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This paper proposes a unified energy-based modeling and energy-aware control

paradigm for robotic systems. The paradigm is inspired by the layered and distributed

control system of organisms, and uses the fundamental notion of energy in a system

and the energy exchange between systems during interaction. A universal framework

that models actuated and interacting robotic systems is proposed, which is used as

the basis for energy-based and energy-limited control. The proposed controllers act on

certain energy budgets to accomplish a desired task, and decrease performance if a

budget has been depleted. These budgets ensure that a maximum amount of energy can

be used, to ensure passivity and stability of the system. Experiments show the validity of

the approach.
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1. INTRODUCTION

For any controlled robotic system which interacts with an unknown environment, stable
interaction, and safety are requirements which cannot be compromised and have to be ensured
under all situations. This is even more so for physical human-robot interaction (pHRI), meaning
that a robotic system interacts mechanically with a human (Figure 1). An example of a field
of application where pHRI is fundamental is in assistive robotics, for instance as developed
in the European SoftPro project (Synergy-based Open-source Foundations and Technologies
for Prosthetics and RehabilitatiOn). In this project soft synergy-based robotics technologies
are developed to design new prostheses, exoskeletons, and assistive devices for upper limb
rehabilitation (SoftPro, 2017).

Safety during pHRI is often achieved by limiting performance aspects of the robotic system,
e.g., by limiting the maximum velocity or generated force of the system. This may mean that
the inherent performance of the robot is decreased since these measures are often implemented
in physical ways by, for instance, low power motors and mechanical slip clutches, as opposed
to controlled limitations that are bandwidth dependent and, therefore, not strictly safe in all
situations (Groothuis et al., 2013). Furthermore, controlled safety measures are often implemented
using digital computers, so they act on the physical system in a discrete (sampled) way.

Safety and stability have been addressed by passivity-based control schemes. Passivity means
that the stored energy in a system is always less than or equal to the initial amount of stored
energy plus the amount that has been added to it (Willems, 1972). In other words: passive systems
cannot generate energy themselves. In Schindlbeck andHaddadin (2015), a task-based energy-tank
method to obtain passivity was introduced, which cancels out non-passive terms in the system by
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FIGURE 1 | Impedance controlled robot interacting with an environment or a

human.

properly choosing the tank dynamics. At the same time, the tank
allows the system to use a certain maximum amount of energy
to execute a particular task. This means that during pHRI, a
robot can never inject more energy into a human operator or
user than what is determined by the controller. This prevents the
unbounded growth of system states, and thereby increases safety.
Although these continuous-time control laws were successfully
implemented on a robotic arm and were proved to be passive,
it is important to consider the effects of time discretization, e.g.,
computation delays, measurement digitization (quantization),
and (variable) communication delays or even communication
loss between a high-level controller, lower-level actuation
controllers, or any other distributed architecture. If, for instance,
communication loss results in a failure of torque command
updates to any of the low-level controllers, passivity cannot be
guaranteed any longer. Time delays are a common problem
in telemanipulation and haptic interfaces, where passivity has
already been used to stabilize systems subject to time delays.
In Lee and Huang (2010), the Passive Set-Position Modulation
(PSPM) method was proposed. This method passivates a system
by implementing a spring coupling with damping injection
between a system’s position and its commanded setpoint. The
setpoint can bemodulated up to what is allowed to keep passivity.
This method does require a model of the system. The Passivity
Observer/Passivity Controller (PO/PC) as presented in Ryu et al.
(2004, 2005) implements a passivity observer, monitoring the
energy flowing into and out of a system, while using a passivity
controller to dissipate any excess energy, i.e., energy that was
not first injected intentionally, that is generated by a system.
Experiments were shown, for which a precise measurement of
the interaction forces was necessary. It was noted that achieving
system passivity may be difficult or impossible due to actuator
saturations.

This work proposes a unified energy-based modeling and
control paradigm for distributed controlled robotic systems
in which passivity for guaranteed stability during pHRI is
used, while energy limits are imposed for safety with respect
to humans. Passivity is enforced at the actuation layer, i.e.,
the place in a system where control messages are translated
to physical energy flowing into the system. Because it is
enforced at the actuation layer, no model of the complete

system is necessary. Also, the approach is modular, making
the extension of the system straight-forward. The paradigm
is based on the fundamental notion of energy in a system,
and the energy exchange between systems during interaction.
A universal framework that models actuated and interacting
robotic systems is proposed, which is used as the basis for
energy-based and energy-limited control. This control may be a
continuous-time physical (or physically equivalent) controller, or
a digitally implemented discrete-time controller. Fundamentally,
the controllers are distributed, as opposed to centralized or
decentralized, in the sense that decision-making is done not only
in the supervisory controller but also in the lower-level actuation
controllers. This is analogous to organisms with a central and
peripheral nervous system in case of reflex movements for
instance. Furthermore, the controllers act on certain energy
budgets to accomplish a desired task and take appropriate
measures if a budget has been depleted. These budgets ensure
that a maximum amount of energy can be used, to ensure
passivity of the system. The allocation of the budgets that the
controllers may use is proposed. In Schindlbeck and Haddadin
(2015), this estimated allocation was done based on the virtual
controller energy. Here, also the error energy is included, i.e., the
difference between the desired stored energy and the actual stored
energy, to more accurately estimate the necessary budget, and
which is furthermore divided into individual actuator budgets. A
strategy to follow in case a budget has been depleted is presented.
With this approach the actuators, that are responsible for energy
injection, become “energy-aware,” i.e., they become aware of the
amount of energy that is exchanged with a system (Stramigioli,
2015; Folkertsma et al., 2018). The high-level coordinating
control loop and the adherence to passivity are separated
since passivity is enforced locally in the distributed actuation
controllers that are as close as possible to the mechanical system.

