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Abstract—Cyber-physical control systems are typically time-
triggered because the Analog to Digital (A/D) and Digital to
Analog (D/A) converters are triggered by a periodic clock. This
enables analytical stability analysis of closed-loop models in case
the plant and controller are linear. However ensuring periodic
sampling requires that a sampling period is selected larger than
the Worst-Case Execution Times (WCETs) of the digital control
tasks. Unfortunately, low sampling rates must be selected as
a result of loose WCET bounds especially if multi-processor
hardware is applied with shared data caches and SDRAM
memory.

In this paper we propose a model-checking based stability
analysis approach for control systems that sample aperiodically.
Our approach is targetting self-timed systems, where the A/D
and D/A converters are driven by internal events, such as
the completion of a task, which also trigger subsequent task
executions. During self-timed execution the average sampling
period tends to be significantly smaller than possible in time-
triggered mode, and as a result the control performance is
improved significantly. Self-timed systems also allow the use of
a running average workload characterization of the tasks which
is tighter than a WCET characterization, and which can greatly
improve the accuracy of the stability analysis results.

We show using two self-timed control systems that control
performance in terms of stability and settling time improves
for self-timed systems when the running average workload
characterization is applied. Furthermore, we point at an essential
feature that is needed for asymptotic stability analysis which is
missing in well known model checkers such as SpaceEx.

I. INTRODUCTION

Digital control systems are commonly time-triggered be-

cause the A/D and D/A converters are driven by a clock (see

Fig. 1a). This practice allows the use of well established

analytical stability analysis techniques in case the plant and

controller are linear. The approach is suitable for highly

deterministic single core computer architectures. However

modern control systems are increasingly being implemented

on embedded multi-processor systems with shared data caches

and shared SDRAM memory.

The use of multi-processor hardware tends to “push” the

WCET bound to undesirable limits, even though the occur-

rence of large execution times may be rare. Since the design

of time-triggered systems requires that the sampling period

be larger than this WCET, the control behavior may then
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Fig. 1: Block diagrams of basic time-triggered (1a) and self-
timed systems (1b).

drastically deteriorate. In the most extreme case the system

can even become unstable.

In so-called self-timed systems the A/D and D/A converters

are driven aperiodically by internal architectural events, as

shown in Fig. 1b. In particular, the control task initiates sam-

pling and actuation (S/A) when it completes an execution. This

event also starts a new execution at the same time. As a result

the controller enters a free-running mode with higher S/A rates

on average compared to its periodic counterpart. However,

since S/A is now aperiodic, the derived mathematical models

are not always analyzable using classical control theory.

In this paper we propose a model-checking based approach

for verifying stability of self-timed systems, using a specific

class of hybrid automata models in combination with an

average workload characterization [1]. More specifically, we

introduce the Hybrid Automata with Clocked Linear Dynamics

(HA-CLD) model which allows to jointly describe the tempo-

ral and functional behavior of linear plants and controllers

under aperiodic S/A.

To demonstrate the applicability of our approach and to

show that a self-timed system can perform better than its
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time-triggered counterpart, we consider a practical example

in our case study. Here various HA-CLD models are derived

from the system’s physical model and different workload

characterizations, including the WCET. We show first that a

model-checker, such as SpaceEx [2], can conclude stability

of the system, but not whether it is asymptotic. Therefore we

make use of our own model-checker, which is implemented in

MATLAB, for asymptotic stability analysis. We then show that

the considered self-timed system has an improved transient

response.

The rest of this paper is organized as follows. Section II

reviews and compares other state-of-the-art work with ours.

Section III describes time-triggered and self-timed systems

and the difficulties associated with their design. In Section IV

we take a closer look at single-mode closed-loop control.

In Section V we describe the modeling framework of our

approach. In Section VI we prove that (asymptotic) stability

of HA-CLD can be determined using reachability analysis. In

Section VII we present the case studies. Finally, we state the

conclusions in Section VIII.

II. RELATED WORK

In this section we describe related stability analysis ap-

proaches and explain the differences with the approach de-

scribed in this paper.

Many approaches make use of Lyapunov functions [3]–[6].

Such approaches first derive hybrid automata and/or switched

system models of the closed-loop system, by analyzing

its discrete-event behavior. A Common Quadratic Lyapunov

Function (CQLF) [7] is then computed and used to verify the

stability of the system. Average Dwell-Time (ADT) [6] and

Multiple Lyapunov Functions (MLF) [4] theory can also be

used in a similar way. In contrast our approach relies only on

stability verification through reachability analysis. As such it

can still be used to conclude stability in cases when a CQLF

cannot be computed or does not exist.

Approaches which combine model-checking with Lyapunov

functions are proposed in [8], [9]. Such approaches first com-

pute simplified abstractions of the derived hybrid automaton.

Reachability analysis is then used on the transformed models

to compute critical regions of the system. Finally Lyapunov

functions are derived for these regions to conclude local

stability. Global stability is concluded if all regions are locally

stable. However the key difference is that in our approach we

don’t consider generic hybrid automata models. Furthermore

we don’t make use of Lyapunov functions.

A method by Aminifar et al. [10] considers stability ver-

ification for networked control systems with variable delay

and sampling jitter. Here the authors use a periodic task

workload characterization, similar to [1], and the so-called

jitter margin [11] curves to compute optimal sampling periods

of the controller. However compared to our approach they

don’t consider systems with aperiodic execution. In contrast

our approach can be used to verify the stability of systems with

aperiodic S/A, which more accurately describes the behavior

of the system.

The approach proposed by Frehse et al. [12] uses the hybrid

model checker SpaceEx [2] to verify functional and temporal

properties simultaneously of time-triggered systems. They pro-

pose the use of a typical worst-case response time [13] to char-

acterize the delay introduced by the execution of the control

task(s). The key difference with our work is that we provide

an analytical proof that stability can be determined using a

model checker for a specific class of self-timed hybrid systems.

Furthermore, we consider a different workload/response-time

characterization similar to the one introduced in [1].

The works by Khatib et al. [14], [15] propose a reachability

analysis based approach for stability verification of a class of

self-triggered control systems. The systems under considera-

tion, similarly to our work, have non-deterministic S/A times.

Specifically the works propose reachability algorithms to syn-

thesize feasible schedules given a timing contract and verify

stability. They consider a variant of the WCET characterization

of the control task, which they define as the timing contract.

However they do not consider systems with multiple modes.

Additionally they do not consider workload characterizations

other than WCET.

The work by Hausmans et al. [1] presents a two-parameter

workload characterization to characterize the maximum total

execution time in every window of n subsequent task exe-

cutions. We make use of a workload characterization that is

inspired by characterization of [1]. The work of Hausmans

considers only the discrete event part of self-timed systems.

An important difference is that in our work the temporal and

functional behaviors are analyzed together, by encoding the

workload characterization and system dynamics into a hybrid

automaton model.

III. BASIC IDEA

In this section we give a basic overview of time-triggered

and self-timed control systems, and discuss their design issues.

A. Time-triggered systems

Time-triggered systems are designed such that the S/A times

are dictated by a clock (timer). By S/A times, we refer to the

time instances when the A/D and D/A converters are triggered,

respectively. For the sake of simplicity it is assumed that these

times coincide. Graphically this scheme is shown in Fig. 1a,

where y(t) and u(t) are continuous time measurement and

actuation signals. The sequences {y(tk)}k∈N and {u(tk)}k∈N
are their respective discrete-time equivalents.

Most commonly the converters are driven periodically such

that tk+1 − tk = τ for all k ∈ N, where τ is the sampling

period. This is so, because the derived mathematical model

of the system has strong analytical properties in case that

it is linear and time-invariant. In particular, if the sampling

period can be assumed constant throughout the evolution of

the system, then one can utilize static analysis techniques

to analyze and optimize the controller, such that a desired

behavior is achieved. Loosely speaking the closed-loop state-

space model of the form φk+1 = Ψφk is studied, where Ψ is

a fixed transition matrix derived from the plant and controller,
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given a certain sampling period, and φk is the closed-loop

state at time tk. Stability can be verified by showing that the

spectral radius ρ(Ψ) is smaller than one [16].

However a requirement for time-triggered systems is that

the sampling period must be larger than the WCET of the

control task. This WCET tends to be very large in case the

processor on which the control task is executed uses a cache

(in particular a data-cache), as is the case for most modern

general purpose multiprocessor systems. The WCET usually

becomes even larger if the data is fetched from shared memory.

An important issue is that a large WCET results in a large

S/A period, which in turn can result to a system with a poor

controlled behavior and can even become unstable.

B. Self-timed systems

In this paper we propose a self-timed system setup, see

Fig. 1b, in which the execution of the control task is started

by the arrival of internal architectural events. These events are

usually generated by the completion of task executions and

are also used to trigger the A/D and D/A converters. In this

setup S/A occur as soon as possible and aperiodically.

A key advantage of self-timed execution is that the effective

sampling period may be significantly smaller than its time-

triggered counterpart. This is often the case in practice when

large execution times rarely occur. In such cases a so-called

running average workload characterization can be used during

analysis that is less pessimistic than the WCET of the con-

trol task, while still providing an upper bound on the total

execution time of a sequence of executions.

However a drawback is that the functional behavior of the

system changes dramatically, because the S/A times are non-

deterministically selected. In this case the transition matrix

becomes a function of the dwell-time τk = tk+1 − tk of

iteration k. Additionally workload characterizations other than

the WCET introduce switching behavior, such that on each

iteration k a new matrix function with mode index σk is non-

deterministically selected. Formally the derived state-space

model takes the form:

φk+1 = Ψσk
(τk)φk, Ψσk

(·) ∈M, (1)

where M = {Ψ1(·), ...,Ψm(·)} is a finite set of matrix valued

functions Ψ : t → R
n×n for a system with m discrete

modes. As a result methods such as the CQLF [7] cannot

always be applied. The reason is that an infinite amount of

matrix product combinations must be evaluated, which should

be approximated by a CQLF. Other approaches like the Joint

Spectral Radius (JSR) [16] are for the same reason not always

applicable. A special case when this is not true, is when the

matrices commute or they are triangular.

We show a system example in the case study section

which, given a WCET bound L̂, may become unstable during

aperiodic S/A with each τk ≤ L̂, despite that it is stable given

periodic S/A with τk = L and L ≤ L̂ is constant ∀k ∈ N.

Fortunately given a running average workload characterization

the opposite may often be the case, i.e. the system will be

unstable during periodic sampling, but stable during aperiodic

sampling.

Since classical Linear Time Invariant (LTI) models and theo-

rems are not sufficient to verify stability, we model linear self-

timed systems using a specific subclass of Hybrid Automata

(HAs). This representation allows model-checking tools to

analyze all of their possible trajectories and check for stability.

This is not possible for general HAs, because a contraction

towards a region of states cannot be shown for every possible

initial state of the HAs using reachability analysis.

We will show later in this paper that the state-trajectories

of the considered subclass of HA take the same form as in

Eq. (1) and provide an algebraic proof that stability can be

verified using model-checking methods for any initial state

φ0. In particular we will show that a self-timed system can

be verified using a model checker given a specific work-load

characterization, and that a finite number of iterations of the

model-checker are needed to conclude stability. To the best of

our knowledge, our approach is the first that can address this

practically relevant stability analysis problem.

C. Drawbacks of the WCET task characterization

In order to understand the drawback of the WCET charac-

terization more precisely, consider a single iterative control

task with execution time τk per iteration, where k is an

iteration index. Given that an upper and a lower bound, L̂
and Ľ respectively, is derived, each execution must satisfy the

relation:

∀k ∈ N : Ľ ≤ τk ≤ L̂. (2)

This characterization leads to a model with a single mode of

operation. In both the time-triggered and self-timed cases, this

model is unstable, if L̂ becomes too large.

However in a practical application the maximum execution

time case does not typically occur often. In this case a different

characterization can be used, similar to [1], such that the

upper bound is more relaxed. In the context of Eq. (2) this

characterization also requires that:

∀i = 1, ..., n− 1 : τk+i ≤ L̄ if τk > L̄, (3)

with L̄ = L̂
n .

Informally this characterization states that for every n con-

secutive executions at least one large execution L̄ < τk ≤ L̂
is allowed. For example in the case that n = 2, it is stated

that a long execution time is always followed by a short one,

i.e., τk+1 ≤ L̄.

IV. SINGLE MODE CLOSED-LOOP CONTROL

In this section we describe classical LTI models of the

plant and controller. We consider the feedback interconnection

between the controller and plant as shown in Figure 1.

A. Plant and controller modeling

Classical control systems theory relies on LTI models.

Of particular importance is the Input-State-Output (I/S/O)

representation, which describes the dynamical behavior of the
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plant as a system of first order linear differential equations

according to

ẋ(t) = Ax(t) +Bu(t), (4)

y(t) = Cx(t) +Du(t),

where x(t) ∈ R
n is the state of the plant, u(t) ∈ R

m is the

input and y(t) ∈ R
p is the output. Given an initial state x(0),

the state at time t is determined by

x(t) = Φ(t)x(0) + ξ(t), (5)

where Φ(t) = eAt is the transition matrix and ξ(t) =∫ t

0
Φ(τ)Bu(τ)dτ is the plant’s input response at rest, i.e.

x(t) = 0, ∀t ≤ 0. Of particular importance is the step

input response, where u(τ) = μ is held constant for a time

period τ ∈ [0, t). In this case ξ(t) = Γ(t)u(0), where

Γ(t) = A−1(Φ(t) − In)B and In ∈ R
n×n is the identity

matrix assuming that A is non-singular.

Similarly to the plant, a discrete I/S/O representation in

the form of first-order difference equations is derived for the

controller

z(k + 1) = Gz(k) + Fy(k), (6)

u(k) = Hz(k) + Py(k),

where z(k) � z(tk) ∈ R
q is the state of the controller,

while y(k) � y(tk) and u(k) � u(tk) are its input and

output respectively (connected to the plant). Note that y(t)
and u(t) are held constant for tk ≤ t < tk+1 and that

k ∈ N is an iteration index. The control law described above

is then implemented as a set of instructions on a computer and

executed iteratively for each new sampled measurement.

B. Periodic time-triggered mode

The digital controller is implemented as a single task exe-

cuted periodically, that applies the control law described earlier

to the sampled measurements, y(tk), and computes appropriate

actuation values, u(tk), to steer the plant. In addition the time

difference τk = tk+1 − tk = L between sampling/actuation

times is assumed constant for every k ∈ N. A discrete time

model of the plant is then derived using Eq. (4) such that

x(k + 1) = Φ(L)x(k) + Γ(L)u(k), (7)

y(k) = Cx(k) +Du(k). (8)

This representation is then used to find an optimal value for

the gain matrix F in (6).

Since the A/D and D/A converters are triggered at equidis-

tant times, tk, it is required to know the WCET of the control

task, to ensure that it completes execution before the next

sampling moment. A timer can be used to synchronize the

task to the sampling period, once this upper bound is known.

C. Aperiodic self-timed mode

During aperiodic S/A the controller task does not need to

wait for a periodic trigger from a timer. Instead it may do so

as soon as the current iteration finishes execution.

However since the time difference, τk, between the sam-

pling/actuation times becomes non-deterministic, the transition

matrices Φ and Γ now change on every iteration with respect

to the task execution time. The classical LTI representation

is thus not practical for statically analyzing and tuning the

closed-loop system, since the discrete-time behavior of the

plant is no-longer deterministic.

V. MODELING SELF-TIMED SYSTEMS

In this section we describe our modeling framework for

self-timed systems using hybrid automata theory.

In particular we derive HA models of the single mode

self-timed controller using the WCET and running average
characterizations. However we point out that the same frame-

work can be used to model any type of multi-mode controller,

provided that the temporal behavior of each mode can be

characterized. Hybrid automata are a very suitable model for

self-timed systems because of their property to include non-

determinism, along with multiple mode dependent discrete-

event and continuous-time dynamics.

A. Hybrid Automata

The general hybrid automaton is a directed graph system

model which is used to describe the evolution of a set of dis-

crete and continuous state variables. The following definition

is given in [17]:

Definition 1. A hybrid automaton H is a tuple H =
(Q,X, f, Init,Dom,E,G,R) where
• Q = {q1, ..., qN} is a finite set of discrete states (modes);
• X = R

n is the set of continuous states;
• f : R×Q×X → X is a vector field;
• Init ⊆ Q×X is the set of initial states;
• Dom : Q→ 2X is an invariant assignment map;
• E ⊆ Q×Q is a set of edges;
• G : E → 2X is a transition guard assignment map;
• R : E ×X → 2X is a reset map.

Note that 2X denotes the power set of X . At any moment

in time the pair s = (q, x) ∈ Q ×X describes the total state

of H . The continuous state evolves over time according to

ẋ(t) = f(t, x, q), q ∈ Q as long as x ∈ Dom(q). During

this time the discrete state q stays constant. A transition from

one discrete state q to another q′ may occur, whenever x(t) ∈
G((q, q′)), (q, q′) ∈ E.

The automaton is expressive enough to model any event-

driven and/or time-driven system. However computing the

reachable state-space is not always a decidable problem. Some

restricted definitions yield more tractable models, such as

Timed-Automata, Rectangular Automata, etc, for which the

reachability problem is known to be decidable [18].

B. Modeling using automata

In this paper we focus on the analysis of linear self-timed

LTI control systems. In this case we use equations similar to

Eq. (4) and (6) to describe the dynamic behavior of the plant

and controller respectively. On the other hand clock variables,

c(t) ∈ R
p are used to describe the temporal behavior. The
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(a) WCET characterization model

(b) Running-average characterization model

Fig. 2: Hybrid automata of a single mode closed-loop con-
troller according to WCET and running average characteriza-
tions.

guards and invariants are interval hulls which only constrain

the set of clocks, similarly to Timed Automaton (TA). This

way the discrete-event (temporal) behavior is specified using

real-time task characterizations, independently of the physical

and functional behavior of the plant and the controller.

An example of such a hybrid automaton model describing

a single mode controller characterized by its WCET, L̂, and

a Best-Case Execution Time (BCET), Ľ, is illustrated in

Figure 2a. Here the continuous time behavior is specified in

a single discrete state (mode) q0. The discrete event control

law applied by the controller is specified using the reset map

with a single edge (q0, q0). Note that here it is assumed that

the state x(t) is observable and controllable.

On the other hand the running average characterization as

defined in Eq. (3) is shown in Figure 2b. The reset maps

and continuous-time dynamics are the same as the automaton

in Figure 2a for all edges and locations, and for clarity are

replaced with ◦ and • respectively. The model uses n > 1
modes to describe a running-average behavior, such that each

mode qi, 0 < i < n, has a single outgoing edge (qi, qi+1)
with a guard c ≥ Ľ and invariant c ≤ L̄. A large value of

n indicates that one execution with a large peak in execution

time of at most nL̄ duration can occur, and is followed by n
executions that have an execution time of at most L̄ duration.

As a consequence, the average execution time in every window

of n consecutive executions is at most
(2n−1)L̄

n .

C. Hybrid Automata with Clocked Linear Dynamics

The automaton models described earlier share some com-

mon features: 1) the state-space is partitioned into clocks,

continuous time and piece-wise constant variables, 2) the reset

map and flow equations are linear relations, 3) the guards

and invariants are restricted to the clocks only. We identify

the class of all hybrid automata which share these features as

HA-CLD and define it as follows:

Definition 2. A Hybrid Automata with Clocked Linear Dynam-
ics is a tuple T = (Q,X ,Z, C, f, Init,Dom,E,G,R,Rc)
where
• Q = {q1, ..., qN} is a finite set of discrete states (loca-

tions);
• X = R

n is the set of continuous state variables;
• Z = R

m is the set of piecewise constant variables;
• C = R

p is the set of clocks;
• f : R×Q×X × Z → X is a vector field;
• Init ⊆ Q×X × Z × C is the set of initial states;
• Dom : Q→ 2C is a clock invariant assignment map;
• E ⊆ Q×Q is a set of edges;
• G : E → 2C is a transition guard assignment map;
• R : E ×X × Z → 2X×Z is a state reset map;
• Rc : E × C → 2C is a clock reset map.

Here the continuous state x ∈ X flows according to ẋ(t) =
f(t, q, x, z) = Ax(t) + Bz(t). Note that this is different,

but similar to equation (4). z ∈ Z is a piece-wise constant

state, such that ż(t) = 0 while in any q ∈ Q. The state pair

(x, z) = φ ∈ X ×Z is used to model the interaction between

the physical environment and the computer architecture. The

clocks evolve according to ċi(t) = 1, i ∈ [1, p]. For a mode

q the clock invariant is an (possibly infinite) interval hull of

the form Dom(q) = [cq1, c̄
q
1] × ... × [cqp, c̄

q
p]. Similarly for an

edge e ∈ E the transition guard is an interval hull of the form

G(e) = [ce1, c̄
e
1] × ... × [cep, c̄

e
p]. The reset map assigns a new

value to the continuous variable pair φ at an edge e according

to φ′ := R(e, φ) = Ceφ, where φ′ is the new value after a

transition takes place and Ce ∈ R
(n+m)×(n+m) is a transition

matrix.

VI. SEMANTICS AND ANALYSIS OF HA-CLD

In this section we formalize the semantics of HA-CLD

models and their use for stability verification of self-timed

systems.

