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Objectives: Bootstrapping is often used to assess uncertainty in outcomes of 
randomized controlled trials (RCTs) due to sampling variation and limited sample 
sizes. Although guidance is available on two-stage bootstrapping for cluster-RCTs, 
specific guidance is lacking on sampling clusters within bootstrap samples to 
address the uncertainty in variation across clusters. This study assesses the impact 
of using different selection approaches to sample clusters in two-stage bootstrap-
ping in a case study on procalcitonin-based antibiotic treatment in IC patients with 
sepsis.  Methods: The case study was a cluster-RCT including 16 hospitals (4 aca-
demic, 12 non-academic) with on average 48 patients per hospital (range n: 1-185). 
Five cluster sampling approaches were investigated, based on random sampling of:  
1) the intended number of patients, 2) 16 hospitals, 3) 16 hospitals maintaining the 
original ratio academic/non-academic hospitals, 4) as method 2 while maintaining 
the total number of patients, 5) as method 3 while maintaining the total num-
ber of patients. Additionally, a scenario analysis using half of the data was per-
formed. Incremental cost differences and corresponding 95%CIs were determined 
based on 10,000 bootstrap samples.  Results: Different approaches of bootstrap-
ping resulted in variation in the incremental costs per patient (data mean: € 16, 
bootstrap range: € -24 - € 183), with approach 5 deviating most from the observed 
mean incremental cost. 95%CIs also varied in size (smallest 95%CI: € -5,123 - € 5,986 
[method 5], largest 95%CI: € -5,699 - € 6,566 [method 2]). Differences in outcomes 
were more pronounced when using half of the data.  Conclusions: Using differ-
ent approaches for sampling clusters in two-stage bootstrapping may influence 
the mean outcomes and 95%CIs. Determining the most appropriate sampling 
method based on outcomes and 95%CIs is dependent on the approach for selection 
used in the real-world trial. When the inclusion strategy is unknown, sensitivity 
analysis is recommended to assess uncertainty arising from this unknown cluster 
inclusion process.
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Objectives: Regulatory agencies such as the FDA and EMA have issued guide-
lines on how to evaluate non-inferiority. However, there is no clear guidance on 
how to select the non-inferiority margins (NIFm’s) in oncology clinical trials. 
This study is to identify previously used NIFms in oncology clinical trials for 
key endpoints.  Methods: A systematic Medline literature review of NIFms in 
oncology clinical trials was conducted. Non-inferiority randomized clinical tri-
als published in the English between Jan 2000 and Dec 2017 were included. Only 
studies reporting margins for the response rate (RR), progression-free survival 
(PFS), overall survival (OS), and safety endpoints were included. The following 
data items were extracted: indication, treatment setting, sample size, primary 
endpoint, treatment effect measure, and defined margin. Study selection and 
data extraction were performed by two independent investigators.  Results: 
Out of 635 screened search hits, 99 reports were included in this analysis. For 
both RR and safety, the rate difference was used as the measure of treatment 
effect. For RR, among 18 reports (median sample size: 293; range: 98 to 828), the 
median and mean of NIFms were 15% and 13%, respectively. For safety endpoint, 
we identified two studies with a NIFm of 10% and 15%. For both PFS and OS, 
the hazard ratio was used as the measure of treatment effect. For PFS, among 
29 reports (median sample size: 402; range: 85 to 2,098), the median and mean 
of NIFms were 1.300 and 1.314, respectively. For OS, among 50 reports (median 
sample size: 586; range:22 to 1,725), the median and mean of NIFms were 1.250 
and 1.272, respectively. On average, retrieved studies with a total sample size 
of 1000 or 500 had larger NIFms.  Conclusions: There is no consensus on the 
appropriate NIFms for key endpoints in oncology trials. More guidance from 
regulatory agencies is needed.
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Objectives: To illustrate the dynamic nature of time, it’s potential impact on 
risk estimates, and approaches to account for time dependencies in time to event 
analyses.  Methods: Survival analysis techniques will be illustrated including 
time to event concepts, the relation between survival and hazard functions, cen-
soring, and truncation. Further, exploration of time dependencies will be dem-
onstrated and methodological approaches to account for and visualize variations 
in hazard estimates over time will be shown.  Results: Descriptive statistics 
and unadjusted product-limit estimators will be presented including frequen-
cies, chi-square statistics, and Kaplan-Meier estimates to illustrate unadjusted 
associations. Graphical exploration of time-varying functions will be conducted 
to display time interactions and violation of proportionality. Cox proportional 
hazards modeling will be demonstrated and compared to the extended Cox model 
to account for time dependencies and covariate adjustment.  Conclusions: 
Temporal deviations including loss to follow-up and time-dependencies can occur 
in even the most controlled research designs and accounting for time offers a 
unique and more granular view of the outcome in the context of treatment and 
other covariates. It is incumbent upon researchers to explore study outcomes 
as a function of time when possible in survival analytic approaches since time 
dependencies, when unaccounted for, can drastically alter the interpretation of 
results. Techniques exist to address time-varying hazards when identified and 
should be employed.

Objectives: For reimbursement, economic evaluations such as healthcare costs 
are often as important as clinical outcomes. However, estimating the standard error 
(SE) of the difference in mean costs between two treatments using the zero-inflated 
Gamma distribution is currently limited to bootstrapping and the method of Mills 
(2013). We propose an exact, closed-form solution for estimating SE based on a 
parametric model, and compare the results to those of bootstrapping and Mills’ 
method.  Methods: Data were generated using the gamma distribution with var-
ied shape parameters (0.5, 1, 2, 5, 7.5, 10, 20) and a fixed scale parameter(1000) The 
proportion of zeroes for costs in each data set were also varied (0.5, 0.7, 0.9). Each 
simulation data set contained 10,000 observations. We calculated the SE’s of the 
mean difference in cost between two treatments, using three methods.  Results: 
For small shape parameters ( 0.5, 1, 2), the SEs of all methods showed similar results 
across different proportions of zeroes (0.5, 0.7, 0.9), with the SEs from the Mills 
method being slightly larger than that of the bootstrap method (10000 repetitions) 
or our exact method. However, when the shape parameter was greater than 2, the 
SEs estimated by the Mills method were significantly larger than that of the other 
methods. Our proposed approach produced similar SEs compared to those of the 
bootstrap method across all different proportions of zeroes.  Conclusions: Our 
proposed method has a nice property: it is not only an exact method based on a 
parametric model, but also produces the similar SEs to the bootstrap method. The 
Bootstrap method is a consistent estimator, though it is not exact and computa-
tional costs are a consideration. One should use the Mills method with care, because 
the estimated SE may be significantly larger across a range of parameters.
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Objectives: In the absence of Head-to-head clinical trials population adjusted 
ITC such as matching adjusted indirect comparison (MAIC) and STC can account 
for between-trial imbalances in the distribution of effect modifiers. STC is a regres-
sion-based approach which predicts the outcome in the target population. As ITC 
conducted in a Bayesian setting has been increasing in popularity, our objective is 
to bring together the flexibility of Bayesian modeling with STC model by NICE and 
compare the output.  Methods: We simulated the hypothetical data from three 
trials (treatment B vs. A) and a comparator trial (treatment C vs. A), using R package 
Wakefield. In line with NICE worked example, we generated two variables, age, and 
gender. We developed a logistic regression model in WinBUGS for AB trial population 
and used this to predict the outcome in AC trial population. To take into account the 
clustering of individuals within the component trials, we introduced a study-level 
baseline risk term in the outcome model. To compare the results, the log OR of B 
vs. A in the AC population were then estimated from the two methods.  Results: 
Treatment effect estimates obtained from the Bayesian model after adjusting for 
the different baseline risk were logOR B vs. A: -2.49 (-3.06, -1.95). These results were 
aligned with the pooled estimates obtained from STC (as per the NICE methods) 
logOR B vs. A: -2.45(-2.99, -1.90).  Conclusions: Bayesian IPD regression with study 
level baseline terms added in the outcome model can be used to combine IPD from 
multiple trials when population adjusted ITCs are required. Our findings showed 
that STC results from both frequentist and Bayesian frameworks are aligned with 
the latter offering more flexibility. STC can also be an option to explore when MAIC 
is not feasible due to small effective sample size.
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Objectives: This study estimated the humanistic and economic burden associated 
with co-morbid depression and anxiety among adults with diabetes and hyperten-
sion.  Methods: A retrospective cross-sectional study was conducted among adults 
(> =  18 years) with diabetes and hypertension. Respondents were classified into four 
groups: 1) depression and anxiety (N= 309), depression only (N= 561), anxiety only 
(N= 366), and no depression and no anxiety (N= 3,324) using data from the Medical 
Expenditure Panel Survey for the years 2013 and 2015. The humanistic outcomes 
were: health-related quality of life (HRQoL) measures obtained from the SF-12-V2. 
Economic outcomes were: total annual healthcare expenditures, third party spend-
ing, out-of-pocket (OOP) spending and proportion of income spent out-of-pocket. 
Counter-factual recycled prediction method was used to assess the incremental 
burden associated with comorbid depression and anxiety.  Results: Nationally, 
1.57 million (7.7%) adults with diabetes and hypertension reported having comorbid 
depression and anxiety and incurred $45.3 billion in total healthcare expenditures. 
The per-capita total expenditures for those with comorbid depression and anxiety 
was nearly 250% higher ($28,832 vs $11,543) compared to those without depres-
sion and without anxiety. They also experienced high OOP burden (AOR= 1.57; 95% 
CI= 1.08, 2.27). The relationship between comorbid depression and anxiety and 
HRQoL measures were insignificant after adjustment.  Conclusions: Management 
of diabetes and hypertension needs to account for comorbid depression and anxiety.
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