The paper is structured as follows: section 2 introduces
concepts from port-based modeling, and presents a generic
model for a robotic system. In section 3 passivity, and energy-
aware systems and actuation are presented. Section 4 presents the
energy distributions in the systems, and treats the approach to
estimate budget requirements. These requirements are translated
to individual actuation budgets that are allocated. Interaction
experiments with a setup were performed that are presented in
section 5, and the proposed approach presented in this paper and
the experimental results are discussed in section 6. The paper
concludes with section 7.

2. NATURE-INSPIRED PORT-BASED
MODELING AND CONTROL FRAMEWORK

2.1. Energetic Modeling Through
Interconnections
Energy is a fundamental property of all physical systems. A
robot is a physical system which follows the laws of nature and
can exchange physical energy with the environment (a wall, an
object, or a human) through a mechanical interaction. Oliver
Heaviside’s energy current principle states that if energy goes
from one place to another, or from one subsystem to another, it
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FIGURE 2 | Representation of a power port with a bond (half arrow) indicating

a positive power flow from system 61 to system 62.

has to travel the space in between, and cannot simply disappear
and reappear (Yavetz, 1995). Together with the first principle
of thermodynamics, i.e., the energy of an isolated system is
constant, it implies that if a system is broken into parts the
system can be decomposed energetically in subsystems that
exchange energy. An energy increase in one subsystem needs to
be accompanied by an energy decrease of the same amount in
one or more other subsystem(s). This transport of energy from
one subsystem to the other can be modeled by the concept of
a power port through which energy can leave one system and
enter another, as shown in Figure 2 for systems 61 and 62.
The corresponding instantaneous energy change is a power flow
and can be expressed as a tensor contraction of a variant and a
covariant tensor which are called flow f and effort e (Duindam
et al., 2009). In Figure 2, a positive power flow is directed from
61 to 62 and is indicated with a half-arrow called a bond.
The flows and efforts in the mechanical domain correspond to
velocities and forces, respectively1. In multibody dynamics, the
flows will be twists and are elements of the Lie algebra T ∈ se(3),
and efforts will be wrenches and are the dual elements belonging
to the dual Lie algebra W ∈ se∗(3). A power port may then be
indicated with (T,W).

The port-Hamiltonian formalism for the modeling of systems
makes use of this principle (van der Schaft, 2006). The dynamics
of any physical system can be modeled in a consistent energetic
way by describing it as the interconnection of subsystems that
can store energy (generalized energy storage of potential and
kinetic energy), reversibly and power continuously transform
efforts and flows (transformers, gyrators, and junction structures
representing Kirchhoff’s laws), and irreversibly transform energy
to heat (resistors, dampers). The power continuous connections
are composed of elements that together form a Dirac structure,
which is amathematical structure in which no energy is generated
or dissipated, but only transformed and distributed (van der
Schaft and Cervera, 2002). The Dirac structure determines how
the ports are interconnected. Furthermore, this methodology
allows to describe open systems, by defining “unconnected” ports
which can be used to interconnect the system with another
system. An important fundamental feature of this formalism is
that the interconnection of systems in this form will again result
in a system of the same form, giving rise to a “system algebra.”

2.2. The Nervous System for Robot Control
Like humans, many organisms regulate their movements using a
nervous system. The human motor control system is comprised

1The reverse correspondence may hold in some situations, for instance in case

of generalized bond graph models. A treatment of various modeling decisions,

however, is beyond the scope of this work.

of several components. The central nervous system (CNS)
consists of the brain and spinal cord, and mainly the brain acts
as high-level supervisor responsible for cognition and planning.
The peripheral nervous system (PNS) consists of the nerves to
connect all parts of the body to the CNS, and is responsible for
local lower-level control (for instance reflex behavior together
with circuits in the spinal cord) and activation of muscles. The
musculatory system tomove the body is supported by the skeletal
system, and the latter defines the kinematic structure and its
constraints, i.e., the possible movements of the body. This is a
layered or hierarchical approach that can very beneficially be
applied to the control of robotic systems. It is the inspiration for
the universally applicable model for possibly interacting robotic
systems, which is proposed and presented in Figure 3.

Starting from the righthand side in Figure 3, the robotic
“skeleton” is the mechanism with a certain kinematic structure,
i.e., the load. It is the power continuous interconnection of an
energy storage element C, associated to the kinetic and potential
energy storage of the mechanism. Inherent friction or damping
is represented by R, which irreversibly transforms energy to heat,
increasing the entropy. If additional physical damping is desired
to specifically lower the kinetic or potential energy in the system,
that energy does not have to be dissipated but can be transformed
appropriately and stored in other storage elements. This makes
the additional desired damping regenerative, using a transformer
indicated with RS. This buffered energy can be reintroduced as
useful kinetic or potential energy. The system can interact with
the environment by an energy exchange, which may cause the
energy storage of the mechanical system to change.

The mechanism can be actuated to do useful work and to
behave in a desired way. Many actuators, as depicted to the left
of the mechanism, for instance electric motors, may power the
mechanical system in the same way that many muscles actuate
the skeleton. The power amplifiers take their energy needed for
actuation from the energy source S, which is an “infinite source”
within the context of the system or situation.

The power amplifier is controlled by a local actuation
controller, like the distributed PNS that locally controls the
activation of muscles, as shown to the left of the actuation. This
is a relatively fast controller that can act on either high-level
commands or on local situations. A reflex arc in the human
body, retracting one’s hand from a hot surface for instance, is a
local control circuit during which an appropriate action is taken
without the brain being involved (Purves et al., 2012).

High-level commands can come from the supervisory control
system that does the cognition and planning, like the CNS, as
depicted on the far lefthand side in Figure 3. It can change a
system’s behavior by shaping the energy in the system. The energy
in storage element C can increase if energy needs to be removed
from the system, while it may decrease if more energy needs to
be provided to the system. Any damping behavior is virtual and
does not necessitate the dissipation of physical energy from the
system. Instead, it can be regenerative using RS, rerouting energy
back into a storage element.

This novel philosophy of modeling and controlling a
robotic system is similar to the human motor control
system. It is beneficial for implementing desired system
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FIGURE 3 | The human motor control system is highly suitable as model for robot modeling and control. The nervous system is responsible for cognition, planning,

and controlling actions, while the musculatory system delivers power to generate movement supported by the skeletal system. This corresponds to a high-level and

lower-level controller in a robotic system that control actuators to manipulate a mechanism.

properties like stability through passivity because of the explicit
energetic modeling through interconnections and the layered or
hierarchical control system approach.

3. ENERGY-AWARE SYSTEMS

Before desired energetic properties can be implemented in the
system, it needs to have a way to estimate the energy that
was injected or extracted. This section explains the concept of
passivity, and presents a method to achieve energy-awareness
in robotic systems, which was published previously (Folkertsma
et al., 2018) and is summarized here for completeness.

3.1. Necessary Passivity
In physical systems, the property of passivity is an energy-
based measure of stability. It is a special case of dissipativity,
as introduced in Willems (1972), that arises naturally in
physical dynamical systems. General dissipativity is defined by
considering a system

ẋ = f (x,w), z = g(x,w), (1)

where x is the system state, w the input, and z the output, which
take their values in their respective manifolds X, W, and Z. The
supply function is a mapping

s :W × Z 7→ R.

The system (1) is said to be dissipative if there exists a storage
function H :X 7→ R such that

H(x(t1)) ≤ H(x(t0))+
∫ t1

t0

s(w(t), z(t)) dt (2)

for t1 ≥ t0. The system is conservative, i.e., non-dissipative, if
the equality holds in (2). In physical systems, a natural choice
for the storage function H is the total energy in the system; the
supply function is the supplied power of the input port of the
system, e.g., the contraction of mechanical force and velocity,
i.e., P = FT ẋ in coordinates. Indeed, systems that contain only
passive physical elements, i.e., masses, springs, and dampers, can
never contain more energy than initially present. Consequently,
the energy is bounded and thus a system that is overall passive is
always stable (van der Schaft, 1999; Ortega et al., 2008).
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If a robot interacts with an environment, the total dynamical
system that should be considered is the coupled system of the
robot with the environment. This can be represented as two
systems coupled by an energy connection that transfers energy
from one system to the other. An environment is unknown or
very difficult to model adequately, and therefore it is not trivial to
ensure that the coupled system is stable if feedback control is used
that only considers the model of the system. The environment is
not merely a disturbance, but it is part of the system.

When the system with which the controlled robot is
interacting is passive, a necessary condition for the stability of
the interconnected system is that the controlled robot, as seen
from the port (T,W), is passive, or in other words: the energy
which can be extracted via (T,W) is bounded. This is proved in
Stramigioli (2015), by constructing a passive environment which
would keep on extracting energy from the controlled system in
case the controlled system would not be passive. In such a case,
the state of the passive environment would diverge, resulting in
instability. If the environment with which the controlled robot
is interacting is active, the robot should not only be passive,
but should be designed in a way that its damping injection is
sufficient to dissipate enough energy generated by the active
environment.

3.2. Discrete Energy-Aware Control and
Actuation
When considering that the robot should be passive, a sufficient
and effective way to achieve the passivity requirement is to use
control by interconnection (Stramigioli, 2001). This considers,
for example, the control of a system through the connection
of parts which may be physically interpretable. Control of a
system is then achieved by physically adapting the system by, for
instance, attaching springs and dampers, or by any other energy
bounded virtual dynamics. This method will not compromise
passivity, and, therefore, stability. The classical way of control
is to apply forces with actuators which are steered by digital
controllers. This method can very likely compromise passivity
of the system, because the actuators can possibly inject an
unbounded amount of energy into the system. Normally, when
using the second method, any state or signal of the robot is
measured and an appropriate force or torque F is calculated
and applied to the system, without considering what the injected
power P = FT ẋ would be. This “energy-ignorant” way of
control can result in an active system, thereby endangering
stability.

An unbounded injection of energy can also occur in case time
delays are present in the system. Passivity will be lost due to
time delays since an unknown amount of energy may have been
injected into or extracted out of the system in between sampling
moments. Therefore, the physical energy should be monitored,
giving rise to passive sampling (Stramigioli et al., 2005). Two
conditions are necessary to estimate the energy, which are:

1. a Zero Order Hold (ZOH) should be used to keep the effort
during a sampling period constant, and;

2. a configuration sensor should be collocated with the effort.

The energy transfer 1H(k) through a generic power port during
a time step T is given by the integral of the power:

1H(k) =
∫ (k+1)T

kT
eTd (k)f (s)ds

= eTd (k)

∫ (k+1)T

kT
f (s)ds

= eTd (k)(x((k+ 1)T)− x(kT)).

A slight adaptation can be applied to obtain a computable form:

1H(k− 1) = eTd (k− 1)(x(kT)− x((k− 1)T)). (3)

The effort is held constant using a ZOH, while the flow is a
continuous time physical variable that is sampled. If this energy
sampling concept is applied in an actuator, that actuator becomes
aware of the energy it injects or extracts. This type of actuator
is the Embedded Energy-Aware Actuator, or E2A2 (Folkertsma
et al., 2018). Using this type of actuator ensures passive behavior
from a control perspective at the interface of the signal and energy
domains, i.e., at the actuator. The actuator takes its energy from
the source S in Figure 3 to perform work, while that energy is
monitored as virtual energy according to (3).

3.3. Beyond Passivity: Safe Interaction
Passivity ensures that never more energy can be extracted from
a system than what has been added to it previously. This,
however, does not entail safety with respect to humans during
pHRI. Extracting a certain limited amount of energy present in
a system is a passive interaction, but that limited energy may
be delivered in such a way that human injury can occur. The
amount and rate of energy exchanged should be within safe
levels, which is the maximum energy that can be transferred
during interaction without causing injury. This amount is based
on a criterion like the Maximum Power Index (Newman et al.,
2000; Alami et al., 2006), which is an approximation of the
Wayne State Concussion Tolerance (Greenwald et al., 2008).
Injury to the head is quantified as maximum power that can be
transferred, which over time is transferred energy. Considering a
robot that may move and interact, this limits its kinetic energy
within safe levels as set a priori. Previous work has presented
a way to let the system adhere to energy limits by decreasing
elasticity or damping to limit the potential or kinetic energy,
respectively (Tadele et al., 2014). This has been shown to be
applicable to higher dimensional systems that are controlled by
6D spatial springs as well (Raiola et al., 2018).

4. DISTRIBUTED ENERGY AND
BUDGETING

4.1. Physical and Virtual Energy Storage
Figure 3 shows the model of an energy-based framework that
can be used to describe the modeling and control of generic
robotic systems. Energy is stored in several places, and the
distinction can be made between virtual and physical energy.
Physical energy is associated to the mechanism and actuation,
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and is stored as kinetic and potential energy in the robot. Virtual
energy storage is associated to the supervisory controller and the
lower-level actuation controllers, and, if implemented digitally,
only exists as numbers in software. For the robot to perform
desired tasks, and to do mechanical work, it needs a certain
amount of energy. This energy may be present as stored energy in
the mechanism, or should be injected through the environment
or the actuation. To ensure a passive system, the amount of
energy that the actuators inject is monitored by motor controllers
through the use of the E2A2 actuators. A virtual energy budget,
representing the physical energy that may be injected by an
actuator, is defined, and if that budget is depleted no further
physical energy is allowed to be injected in the system by that
actuator. The supervisor has an energy budget to distribute
among the individual actuators based on the high-level control
implementation.When the controllers are implemented digitally,
budgeting is done in a discrete way, allocating energy each time
step.

Due to the distributed nature of the system, the supervisor will
likely be implemented on a different system than the actuation
controllers. That means that the sampling frequency at which
they operate may be different. It is assumed in the remainder
that the supervisor has a sampling time of Tk, with sampling
moments k, while the actuation controllers have a sampling time
of Tnj , with sampling moments nj for actuation controller j.
Furthermore, it holds in general that Tk > Tnj ∀ j, i.e., the
supervisor is slower than the actuation controllers.

4.2. Energy Requirements
A fundamental question that arises is: “How can the various
budgets be determined such that stability is guaranteed and
system performance is not limited by conservative budgeting?.”

One way to answer this question is to use a teaching approach.
A robot can be externally manipulated and thereby “shown”
a certain motion, which it uses to observe the evolvement of
system states. These states are directly related to the kinetic and
potential energy (changes) in the system, that will have to be
injected by actuators, and are, hence, the actuation controller
budget requirements. However, it might be cumbersome or even
impossible to teach a robot a certain motion, and this seems only
useful for repetitive tasks and motions. Therefore, a model-based
approach is proposed here. A model of the robot is very likely
developed for designing a controller, which can be directly used
for estimating energy requirements during motions.

Consider a generic dynamic model of a robot in joint
coordinates q, i.e.,:

M(q)q̈+ C(q, q̇)q̇+ Bq̇+ g(q) = τ + τext , (4)

whereM(q) is the inertia matrix of the robot, C(q, q̇) is the matrix
associated with Coriolis and centrifugal forces, B is the joint
damping matrix, g(q) are the configuration dependent potential
forces, τ are the controlled joint torques, and τext are other
external forces acting on the joints.

A certain motion task that is to be executed by the robot
requires an amount of energy to be converted into kinetic
energy. An accelerated motion will always correspond to a

change of kinetic energy Ekin, and if a system moves along
a gravitational field, for instance increasing and decreasing its
height, the potential energy Epot will change as well. Some energy
is dissipated as heat and, thereby, irreversibly removed from
the system. These losses are due to friction, for instance. These
energies are bounded in case of servoing tasks like position
setpoint regulation from an initial condition. Therefore, the
energy requirement to accomplish such tasks can be found in
a straight-forward way. However, in case of periodic motions
that may continue indefinitely, the energy requirement cannot be
given as one energy budget that should suffice for accomplishing
the task, since the required energy of the dissipative system will
increase to infinity as the periodic motion execution time tends
to infinity. An energy requirement for a motion during a certain
time window can, however, be given. This means that for a finite
time window, the energy requirement is also finite. Therefore,
energy budget allocations for generic tasks and movements can
only usefully be done for finite time windows. Since controllers
are mainly implemented in a discrete way in computers running
at a certain sampling interval, it makes sense to consider the
energy requirements during each time step and providing an
energy budget suitable for that time step.

In Schindlbeck and Haddadin (2015), the accurate tracking
of a desired contact force was considered for which the required
energy budget was estimated based only on the virtual energy in
the impedance controller. A quadratic potential energy function
in work space was defined, with which the energy budget was
initialized. Here, the energy allocation for a time step is based on
the virtual energy present in the controller, and on the kinetic and
potential energy errors, i.e., the difference between the energies
associated to desired system states and the actual system states.
Furthermore, this energy is divided into the individual actuator
controller budgets, and will be allocated as such.

4.2.1. Impedance Controller
Suppose a robot’s end-effector is controlled to track a desired
trajectory (rd, ṙd) in work space. A generic impedance controller
can be given by:

Fimp := −Kr r̃ − Br ṙ, (5)

in which Fimp is the virtually applied work space force to the end-
effector, Kr is the work space elasticity matrix, r̃ = r − rd is the
deviation between the actual and desired end-effector work space
configurations, and Br is the work space damping matrix. The
joint coordinates can be transformed to work space coordinates
using a Jacobian mapping, as given by:

ṙ = Jr(q)q̇, (6)

in which Jr(q) is the configuration dependent Jacobian matrix
mapping joint velocities q̇ to end-effector velocities ṙ. The dual
relation maps end-effector forces to joint forces or torques by:

τ = JTr (q)F, (7)

in which F is the end-effector force in work space. With (7)
the impedance controller of (5) can be expressed as joint space
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torques by:

τimp = JTr (q)Fimp = −JTr (q)(Kr r̃ + Br ṙ), (8)

in which τimp is the controlled end-effector force expressed as
joint torques.

4.2.2. Virtual Controller Energy
The mapping in (6) relates velocities, but, equivalently,
infinitesimal displacements, and displacement errors, can be
related by:

δr = Jr(q)δq,

δr̃ = Jr(q)δq̃. (9)

The change in stored controller energy due to a small
displacement away from the desired (equilibrium) configuration
can be given by:

Econtr :=
1

2
δr̃TKrδr̃,

which, together with (9), can be expressed as a function of the
joint configuration by:

Econtr =
1

2
δq̃TJTr (q)KrJr(q)δq̃,

which can be written as:

Econtr =
1

2
δq̃TK

q
r δq̃,

where K
q
r is the end-effector controller elasticity expressed in

joint space, i.e., the pull back of Kr , given by:

K
q
r := JTr (q)KrJr(q).

4.2.3. Energy Stored in Mechanism
Besides this controller energy, the energy in the mechanism may
deviate from the energy that would be present in case the system
states are as desired. That means that the total energy deviation
can be given by:

Ẽtot := Ẽkin + Ẽpot + Econtr , (10)

which is the energy that the actuation can still add to the system,
and in which the kinetic and potential energy errors are defined
as:

Ẽkin := Ekind − Ekin, (11)

Ẽpot := Epotd − Epot . (12)

The kinetic and potential energies of the robot can be given by:

Ekin :=
1

2
q̇TM(q)q̇,

Epot :=
I

∑

i=1

mi g hi,

while the corresponding desired energies are defined by:

Ekind :=
1

2
q̇TdM(qd)q̇d, (13)

Epotd :=
I

∑

i=1

mi g hdi. (14)

Hence, the (desired) potential energy is defined by the (desired)
center of mass height hi and mass mi of each individual body.
It may be assumed that the inertia matrix in the desired
configurationM(qd) is approximated by the inertia matrix in the
actual configuration M(q), which is valid in nominal situations
in which the time step is relatively small compared to the system
dynamics.

4.2.4. Individual Actuator Budgeting
Equation (10) is the total energy deviation of the robot
as expressed in joint coordinates. For a distributed system,
individual actuator budgets should be derived, so that each
actuator explicitly adheres to the passivity requirements.
Therefore, the energies derived before are separated to isolate
individual actuator contributions:

EEcontr :=
1

2
diag(δq̃)K

q
r δq̃,

in which diag(. . .) is an operator transforming a vector into a
diagonal matrix, and EEcontr is an array of individual actuator
energy contributions. Note that the sum over all elements of array
EEcontr is the scalar Econtr . The same is done with the kinetic energy:

EEkin :=
1

2
diag(q̇)M(q)q̇,

and the potential energy:

EEpot := vec
(

mi g hi
)

,

where vec(. . .) is an operator that creates an array from scalar
elements i, where i identifies a mechanism body. The same is
done with (13) and (14) for the desired energies.

The energy deviations of the actuation controllers can now be
given in an array as the sum of the various energy contributions:

ẼEtot :=
[

Ẽ1, Ẽ2, . . . , ẼN
]T

= ẼEkin + ẼEpot + EEcontr ,

in which Ẽj is the energy deviation associated to actuation

controller j, and ẼEkin and ẼEpot are the array forms of (11) and (12).
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4.3. Energy Budget Allocation
Each supervisor time step k the actuation controller budgets are
replenished up to an energy level that is calculated using the error
energy. The new energy setpoint at time k = ks for controller
j is indicated with Esj (k), which is sampling moment nks for the
actuation controllers.

Defining Ebj as the energy budget of controller j, E−
bj

=
Ebj (nks − 1), and ǫ as some small amount of energy which is
explained in section 4.4, the allocation at time k can be defined
as:

Esj (k) :=























Ẽj(k− 1) ≥ 0 : Ẽj(k− 1)

Ẽj(k− 1) < 0 :















E−
bj

> 0 : Eǫ

E−
bj
≤ 0 :

{

E−
bj

> Ẽj(k) : E−
bj

E−
bj
≤ Ẽj(k) : Ẽj(k)

(15)
Hence, a controller budget Ebj can maximally increase up to the

error energy Ẽj. If more energy is still in the actuation controller
budgets than what is necessary for overcoming the deviation in
the states, no additional energy is needed and energy may even
be removed. Excess energy will flow back to the supervisor to
be distributed in future time steps. When the appropriate energy
setpoint has been determined, the corresponding budget level is
set to this setpoint, i.e., Ebj (nks ) = Esj (k).

This means that the energy budget setpoint is an absolute
energy level that resets a local controller budget to the setpoint,
as opposed to a relative energy level causing an increase or
decrease of the current local controller budget. The former
method prevents drift-like issues, e.g., unnecessary virtual
energy dissipation if energy budget messages are lost in the
communication network.

It is assumed that the actuation controllers operate at a higher
frequency than the supervisor. This means that the energy budget
that is allocated is the permissible energy to be used during
multiple time steps n until a new budget is allocated at supervisor
time step k+1. The energy that has been used during an actuation
controller time step is:

Eusedj (n− 1) := τ (n− 1) · (q(n)− q(n− 1)),

which is the computable form as given in (3). The energy used
since the energy budget was updated by a new setpoint at time
nks < n is:

Ēusedj (n) = Ēusedj (n− 1)+ Eusedj (n− 1),

and the energy left in the budget of an actuation controller is then:

Ebj (n) = Esj (k)− Ēusedj (n). (16)

With this implementation of the E2A2, a control message
communicated over a system bus is no longer just a setpoint ςj
for torque, velocity, or position, but also includes the energy Esj
as the new energy budget that may be used: σj :=

(

ςj, Esj
)

. Esj
replaces the local energy budget Ebj , while ςj is executed until the
next setpoint σj is received, or until the energy budget Ebj has
been depleted.

FIGURE 4 | Physical representation of an energy budgeted actuation

controller.

