasks: 12% of people who started the task completed (line); 14% (matrix)
- → More people completed successfully with line approach; matrix approach was often interpreted incorrectly
- \rightarrow Line-by-line cognitively easier

	Attempts	Cor	npletes	Use	fully completed
LINE APPROACH	N	N	%	N	% of attempts
Chicago_line_0100%	10	2	20.0	1	10
Chicago_line_01strength	11	3	27.3	0	
Chicago_line_ 0100strength	8	1	12.5	1	12.5
NY_line_0100%t	11	0	0.0	0	
NY_line_01strength	6	1	16.7	1	16.7
NY_line_0100strength	13	0	0.0	0	
Sum	59	7	11.9	3	5.1
MATRIX APPROACH					
Chicago_matrix_0100%	8	1	12.5		
Chicago_matrix_ 01strength	10	2	20.0	0	
Chicago_matrix_ 0100strength	9	2	22.2	1	11.1
NY_matrix_0100%	12	0	0.0	0	
NY_matrix_01strength	11	1	9.1	0	
NY_matrix_ 0100strength	16	3	18.8	1	6.3
Sum	66	9	13.6	2	3.0

C1	C2	C3	C4	C5	C6	C 7	C8	C9	C10	C11	C12	C13	C14	C15	C16
	Maps	# of Nodes/ map				# Edges	# of Edges/ map			Weights/ map	# of Nodes/ map		Density		
HEAT	N	N	x	Range	SD	N	x	Range	SD	x	Range	SD	x	Range	SD
NY - Bronx	11	68	6.18	4-9	1.66	138	12.55	4-28	7.61	.60	.2581	.17	.37	.2357	.09
NY - Brooklyn	25	158	6.32	3-9	1.75	310	12.40	2-26	6.46	.65	.43-1	.17	.37	.17-1	.18
NY - Manhattan	29	184	6.34	3-9	1.95	360	12.41	3-38	8.27	.59	.239	.18	.36	.1070	.14
NY - Queens	19	108	5.68	2-9	2.24	227	11.95	1-37	9.33	.63	.25-1	.21	.41	.2370	.14
Chicago	88	541	6.15	3-9	5.15	1249	14.19	0-61	10.80	.68	.29-1	.18	.43	.1485	.17
RAIN	N	N	x	Range		N	x	Range	SD	x	Range	SD	x	Range	SD
NY - Bronx	11	42	3.82	2-6	1.08	50	4.55	2-9	2.38	.72	.37-1	.21	.45	.25-1	.21
NY - Brooklyn	25	97	3.88	2-6	1.20	131	5.46	1-13	3.66	.72	.32-1	.18	.42	.2558	.10
NY - Manhattan	29	104	3.59	2-5	1.05	124	4.28	1-12	2.78	.55	.55-1	.25	.45	.15-1	.16
NY - Queens	19	69	3.63	2-6	1.30	87	4.58	1-11	3.10	.71	.34-1	.17	.46	.3083	.12
Chicago	88	325	3.69	2-9	1.31	440	5.00	1-26	4.22	.72	.15-1	.22	.47	.16-1	.17

Online: New York City - Chicago

C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15
NY	Maps	# Nodes	# Nodes/ map			# Edges	# of Edges/ map			Weights/ map			Density	
HEAT	N	N	x	Range	SD	N	x	Range	SD	x	Range	SD		
Bronx	111	456	4.11	2-9	1.49	1112	10.11	1-51	8.12	.69	.17-1	.21	.74	.16-1
Brooklyn	194	843	4.35	2-9	1.78	2129	11.26	1-69	10.59	.65	.01-1	.20	.71	.15-1
Manhattan	200	960	4.80	2-9	1.90	2700	13.57	1-72	13.68	.59	.05-1	.20	.65	.13-1
Queens	177	816	6.61	2-9	1.83	2313	13.14	1-72	13.48	.64	.1-1	.21	.69	.10-1
Staten Island	80	4066	5.07	2-9	2.08	1283	16.24	1-64	15.43	.66	.18-1	.19	.68	.14-1
RAIN	N	N	x_	Range	SD	N	x_	Range	SD	x_	Range	SD	x	Range
Bronx	111	461	4.15	2-9	1.70	1252	11.38	1-64	10.9	.63	.14-1	.21	.78	.25-1
Brooklyn	194	853	4.40	2-9	1.83	2219	11.62	1-67	11.43	.63	.03-1	.22	.70	.19-1
Manhattan	200	923	4.61	2-9	1.75	2425	12.37	1-72	10.80	.60	.06-1	.21	.68	.17-1
Queens	177	829	4.68	2-9	1.89	2409	13.61	1-72	12.653	.63	.1-1	.21	.72	.24-1
Staten Island	80	395	4.94	2-9	1.93	1130	14.13	1-63	12.25	.62	.07-1	.21	.67	.23-1

Online: New York City

Summary: Online interviews

- Quality issues:
 - 1178 respondents attempting to take the survey; 938 completed it.
 - After thorough data screening, the number of responses reduced to 762 completed tasks (81.2%).
- Sincere note of caution in mind: Use of online questionnaires produces more connections between the nodes as compared with FCMs drawn on paper
 - Drawings on paper might miss (important) influential relations

UNIVERSITY OF TWENTE.

THANKS.

Dr. Diana Reckien Assistant Professor for Climate Change, University of Twente, The Netherlands

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION