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Abstract
The aim of this study was to monitor changes in leaf spectral reflectance due to phytoaccumulation of trace elements (Cd,

Pb, and As) in sunflower mutant (M5 mutant line 38/R4-R6/15-35-190-04-M5) grown in spiked and in situ metal-

contaminated potted soils. Reflectance spectra (350–2500 nm) of leaves were collected using portable ASD spectrora-

diometer, and respective leaves sample were analyzed for total metal contents. The spectral changes were quite noticeable

and showed increased visible and decreased NIR reflectance for sunflower grown in soil spiked with 900 mg As kg-1, and

in in situ metal-contaminated soils. These changes also involved a blue-shift feature of red-edge position in the first

derivatives spectra, studied vegetation indices and continuum removed absorption features at 495, 680, 970, 1165, 1435,

1780, and 1925 nm wavelength. Correlograms of leaf-metal concentration and reflectance values show highest degrees of

overall correlation for visible, near-infrared, and water-sensitive wavelengths. Partial least square and multiple linear

regression statistical models (cross-validated), respectively, based on Savitzky–Golay filter first-order derivative spectra

and combination of spectral feature such as vegetation indices and band depths yielded good prediction of leaf-metal

concentrations.

Keywords Metal-contaminated soils � Sunflower � Spectral reflectance � Phytoremediation � Visible and near-infrared

spectroscopy

Introduction

Looking at the environmental consequences associated

with metal-contaminated sites, remediation has become an

important task. Many physicochemical methods have been

materialized for remediating metal-contaminated sites, and

phytoremediation (i.e., cleaning-up process that employs

various types of plants to remove, transfer or stabilize

metals in the soil) is among the most emphasized eco-

friendly and inexpensive method (Cundy et al. 2016;

Mench et al. 2010; Pilon-Smits 2005; Vangronsveld et al.

2009). However, like any remediation system, phytore-

mediation does have shortcomings: (1) there are only few

recognized hyperaccumulators, i.e., exceptional plant spe-

cies, which tolerate as well as accumulate large amounts of

metals into plant parts when growing on heavily metal-

contaminated soils (Prasad and de Oliveira Freitas 2003),

(2) usually, it takes long time ([ 10 years) to clean up

hazardous contaminated sites when focusing on total con-

centrations, and (3) prolonged exposure to the elevated soil

metal concentration causes severe environmental stress to

plants, even to hyperaccumulators (Prasad 2004). Cundy

et al. (2015) defined a number of site-based indicators to

identify a kind of implementation window, e.g., large areas,

& Paresh H. Rathod

rathod23904@aau.in

1 Department of Earth Systems Analysis, Faculty of Geo-

information Science and Earth Observation, University of

Twente, 7514AE Enschede, The Netherlands

2 Institute for General Ecology and Environmental Protection,

Technical University, TU Dresden, 01737 Tharandt,

Germany

3 Saxon State Office for Environment, Agriculture and

Geology, 09599 Freiberg, Germany

4 Present Address: Anand Agricultural University, Anand,

Gujarat State, India

123

Journal of the Indian Society of Remote Sensing (December 2018) 46(12):1925–1937
https://doi.org/10.1007/s12524-018-0846-3(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s12524-018-0846-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12524-018-0846-3&amp;domain=pdf
https://doi.org/10.1007/s12524-018-0846-3


where contamination may cause concern but is not at

strongly elevated level, where biological soil functionality

and ecosystem service is required, where there is a need to

restore marginal land to produce non-food crops and where

there are some budgetary or deployment constraints

regarding other remediation options. Although phytore-

mediation can provide strong benefits in terms of risk

management, deployment costs, and sustainability for a

range of site problems, awareness and take up in remedi-

ation practice is low, at least in a European context (Cundy

et al. 2016; Kidd et al. 2015; Onwubuya et al. 2009). The

barriers to wider adoption of gentle remediation options

(GRO), especially in Europe, arise both from the nature of

GRO as remediation techniques, and market and stake-

holder perceptions of uncertainties over whether these

methods can achieve effective risk management in the long

term.

Such long-term and plant-based clean-up processes,

therefore, require a technique that can remotely monitor

the soil–plant system, and aid in assessing the contami-

nation level in soil and plant. Monitoring spectral reflec-

tance of vegetation growing in metal-contaminated soil

could be the one approach to optimize the phytoremedi-

ation system (Sridhar et al. 2007a, b). Spectral reflectance

signatures from plant in the visible, near-infrared, and

short-wave infrared regions have been widely documented

to assess the contaminants (Noomen 2007; Rathod et al.

2013 and references therein). A healthy plant has a

minimum spectral reflectance in the visible wavelengths

resulting from the pigments in leaves, while maximum

reflectance in the near infrared due to light scattering by

internal structures of leaves. Accordingly, stressed plant

can be monitored by significantly lower reflectance in the

infrared, higher reflectance in visible wavelengths, and

through various vegetation indices calculations (Black-

burn 2007).

Unlike some essential metals (Mn, Fe, Cu, and Zn) for

plant metabolism, certain metals such as Cd, Pb, and As are

toxic to the plant even at rather low concentrations (Cuy-

pers et al. 2009; Prasad 2004). They influence pigment

synthesis, structural and ultrastructural changes in plant

tissue, and these alterations can be revealed by the spectral

signatures (Font et al. 2007; Horler et al. 1980; Sridhar

et al. 2007b). With these views, the present study was taken

to assess the metal-induced plant stress using spectral

reflectance in 350–2500 nm domains and thus to monitor

the metal-accumulation into the plant. Sunflower, with

moderate metal-accumulation and high biomass produc-

tion, is a potential candidate for phytoremediation (Ades-

odun et al. 2010; Herzig et al. 2014; Nehnevajova et al.

2005).

Materials and Methods

Sunflower (Helianthus annuus): Pot Experiment
Setup

A pot experiment was setup in glass chambers with filtered

air circulation and controlled temperature at a test facility

(Prüffeld) of Institute of General Ecology, TU Dresden in

Tharandt, Germany, from July–Nov 2011. Three different

soil substrates from permanent soil monitoring sites of

Saxon state were used: (1) S1: uncontaminated soil sub-

strate (loamy fine sand) from Melpitz, (2) S2: heavily

contaminated grassland soils (sandy loam) from Hilbers-

dorf, and (3) S3: severely contaminated floodplains soils

(sandy clay loam) from Neuhilbersdorf. Source of metal-

contamination both at Hilbersdorf and Neuhilbersdorf is

mainly due to abandoned Artisanal mining and emission

from a larger ore processing about 1–2 km away at Mul-

denhütten. Neuhilbersdorf as a floodplain site is addition-

ally affected by stream sediments from the Freiberger

Mulde River directly after passing Muldenhütten smelter

area. Top soils from these sites were collected and sieved

through 0.5 cm using horizontal mechanical sieve.

Using the uncontaminated soil substrate from Melpitz

(S1), in addition metal-contamination was simulated by

spiking three metal-salts, viz., cadmium as Cd(NO3)2-
4H2O, lead as Pb(NO3)2, and arsenic as As2O3, individu-

ally each at different levels and in mixture at their higher

levels (treatment details in Table 1). Metal concentration

was raised to higher levels (Cd, 10 and 20; Pb-1200; As,

100 and 900 mg kg-1) to stimulate severe metal-contam-

ination in soils. Spike solutions of Cd and Pb were prepared

by sequential dilutions of Cd(NO3)2�4H2O and Pb(NO3)2 in

deionized water, while As2O3 was dissolved in a NaOH-

solution and adjusted to near neutral pH. The prepared

metal-spike solutions were then added to the respective

bulk of soil of treatments (i.e., 48 kg soil for 4 replicate

pots for each treatment; 9 9 4 = 36 pots were prepared for

9 treatment sets). The spiked soils were mixed homoge-

nously and kept for two wetting–drying cycles for

10–12 days to equilibrate metal-spiking. Each 40 kg metal-

spiked soil was then divided on weight basis (10 kg pot-1),

and pots were thereafter randomized between four glass

chambers. Initial soil sample was collected from each pot

before transplanting sunflower seedlings for the analysis of

total metals. Start concentration of metals in soil is given in

Table 1.

Sunflower (Helianthus annuus L.) was used as a test

crop, and seeds of 5th generation mutant inbred line (M5

mutant line 38/R4-R6/15-35-190-04-M5) were obtained

from Phytotech Foundation (PT-F), Bern, Switzerland.

This inbred line was developed with in mutagenesis and
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in vitro breeding with improved metal-phytoextraction and

metal tolerance (Herzig et al. 2014; Nehnevajova et al.

2009a). Sunflower seedlings were prepared in May–June

2011, and 1-month-old seedlings (2 seedlings pot-1) were

transplanted into pots on July 25–26, 2011. Recommended

rate of major-nutrients (N, P, K, Ca, and Mg) was added

into soils. Nutrients were added into metal-spiked soils by

compensating nitrate-nitrogen supply through spiking of

nitrate salts as in case of Cd and Pb treatments. N, P, and K

solution was prepared from analytical grade chemical,

respectively, NH4NO3, K2HPO4, and KCl. Plants were

irrigated daily with 500 ml deionized water.

Spectral Reflectance Measurement of Leaves

A total of four spectral measurements were done on dis-

sected leaves from each pot in a laboratory. ASD FieldSpec

portable spectroradiometer (350–2500 nm at resolution of

1 nm; ASD, Inc., Boulder, CO) was used to collect

reflectance spectra using a plant probe leaf-clip assembly

fitted with an internal halogen light. The reflectance spectra

were measured by holding sunflower leaf into leaf clip

holder. Leaf-clip assembly has got two-sided rotating head:

a black panel face for reflectance and a white for trans-

mittance measurement. Reflectance spectra were calibrated

against a white Spectralon panel face. The use of the leaf

clip and contact probe reduces interferences, such as

atmospheric disturbances, and unstable light. The leaf clip

was repositioned on the same leaf/leaves between each

scan to 3–5 different locations, to minimize measurement

inaccuracy and to acquire the natural variations in metal-

induced stress.

Individual spectral measurement was averaged by

treatment to reduce variation, and spectra were corrected

for ASD jump (drift correction; additive) using AS-toolbox

package (Dorigo et al. 2006) add-in installed in ENVI ?

IDL version 4.3. First derivative (FD) calculation was done

on corrected spectra with 5-point moving average to

intensify spectral features. As studied in our previous

study, several vegetation indices (VIs) relevant to the

metal-induced plant stress, particularly in chlorophyll and

water absorption regions, were computed [viz., chlorophyll

indices NDVI, LCI, SR705, REIP, and water stress indices

NDWI, NDWI_MIR, MSI, LWVI2; Rathod et al. (2015)].

Continuum removal (CR) was applied to corrected spectra

which normalizes the reflectance spectra by applying

convex hull and amplifies the individual absorption feature

(Clark and Roush 1984). Difference in band depths (BDs)

between control and metal-treatment was statistically

compared for selected absorption region and at specific

wavelength (around 495, 680, 970, 1165, 1435, 1780, and

1925 nm) as reported in our previous work (Rathod et al.

2015).

Chemical and Statistical Analysis

At each spectral measurement, the sampled leaves were

dried at 80 �C for 24 h and milled. For analyzing total

metal content, 250 mg of milled sample was digested with

5 mL concentrated HNO3 in Teflon tubes in pressurized

microwave accelerated reaction system (CEM Mars5

microwave digestion system; Matthews, USA) for

30–40 min. The digested substrate was then diluted with

10 mL deionized water and analyzed for total Cd, Pb, and

As using inductively coupled plasma-atomic emission

spectrometry (ICPMS X-series instrument, Thermo Fisher

Scientific GmbH, Bremen, Germany). Standard reference

soil and plant samples (GBW7604, poplar leaves, office of

CRM’s, China) were also digested for recovery test. Pre-

cision for all standards was better than 95%. All chemicals

used in chemical analysis were of analytical grade.

Table 1 Treatment details and

metal concentration after metal-

spiking to uncontaminated soil

before planting

Details of metal-spiking treatments Start concentration of metalsa in soils (in mg kg-1)

Cadmium Lead Arsenic

Metal-spiking to S1: uncontaminated soil

S1-control: no metal-spiking 0.4 (± 0.01) 27.3 (± 1.98) 4.9 (± 0.23)

S1-Cd1: 10 mg kg-1 10.5 (± 0.19) – –

S1-Cd2: 20 mg kg-1 23.1 (± 0.43) – –

S1-Pb1: 1200 mg kg-1 – 1478 (± 138.7) –

S1-As1: 100 mg kg-1 – – 94.7 (± 5.72)

S1-As2: 900 mg kg-1 – – 910 (± 66.8)

S1-Mix: 20 Cd ? 1200 Pb ? 900 As; mg kg-1 22.0 (± 0.50) 1677 (± 77.1) 980 (± 30.3)

S2: In situ metal-contaminated grassland soil 17.9 (± 0.10) 2175 (± 48.6) 1167 (± 11.5)

S3: In situ metal-contaminated floodplain soil 16.6 (± 0.94) 5815 (± 378.9) 2949 (± 205.7)

aAqua regia extraction; values represent mean (± SE) of 4 replicates
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Statistical analyses of spectral and chemical data were

performed in MS Excel spreadsheets 2007 with XLSTAT

2009.1.02 add-ins and reported at a = 0.05 significance

level. Mean and standard error (± SE) were computed for

all data. Data were statistically tested for significant effects

through analysis of variance, and post hoc Tukey HSD test

was done to compare the treatment mean. Correlation

coefficients (Pearson’s ‘r’) were computed between spec-

tral variables (i.e., corrected spectra, VIs, BDs of CR

spectra) and leaf-metal content for each treatment. The

relationship between leaf-metal concentration and spectral

features (i.e., correlated spectral wavelength regions, VIs

and BDs values) was modeled using regression analysis,

leave-one-out cross-validation techniques (PLSR, partial

least square regression and MLR, multiple linear regres-

sion; in Unscrambler 9.7, CAMO ASA, Norway). Values

of coefficient of determination (R2) between measured and

predicted value and root-mean-square error (RMSE) were

used to examine the relationship found.

Results and Discussion

Leaf Spectral Reflectance

The leaf reflectance measured at 30, 45, 60, and 90 days of

sunflower growth and showed a similar pattern over the

growth for most treatments. S1-Mix and S3 soils, however,

showed spectral variations between spectral measurements

at 30 and 45 days (Fig. 1a, b), which was also visible by

eye. In response to Cd-spiking into S1-soil, slight spectral

changes in sunflower leaves were observed compared to

control spectra (Fig. 2a, b). Leaf reflectance spectra from

S1-Cd2 spiked pot varied from control plant spectra espe-

cially in chlorophyll absorption regions (* 490–675 nm),

as can be seen in the first derivatives spectra (Fig. 2c, d),

and in the water absorption regions at around 950, 1150,

1400, and 1900 nm (Fig. 2c, d). Cadmium is known to

interfere with uptake of other essential nutrients [Prasad

(2004); we also found decreased leaf-Fe and -P concen-

tration for Cd-treated plant compared to control; data not

shown] to inhibit chlorophyll synthesis and to alter water

balance in tissues (Maria et al. 2013). These stress-induced

changes in chlorophyll and water content altogether pro-

vide a most generic spectral response in VNIR and water

absorption bands (Kancheva and Borisova 2010; Peñuelas

and Filella 1998). Slight spectral changes in visible and at

the red-edge wavelengths were observed from S1-Pb trea-

ted sunflower compared to control spectra (Fig. 2a–d).

The changes in visible wavelengths were noticeable and

showed a larger increase in reflectance for As-treated plant

compared to rest of the treatments. An increased reflec-

tance in visible regions and decreased reflectance in NIR

regions were substantial in case of S1-As2 treatment at

30 days of plant growth (Fig. 2a). A clear difference can be

seen in the first derivatives spectra at visible wavelengths

(Fig. 2c), wherein red-edge shift to the shorter wavelength

was clearly visible, indicating severe As-stress at

900 mg kg-1 to the plant. Metal-induced plant stresses

result in leaf chlorophyll loss that usually cause reduction

in the absorption band in red, and a red-edge shift to shorter

wavelengths (Horler et al. 1983) is consistent with present

result. Similar result has been reported in other studies of

sunflower exposed to metal-contamination (de Gandy

2010).

For metal-mixture spiking (S1-Mix) and in situ metal-

contaminated soils (S2 and S3), substantial changes in the

leaf reflectance were found mainly in the red-edge, NIR

and water absorption regions of spectrum at 45 days of

plant growth, especially with sunflower grown in S3-soil

(Fig. 2e, f), which was severely contaminated with Pb and

As-metals (Table 1). Similar spectral changes also found

with S1-Mix treatment, while moderate spectral changes

were noticed for S2-soil compared to the control plant

spectra. These spectral changes with in situ metal-con-

taminated soils illustrate metals’ additive toxic effects upon

their higher accumulation into plant parts (data not pre-

sented). At higher concentration, arsenic interferes with

plant metabolic processes and can inhibit growth, often

leading to the plant death (Garg and Singla 2011).

Pearson’s correlation coefficients between reflectance

spectra and leaf-metal concentration were computed for all

Fig. 1 Reflectance spectra of a S1-Mix and b S3-contaminated

floodplain soil treatments at different spectral measurement intervals
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observations within the respective treatment set. The cor-

relograms of leaf-metal content and reflectance across the

entire spectrum show the highest degree of overall corre-

lation for visible and water absorption regions of the

spectrum Fig. 3a–c). Generally, on 30 and 45 days, for S1-

Cd treatment set, * 470–750 nm (r = 0.58 to 0.76), and

for S1-Pb treatment set, * 415–690 nm (r = 0.72 to 0.94)

wavelengths showed significant (p\ 0.05) positive corre-

lation, respectively, with leaf-Cd and -Pb metal concen-

tration (Fig. 3a–c). While, NIR and water absorption

wavelengths showed significant negative correlations, i.e.,

on 30 days, wavelengths 950–1006 nm (r = - 0.58 to

- 0.65), 1127–1908 (r = - 0.58 to - 0.73) with leaf-Cd;

744–955 nm (r = - 0.71 to - 0.94) with leaf-Pb. On

45 days, 1389–1438 and 1866–1893 nm wavelengths yield

negative correlation (r = - 0.58 to - 0.65) with leaf-Cd.

In case of metal-mixture (S1-Mix)-spiked and in situ

contaminated soils (S2 and S3 soils) treatment sets on

30 days, reflectance in visible regions showed significant

positive correlation with leaf-metal concentrations

(Fig. 3c), i.e., * 400–700 (r = 0.50 to 0.88) for leaf-Cd,

* 451–690 (r = 0.50 to 0.55) for leaf-Pb, * 450–690

(r = 0.50 to 0.69) for leaf-As concentration. The observed

positive correlation for visible wavelengths at the initial

growth periods might be associated with reduction in

chlorophyll as a manifestation of metallic-ion toxicity.

Such VNIR spectral variations in sunflower leaves due to

mineral deficiencies and metal-toxicity have been reported

in other studies (Mariotti et al. 1996; Peñuelas et al. 1994)

are in agreement with our results. With respect to spiked

metal concentration and background levels in soils, these

elements are known phytotoxins (Gallego et al. 1996;

Imran et al. 2015; Kabata-Pendias and Pendias 2001; Raba

Fig. 2 Reflectance spectra (a, b, e) and their first derivatives reflectance spectra (c, d, f) of leaves of sunflower grown in metal-spiked soils at 30

and 60 days, and in in situ metal-contaminated soils at 45 days of plant growth

Journal of the Indian Society of Remote Sensing (December 2018) 46(12):1925–1937 1929

123



et al. 2005) that may have caused damage to chlorophyll

and leaf structure of the sunflower plant.

Vegetation Indices and Continuum Removed
Spectra

Generally, the Cd-spiking to S1-soil showed nonsignificant

changes in the calculated indices compared to indices

obtained from untreated plant spectra (Fig. 4). Treatment

S1-Pb1 showed significant decrease in SR705 index com-

pared to control treatment at 30 days, i.e., 2.853 against

4.064. However, S1-Pb1 shows no significant difference in

other calculated indices from control plants. The REIPs

(Savitzky–Golay Filter first-order derivative and smoothing

technique) also decreased (i.e., shifted toward blue wave-

lengths) for Cd- and Pb-spiking, but was found non-

significant with respect to control REIPs.

As seen in Fig. 4, the arsenic and metal-mixture spiking

to S1-soils can statistically be distinguished from untreated

plants. On 30 days of sowing, the least values of NDVI,

LCI, and SR705 obtained with As-spiking at 900 mg kg-1

to S1-soils (0.685, 0.268, and 2.110, respectively) followed

by multi-metal-spiking to S1-soils (0.726, 0.310, and 2.565,

respectively) are significantly differed from untreated plant

(0.832, 0.440, and 4.064, respectively). The REIPs are also

significantly different from untreated plants for S1-As2 and

S1-Mix treatments, a blue shift by 20 and 13 nm, respec-

tively, observed. However, these indices for As-spiking at

100 mg kg-1 to S1-soils significantly on par with indices

from untreated plant, indicated that spiked level of

100 mg As kg-1 is within the tolerance limit for mutant

sunflower plant and did not cause plant stress. Similarly,

plants grown in in situ contaminated floodplains soils (S3-

soil) can be differentiated using NDVI, LCI and SR705

indices, since these values are significantly lower than

those of control treatment on 30, 45, and 60 days (Fig. 4).