4.4. Energy Budget Usage
The impedance controller of (5) is realized with joint torque
control, which means that the setpoints σ will be of the form
σ : = (τ , Es). A physical way of representing a force controller
on joint level that controls τ and that only has a limited energy
budget that can be expended to perform a task, is shown in
Figure 4. This system is based on an energy storage element with
state s and stored energy H(s), that is coupled to a transformer
with transformation ratio u as set by a computational unit (CU).
The transformer determines how the state of the storage element
is transformed to a controlled force τ applied to the mass m. In
case of a unit storage element the stored energy as a function of
the state is defined by:

H(s) := 1

2
s2.

The effort e generated by the storage element is a force given by:

e := dH(s)

ds
= s.

The force τ on the massm is given by:

τ = u · e,

So to apply a desired force τd on the mass, the computational unit
will calculate a transformation ratio by:

u := τd

s
,

such that

τ = u · e = τd

s
· e = τd

s
· s = τd. (17)

If the energy budget has depleted, no more energy may be
injected in the system by the actuator, so the power flow P out
of the actuator may not be positive, since that would further
inject energy in the system. However, it may be negative as that
will extract energy from the connected system. Therefore, the
actuation controller should be parameterized as a function of
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the budget’s energy content (Folkertsma et al., 2018; Raiola et al.,
2018). More precisely, the calculation of the transformation ratio
is parameterized as follows:

u =











τd
s if ((H(s) > ǫ) ∨ (P < 0)),
τd
γ 2 s if 0 < H(s) ≤ ǫ,

0 otherwise.

(18)

Here, γ =
√
2 ǫ, and ǫ is some small amount of energy. If enough

energy is in the storage element, i.e.,H(s) > ǫ, u can be such that
τ = τd according to (17). This also holds if the power is directed
such that energy is extracted from the system instead of injected
(P < 0). If the energy has decreased below ǫ, the force that will
be applied is proportional to the energy content. This decreases
the rate at which the energy budget depletes (Raiola et al., 2018).
In discrete time, in which the physical storage H(s) will be a
discrete calculated budget Eb, there is no way to assure that the
energy budget will never become negative, because of the discrete
sampling of a continuous time system and the corresponding
time delays. Therefore, the condition that H(s) < 0 is included,
which means that u = 0.

The minimum to which the calculated energy can become

negative is Ebmin
: =

∫ (n+1)·Tn
n·Tn P(t) dt. Since this is always a finite

and generally small amount, it does not compromise stability if
it is properly taken into account by subtracting the amount of
negative energy from a new budget allocation setpoint.

4.5. Energy Budget Depletion
Energy in the actuation controllers is allocated from the
supervisor budget, and, therefore, that budget will decrease by the
same amount. It will further decrease due to dissipation in the
system, which should be replenished to prevent the supervisor
budget from completely depleting. If that happens, the system
is unable to perform any action if no energy is added in the
supervisor or to the mechanism through interaction. It may also
be that not enough energy is allocated to an actuator during
a time window, due to model inaccuracies for instance, which
results in the system not being able to accomplish a required
motion to satisfy a certain task. Depending on the application an
actuation controller transmission ratio of 0, meaning an actuator
force of 0, may not be desirable. Supposing only one actuator, the
energy contents of the system are then not changed by actuation,
whichmeans that kinetic energy can only decrease by dissipation,
i.e., a motion is not braked but only damped. Possible solutions
are provided here.

4.5.1. Braking the System
Whenever, a local energy budget is depleted the system may
be braked by removing energy. This can be achieved by
engaging a local P-controller that controls a force in the opposite
direction of the movement. In that way deceleration is achieved
while regenerating kinetic energy as energy in the local motor
controller budget, since P = τ · q̇ < 0.

4.5.2. Exchanging Energy
Local actuation controllers may be given the ability to
communicate with each other to exchange (parts of) energy

budgets. If one controller doesn’t need to use its complete budget
while another needs additional energy, energy can be shifted
to the controller with the depleted budget. This does not alter
the total energy contents of the system and, therefore, does not
compromise passivity.

4.5.3. Self-Replenishing Local Budgets
In a strict application of the passivity requirement through energy
awareness, having insufficient energy can be considered as the
inherent safety of the implementation. When a looser approach
is followed, while notably still requiring unconditional stability,
additional energy may be supplied to the particular budget that
has been depleted. This can be done by the local controller by
replenishing the energy budget with an amount of energy that
is strictly less than the previously allocated energy budget. If
this is recursively done, the amount of additional energy will
always be finite. It is important that the self-replenished energy
is communicated to the supervisor, such that it can keep track of
the total energy in the system and decrease its own budget with
the same amount to keep a consistent, and passive, total energy
level.

The actuation controller’s energy budget is given by (16). The
additional energy that may be generated at time step n, Ebadd (n),
is proposed to be:

Ebadd (n) :=
Es(k)

al
(19)

in which a > 1 is a factor that determines what portion of the
previously allocated energy is allocated again, and l ∈ [1, L] is a
counter keeping track of the number of times energy was added.
L is given by the amount of time steps n in each (slower) time step
k, which under communication loss can mean that L → ∞. This
would mean that the total energy added is:

Ebadd := lim
L→∞

L
∑

l=1

Es(k)

al
= Es(k)

a− 1
.

For a > 1, the additional energy that may be used is Ebadd < ∞,
while for a = 2 it becomes Ebadd = Es(k).

4.6. Complete System
A physical representation of the complete system is shown in
Figure 5, which resembles the model as shown in Figure 3. It
consists of actuation controllers as the one in Figure 4 that attach
to the actuators in the joints of a robot. A supervisor connects to
the actuation controllers, and allocates energies in the individual
controllers and sets force setpoints in the computational units.
These local controllers are energy-aware and adhere to passivity
requirements, which means that the mechanism’s stability is
guaranteed. Time delays or even communication loss between the
supervisor and the actuation controllers do not compromise that
guarantee.