A. Evolution of the state

Let T be a HA-CLD as defined in Definition 2 with a total

state s = (q, x, z, c) ∈ Q× X × Z × C. We use this notation

throughout the rest of the paper. A discrete transition relation

from a state s is then defined as

ρD(s) = {s′ | ∀e ∈ E : φ′ = Ceφ and

c′ ∈ Rc(e, c) such that c ∈ G(e)}. (9)

where φ = (x, z) and e = (q, q′).
By solving the differential equations, a continuous transition

relation is derived as

ρC(s) = {s′ | ∃τ ≥ 0 : c′ = c+ 1τ ∈ Dom(q),
x′ = Φ(τ)x+ Γ(τ)z, (q′, z′) = (q, z)}. (10)

where Φ(τ) and Γ(τ) are transition matrices as defined in (5)

and 1 = (1 ... 1)ᵀ ∈ R
p.

316



To reason about the behavior of the automaton however, it

is more useful to consider the sets of reachable states. Define

the successor sets

S0 = Init

Sk+1 = {s ∈ ρD(s′) | ∀s′ ∈ ρC(Sk)}, (11)

then

Rk =
k⋃

j=0

Sj = Sk ∪Rk−1 (12)

is the set of reachable states after k discrete transitions.

Using Eq. (11) we give the following definition for a

trajectory of a HA-CLD:

Definition 3. A trajectory (or trace) of the hybrid automaton
T is a sequence {sj}kj=0, such that sj ∈ Sj , where sj is the
state at time tj during which a discrete transition takes place.

B. Temporal behavior

The temporal behavior in a HA-CLD is explicitly modeled

by the set of clocks C and the associated guard and invariant

constraints. However to simplify the analysis of the functional

behavior, it is better to reason with dwell times. Specifically

with dwell times we refer to the time intervals between two

discrete transitions in a trajectory. Formally, given a trajectory

{sk = (qk, xk, zk, ck)}Nk=0, a dwell time τk = tk+1 − tk,

where tk is a time when a k-th discrete transition takes place.

Furthermore we denote with τ̌(q, q′) = infτ{τ ∈ R | c +
τ1 ∈ G(q, q′)∩Dom(q)} the lower bound on the dwell time

for an edge (q, q′). Similarly with τ̂(q) = supτ{τ ∈ R | c +
τ1 ∈ Dom(q)} we denote the upper bound. Finally we denote

with T(q, q′) = [τ̌(q, q′), τ̂(q)] the closed dwell time interval

for an edge (q, q′).

C. Functional behavior

Of particular interest are the sub-trajectories of the state pair

(x, z) ∈ X ×Z because they describe the functional behavior

of the system. Let φk = (xk, zk) ∈ R
n+m be the combined

continuous-time and piece-wise constant state vector pair of

the system at time tk, k ∈ N. We consider only the time

of initialization of the automaton, t0, and the times when a

discrete transition takes place. Then φk+1 is the value of the

state after continuously evolving up-to, but not including time

tk+1 from its initial value φk, and subsequently applying the

reset map upon transitioning to a discrete state qk+1 at time

tk+1. Formally, from the transition relations defined in (9)

and (10) we derive without loss of generality the recurrence

relation

φ0 ∈ Init
φk+1 = Ψ(e, τ)φk, k ∈ N (13)

where

Ψ(e, τ) = Ce

(
Φ(τ) Γ(τ)
0 Im

)
, (14)

for some edge e ∈ E and dwell time τ ∈ T(e).

Fig. 3: Visual depiction of the reachable and successor sets.
Here Rk+1 = Rk because Sk+1 ⊂ Rk.

From this relation a trajectory of the state φ up-to time tk
can be seen as a left-wise product of k−1 matrices, such that

φk = Ψ(ek−1, τk−1) · · ·Ψ(e0, τ0)φ0, (15)

where ei ∈ E, τi ∈ Tei , i ≤ k and φ0 ∈ Init. Using this we

give the following definition of stability:

Definition 4. Let the sequence {sj}kj=0 be any valid trajectory
of the automaton T for some k as defined in Definition 3, and
let {φj}kj=0 be its corresponding sub-trajectory that satisfies
Eq. (13). We say that the automaton is stable if for all k ∈ N

there exists a bounded constant M ∈ R, such that ‖φk‖ ≤M ,
for any φ0 ∈ Init. It is asymptotically stable if ‖φk‖ → 0 as
k →∞. Here ‖·‖ is any vector norm.

The automaton is unstable if it is not stable.

D. Stability verification

The process of verifying the stability of a self-timed system

through model checking involves computing exact or tight

over-approximations of the reachable and successor sets as

defined in Eqs. (11) and (12) respectively, until a fixed-point

is found. This condition is met when the set of reachable

states, Rk, stops expanding for some k, formally Rk = Rk+1.

Additionally to verify asymptotic stability, it must hold that all

states in Sk are inside S0, where S0 is a unit ball centered at

the origin. Formally ∀φ ∈ Sk : ‖φ‖ < 1, given any vector

norm ‖·‖. Visually this is shown in Figure 3.

For general HAs this is not possible. Fortunately for the

HA-CLD model we can capitalize on the following properties

to show global (asymptotic) stability using model-checking:

1) The temporal behavior is independent of the functional

behavior. Removing the functional state variables yields

a Linear Hybrid Automaton (LHA), for which the reach-

ability problem is decidable [18].

2) The state recurrence relations are linear as observed from

Eq. (13). Specifically the state after k > 0 discrete tran-

sitions is computed by a series of matrix multiplications

from the initial state.

We formalize these notions with the following theorem:

Theorem 1. Let T be an HA-CLD with corresponding suc-
cessor and reachable sets of states, Sk and Rk, defined
according to Eq. (11) and (12) respectively. Furthermore
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let S0 = S0 = Init be an initial set of states, such that
‖φ‖∞ ≤ 1, ∀φ ∈ S0.

1) The automaton is stable for any initial state φ0 if and
only if Rk+1 = Rk for some k > 0.

2) It is asymptotically stable if and only if ∀φ ∈ Sk holds
that ‖φ‖∞ < 1 and Sk ⊂ S0.

Proof :

1) ⇒ Define the norm of a set S with respect to φ as

‖S‖φ = max{‖φ‖∞ | φ ∈ S}. Assuming that the

automaton is stable, then this implies that there exists

a constant M > 0, such that ∀k ∈ N holds that

‖Rk‖φ ≤ M . This implies that there exists a k, such

that Rk+1 = Rk.

⇐ Assuming that Rk+1 = Rk for some k, then ∀φ ∈
Rk : ∃φ′ such that φ′ = Ψ(ek, τk)φ and φ′ ∈ Rk for

an edge ek and dwell time τk ∈ T(ek). Informally this

states that any state φ in Rk is mapped back into Rk.

This in turn implies that ∀j > k : Rj = Rk.

Thus ∀k there exists a constant M > 0 such that

‖Rk‖φ < M . Since Rk per definition contains all the

possible trajectories up-to and including k, we conclude

that the automaton is stable.

2) ⇒ Assuming that the automaton is asymptotically stable

then ∀φ ∈ Sk : ‖φ‖∞ → 0 as k → ∞. By definition

this implies that there exists a k such that ‖Sk‖φ < 1
and Sk ⊂ S0.

⇐ Let ‖Sk‖φ < 1 for some k, then ∀φk ∈ Sk

there exists φ0 ∈ S0 and a sequence {ej}k−1
j=0 , ej =

(qj , qj+1) ∈ E, with associated sequence of dwell times

{τj}k−1
j=0 , τj ∈ T(ej) such that

φk = Ψ(ek−1, τk−1) · · ·Ψ(e0, τ0)φ0 = Ψ̂φ0

and ‖φk‖∞ < ‖φ0‖∞. By definition of S0 this implies

that ‖Ψ̂‖∞ < 1, where ‖Ψ̂‖∞ = sup‖φ‖∞=1{‖Ψ̂φ‖∞}
is the induced infinity matrix norm. This implies that for

any following transition ek = (qk, qk+1) and dwell time

τk ∈ T(ek) holds that

‖Ψ(ek, τk)Ψ̂φ0‖∞ =M‖Ψ(ek, τk)φ0‖∞, M < 1.

Given that Rk ∈ Rk−1, then this implies that there

exists an identical sequence of edges {ej}2k−1
j=k such that

Ψ(e2k−1, τ2k−1) · · ·Ψ(ek, τk) = Ψ̂,

thus ‖φ2k‖∞ = ‖Ψ̂2φ0‖∞ = M2‖φ0‖∞. By repeating

this process j times then ‖φjk‖∞ =M j‖φ0‖∞ → 0 as

j →∞. Thus the automaton is asymptotically stable.

To show that it is sufficient to check stability for any initial

state φ0 ∈ R
m+n given S0 as defined in Theorem 1, consider

ψ0 = aφ0 for some non-zero constant a ∈ R such that

‖ψ0‖∞ ≤ 1. This implies that after k discrete transitions

ψk = Ψkψ0 = aΨkφ0 = aφk.

Thus φk converges from φ0 if and only if ψk converges from

ψ0. The same holds if ψk diverges.

Theorem 1 shows that if a HA-CLD has a stable fixed point,

then during the model-checking process the condition Rk+1 =
Rk is eventually met and the tool terminates. Conversely when

a model-checker terminates execution, then this implies that

there exists a stable fixed-point. Furthermore the fixed point is

at the origin. However verifying asymptotic stability requires

an additional finite amount of iterations.

VII. CASE STUDY

In this section we consider a closed-loop static gain control

self-timed system. Given a WCET and a running average

task workload characterization we derive HA-CLD models

to verify the stability of the system and analyze the perfor-

mance. We use MATLAB to verify asymptotic stability and

to compute state envelopes to benchmark the performance. The

SpaceEx [2] model-checker is also used to confirm the results.

A. Setup

The plant under consideration has a state x ∈ R
2 and the

following system matrices

A =

(
−1 0.1
−0.02 −2

)
, B =

(
0
2

)
,

which are derived from a brushed DC motor model. The motor

is controlled by a proportional feedback regulator with a state

u ∈ R, and update matrices F =
(
−K 0

)
and G = 0.

The total state of the closed-loop system is then φ =
(x1, x2, u) ∈ R

3. The initial set of states is φInit =
{(x1, x2, u)ᵀ | x1 ∈ [−1, 1] ∧ x2 ∈ [−1, 1] ∧ u ∈ [−1, 1]}.

Given a WCET characterization, we consider the HA-CLD

model shown in Figure 2a. Here L̂ = 2.2 and Ľ = 0.2,

such that the system is unstable. For the running average

characterization the model shown in Figure 2b is used.

The SpaceEx tool uses the STC algorithm [19] with an

absolute error of 0.001 and octagon template polyhedra. The

time horizon is set to 5s. An example 5-mode automaton is

shown in Figure 4.

B. Results

The results from our MATLAB-based model-checker are

shown in Figure 5, where the absolute maximum and minimum

value of the state per iteration k is computed. The resulting

graph forms the so-called envelopes, which encapsulate all

possible state-trajectories of the plant. The state of the con-

troller is not shown for clarity.

The 1-mode envelope (red) shows that the system is unstable

given a WCET characterization. A running average character-

ization however is shown to improve the performance, as seen

from the rest of the envelopes. Although the system is still

unstable given a 2-mode approximation, refining the model

by including more modes stabilizes the system and decreases

the maximum overshoot.

The SpaceEx model checker also confirmed some of these

results. For the 1-mode automaton the tool fails to find a fixed-

point after 50 iterations. Repeating the same procedure for the

running average characterization with 2, 3 and 4 modes results

in a similar situation. The 5 mode model from Figure 4 with
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Fig. 4: SpaceEx automaton model of a 5-mode self-timed
system.

L̄ = 0.2 and L̂ = 0.44 however converges after 38 iterations.

We expect that the poor convergence behavior of SpaceEx is

a result of that it is not optimized for handling of HA-CLD,

which causes a larger over-approximation of the reachable

state sets.
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Fig. 5: State-envelopes of the plant.

VIII. CONCLUSION

In this paper we proposed a model-checking based approach

for stability analysis of systems with aperiodic sampling and

actuation. The approach is particularly suitable for analyzing

self-timed systems, which typically have a much smaller

average sampling and actuation period compared to their time-

triggered counter-parts. As a result such systems have an

improved control performance. Additionally they allow tighter

task execution time characterizations to describe their discrete

behavior which lead to more accurate stability analysis results.

To show that model-checking tools can be used to verify

stability of aperiodic systems we first introduce the HA-CLD

model. This model allows describing aperiodic systems with

linear discrete-event and linear continuous-time dynamics,

subjected to temporal constraints derived from the execu-

tion time characterization. We then prove analytically that a

model checker can conclusively verify (asymptotic) stability

of HA-CLD models.

Finally we demonstrate the applicability of our model

checking approach with a practical closed-loop system. Specif-

ically we use SpaceEx to show stability of the system in self-

timed mode, of which the execution times are characterized

by its WCET and a running average. Asymptotic stability is

shown using our own MATLAB based model-checker, because

existing model checkers do not provide the required state-

space exploration stop criterion. Additionally we show with

MATLAB that the control performance of the system with

tighter task workload characterizations is improved in terms

of maximum overshoot.

As future work we would like to extend our modeling

framework of self-timed systems, such that more general

workload characterizations of tasks can be handled.
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