5. CASE STUDY

Experiments were performed to validate the proposed modeling
and energy-aware control. This was done with a five-bar linkage
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FIGURE 5 | Physical representation of the proposed distributed energy-aware

system. The system is structured similarly as the generic model given in

Figure 3.

system capable of end-effector movements in the horizontal
plane. It uses two motors M1 and M2 to drive four bars in
the horizontal plane. Of the four joints in the setup two are
dependent due to the kinematic constraints of the linkage.
Therefore, there are two actuated degrees of freedom to control
two configuration variables of the end effector in the plane: x
and y position, or either one of the positions x or y and the
orientation. This system may be used as a slave system that is
capable of versatile movements and opposing forces. This system
is coupled to a similar, but smaller-scale, five-bar linkage system,
both shown in Figure 6.

5.1. Implementation
The slave system consists of two Faulhaber 3890-048CR DC-
motors that drive two links of 15.3 cm in length via a capstan
transmission with a speed reduction factor of 7.3. Due to
this transmission and low transmission ratio, the actuators are
backdrivable. Two other links of 23.8 cm in length are connected
to both driven links, and are coupled at the end effector to form
a parallel mechanism. The rotation of the motors is measured
with optical motor shaft encoders. The two motors are driven by
ESCON 50/5 motor controllers in current controlling mode. The
master system is similar to the slave system, using two Maxon
RE25 DC-motors, each driving a link of 6.3 cm without a gear
transmission, to which links of 7.5 cm are connected and coupled
at the end effector to form a parallel mechanism. Again, motor
rotation is measured using optical motor shaft encoders. The two
motors can be driven by ESCON 24/2 motor controllers.

A kinematics and dynamics model of the two systems in the
setup were developed. The forward kinematics model is based
on straight-forward planar geometry which treats the two “legs”

FIGURE 6 | Two coupled five-bar linkage systems are used as the

experimentation setup. The smaller system on the left is termed the master

while the larger system on the right is the slave.

of the systems as 2-DOF planar serial mechanisms, which are
coupled by the constraint that the end effectors of both “legs”
should be in the same point in space. The end effector position of
the parallel mechanism R can then also be expressed as the angles
of both motors (q1, q2) after the transmissions, i.e., R(q1, q2) : =
[

Rx(q1, q2),Ry(q1, q2)
]T
. The analytical Jacobian J is then given

by the partial derivatives of R(q1, q2) with respect to q1 and
q2. A physical system model of both the master and the slave
setups has been developed in the bond graph modeling language
with the modeling software package 20-sim (Controllab Products
B.V., 2016). Energy budget calculations were done using the
Euler-Lagrange model of (4).

The controller as presented in section 4 was included in the
setup model. Using the 20-sim 4C package (Controllab Products
B.V., 2016), realtime C-code was generated of the controller
submodel which was compiled for a Gumstix embedded Linux
computer. This Gumstix is incorporated on a RAMstix board that
provides inputs and outputs for, for instance, encoders andmotor
controller PWM signals (Robotics andMechatronics, 2018). This
way, simulated behavior with a model and designed controller is
directly implemented on a hardware setup for experimentation.
The controller that was implemented is a combination of the
supervisor controller and the actuation controllers as presented
in Figure 3. In a distributed system the actuation controllers
are in general separate controllers accepting setpoint commands
to steer the power amplifiers. Here, they are implemented on
the same embedded computer as the supervisor for ease of
implementation, but can be run at a different sampling frequency
than the one set for the supervisor. This can therefore emulate a
fast motor controller communicating with a slower supervisor.

5.2. Experimental Method
A Cartesian planar impedance controller is implemented on
the slave system, as given in (5). The master system can
dictate the virtual equilibrium point in space of the slave rd
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FIGURE 7 | Master end effector positions.

by a transformation Z between the master and slave position
workspaces Sm and Ss:

Z := Sm 7→ Ss (20)

in which subscript m and s indicate the master and slave system,
respectively. If rm ∈ Sm and rs ∈ Ss, the affine workspaces
transformation is defined as:

rd = α (rm − rm0 )+ rs0 , (21)

in which α is a scalar parameter isotropically scaling the
workspace, and rm0 and rs0 are the initial positions of the master
and slave end effectors, respectively.

This master and slave setup lends itself for the application
of repetitive motion rehabilitation given to a patient (the
slave operator) by a therapist (the master operator). During
experimentation, the slave system is used to perform a back-and-
forth motion with an arm. The master operator may support
the person by slightly preceding the person’s intended movement
and thereby causing the impedance controller to pull the person’s
arm along. The master operator may also obstruct the person
by opposing the intended motion causing the person to push
against the impedance controller or even completely deviating
from the path, to train motion accuracy. Specifically, a back-and-
forth motion was performed with the slave in the master’s initial
end effector position, and after a while the master position is
moved to obstruct the slave operator. Furthermore, the virtual
spring’s equilibrium point of the impedance controller, as set
by the master system, is tracked in free space, and the slave
system ismanipulated (to charge the virtual impedance controller
energy) and then released to assess whether instability occurs.
These experiments are performed with the energy-based control
paradigm as presented, as well as with a traditional controller that
is unaware of injected energy, both implemented in discrete time.

Unfortunately, it was observed that the slave system has a
relatively high stiction and friction that are position dependent,
which is most likely due to bearing misalignement and highly

FIGURE 8 | Slave end effector positions.

tensioned tendons. Therefore, free space tracking of a virtual
spring equilibrium point is relatively inaccurate and jerky. No
immediate changes could be made to the setup to solve this issue.

5.3. Experiments
The experiments were performed with an impedance controller,
which in general is a virtual spring and damper. In this case,
however, due to the high friction setup the impedance controller
was implemented as only an isotropic spring with elasticity of
50 N/m. The workspace scaling parameter was set at α = 2.

5.3.1. Understanding the Energy-Based Controller
To show the workings of the energy-based control paradigm,
an identifying experiment was done at 100 Hz with an initial
supervisor energy budget of 1 J, which may be used to inject
energy in the system via the motor controllers. The end effector
position of the master is shown in Figure 7, the end effector
position of the slave is shown in Figure 8, and the energy
levels associated to the slave are shown in Figure 9. During the
experiment one slave motor was externally manipulated between
7 and 20 s, followed by dictating an equilibrium point trajectory
by the master while the slave is kept fixed between 22 and 35 s,
followed by a free moving slave tracking the equilibrium point as
set by the master between 35 and 50 s. In the initial configuration,
the motor controller budgets are empty, since the error energy
is zero. That means that the motor controllers do not allow
any positive power to flow from the motors to the mechanical
system. However, it can be seen in Figure 9 that upon external
manipulation of only one slave motor, the corresponding budget
(Controller 1) increases due to the power outflow of the motor
being negative, i.e., the motor absorbs power from the system.
Thismeans that the total energy in the system, which is the sum of
the supervisor and motor controller budgets, is increased. When
keeping the slave fixed while manipulating the master (in such a
way that again only one slave motor would have to be actuated),
energy from the supervisor does flow to the motor controller
budget. Note that only that particular motor budget receives
energy to perform a task, as properly calculated according to (15).
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FIGURE 9 | Slave energy levels.

FIGURE 10 | Master end effector position; traditional 100 Hz supervisor.

This allocated energy is what has been calculated to be necessary
in order for the slave to compensate the error energy in the
system. When the master end effector returns to its initial
position, the energy content in Controller 1 decreases and flows
back to the supervisor, since that energy is not necessary anymore
for decreasing the error energy. Note that the total energy in
the system is constant. When releasing the slave and performing
the same motion with the master as before, energy is allocated
from the supervisor to the budget, and the total energy decreases
due to dissipation. “Controllers” indicates the sum of the motor
controller energy budgets, “Mechanism” indicates the kinetic
energy of the slave, and “Virtual” indicates the virtual impedance
controller energy.

5.3.2. Traditional vs. Energy-Based
The supervisor and the motor controllers are both set at a
sampling frequency of 100 Hz, and the back-and-forth motion,
tracking the virtual equilibrium point with a free moving
slave, and manipulating and suddenly releasing the slave were

FIGURE 11 | Slave end effector position; traditional 100 Hz supervisor.

sequentially performed with both a traditional and the energy-
based controller.

The performance of the traditional controller is shown in
Figures 10–12. It can be seen that the discrete implementation of
the traditional impedance controller at this sampling frequency
is stable during back-and-forth motion and free space tracking
of the equilibrium point. However, manipulating the slave and
suddenly releasing it induces unstable oscillations in the system,
which means that passivity has been lost.

The performance of the energy-based controller is seen in
Figures 13–15, which is similar to the traditional controller.
However, now all sequential experiments, including charging and
suddenly releasing the slave, remain stable as opposed to the
traditional controller.

The energy-based controller is aware of the energy that is
injected into the system and can, therefore, ensure passivity and
stability of the system. The traditional controller may violate
passivity and allow so much energy injection in the system that
it becomes unstable. The effectiveness of this paradigm has been
clearly demonstrated in the previous experiments.
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FIGURE 12 | Slave end effector positions; traditional 100 Hz supervisor.

Instability occurs at 75 s.

FIGURE 13 | Master end effector position; energy-based 100 Hz supervisor.

6. DISCUSSION

The experiments shown here verify that the energy-based
controller is able to keep the passivity of a system, as
opposed to a traditional straight-forward implementation. This
shows that the proposed approach is a viable method to
control robotic architectures to ensure stability while obtaining
adequate performance. The energy-based controller will not
create instability in the system due to the awareness of the
amount of energy that has been injected in the system.
Also, performance is not considerably decreased due to the
appropriate estimation of the actuation controller budgets in this
situation. The traditional controller is unaware of the injected
energy and will become unstable and, therefore, unusable in
certain situations. A complete and persistent communication
loss between the supervisor and the actuation controllers will
also not cause instability, since the actuators are aware of the
injected energy. It is noted that this approach is independent
of the chosen control algorithm in the high-level supervisor.
Here, an impedance controller is implemented and is mainly

FIGURE 14 | Slave end effector position; energy-based 100 Hz supervisor.

FIGURE 15 | Slave energy levels; energy-based 100 Hz supervisor. No

instability occurs.

used for interaction, while it was briefly shown that is also
works for a position regulation task without interaction. If an
energy error can be defined between the desired system states and
the actual system states, and the two conditions as mentioned
in section 3 are fulfilled, energy budget allocations can be
estimated and passivity can be successfully implemented using
this approach.

The experiments performed here were done with a controller
that is based on a model of the system. Energy budget estimations
may deteriorate when the controller approaches the model
validity boundaries, which can cause the energy estimation
to be too generous or conservative. This mainly affects the
performance of the system, since the energy budgeting is still
limited, so unbounded growth of system states cannot occur.
Moreover, the proposed method assumes perfect measurements
of the actuation torque and velocity or position, while they
may be different from their setpoint or may be quantized to
implement in a digital controller. The effects of these issues have
been partially investigated in Stramigioli et al. (2005), and should
be further researched in the future.
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An important aspect to realize, which is also not treated in
this work is that energy budgets will be communicated over a
network architecture as packets. This means that the total energy
is not only the sum of the energy budgets in the supervisor
and individual controllers, but also the “traveling” energy in the
network. To accurately keep passivity of the system, this aspect
should be taken into account.

7. CONCLUSION

This paper proposed a unified energy-based modeling and
energy-aware control paradigm for robotic systems. It presented
an energy-based modeling framework that is applicable to
any robotic system, in which the energy transfer between
subsystems is made explicit. It considers the separation of
a high-level, and possibly relatively slow, supervisory control
system, and the lower-level, and likely relatively fast, actuation
controllers. By implementing energy-awareness on the actuation
controllers, stability can be guaranteed through passivity,
even under large time delays or communication losses. The
actuation controllers can expend an energy budget to fulfill
a certain task, and are incapable of injecting more energy
if the budget has depleted. An approach to allocate these
budgets was proposed, while a strategy was presented to

follow when a budget has depleted. Experiments validated
that the proposed method is capable of stably controlling an

interacting mechanical five bar linkage system, as opposed
to a traditional controller which destabilizes the system
quickly.
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