Moreover, REIPs for S3-soil treatment show significant

blue shift by 14, 21, and 18 nm comparative to the control

REIP on 30, 45, and 60 days, respectively. A decrease in

the values of chlorophyll indices and blue shift of REIPs

with S1-As2, S1-Mix and S3-soil could be due to indirect

effects of metal-accumulation in plant parts, specifically

into roots (data not presented), on photosynthetic activities

and chlorophyll synthesis, which altogether lead to chan-

ged plant spectral reflectance. Present results are in

agreement with several studies that have demonstrated the

blue shift of REIPs and effectiveness of different chloro-

phyll indices for the delineation of metal-induced stress-

Fig. 3 Pearson’s correlation (r) of reflectance spectra against leaf-

metal concentration for (a, b) S1-Cd, -Pb, and -As-spiking treatments

at 30 and 60 days and c for S1-metal-mixture, S2, and S3 treatments at

30 days. Solid line represents significant correlation between wave-

length and metal concentration at a = 0.05 level, and dotted line

represents nonsignificant correlations
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related variations (Li et al. 2015; Milton et al. 1989; Slo-

necker et al. 2009; Sridhar et al. 2007a, 2014).

Water indices (NDWI, NDWI_MIR, MSI, and LWVI2)

are found to be lower for metal-spiking treatments (except

S1-As2; wherein plants died at 30 days) as well as for S2-

and S3-soils than the control treatment, but the differences

found statistically nonsignificant. This might be owed to

either an efficient metal tolerance mechanism of M5 sun-

flower mutants toward stress, particularly drought-stress or

a well-development root growth, that can lead to improved

access to water, minerals, and toxic metal as well

(Nehnevajova et al. 2009b; Schwitzguébel et al. 2008).

Hence, least spectral variations observed in domains of

water absorption regions for moderately metal-spiked or

contaminated soils.

Continuum removal (CR; in ENVI-IDL version 4.3)

technique was applied and absorption features around 495,

680, 970, 1165, 1435, 1780, and 1925 nm were recognized

by visual analyses and by considering typical absorption

features noted in the literature (Boyd et al. 2006; Curran

1989). Band depths (BDs = 1-CR reflectance spectra) at

selected bands in each absorption features were calculated.

The absorption features in visible region (at 495 and

680 nm) can be associated to chlorophyll, 970 nm to the

water, at 1165 nm to the biochemical of lignin, 1435 nm to

the water or nitrogen, 1780 nm to cellulose or lignin, and

1925 nm to the cellulose or water. The CR spectra and BDs

difference between control and metal-contamination treat-

ments at 30 and 45 days are shown, respectively, in

Fig. 5a–d. Generally, spectra of control plants had the

deepest BDs in considered absorption regions. The BDs for

plant grown in Cd- and Pb-spiked soils were same as

observed for control plants. The lowest BDs and greatest

positive BDs difference relative to control (i.e., shallower

BDs than control) noted for S1-As2, S1-Mix, and S3 treat-

ments, most prominent in red-edge (550–750 nm) and

water absorption (1371–1675, 1850–2250 nm) regions.

This demonstrates phytotoxic effects of metals on sun-

flower plant and significant changes in leaf spectral

reflectance. Absorption features in red-edge region are

strongly governed by foliar pigment concentration which

characteristically decreases due to abiotic stress. While,

absorption features within 1371–1675 and 1850–2250 nm

wavelengths related to the biochemical of water, nitrogen,

lignin, and cellulose (Boyd et al. 2006; Curran 1989;

Curran et al. 2001; Huber et al. 2008), and there might be

selective depletion of these biochemicals due to phytoac-

cumulation of toxic metals into plant parts, and it can be

revealed through spectral changes (Götze et al. 2010).

Pearson’s correlation results reported in Table 2 indicate

a significant effect of metal-spiking to S1-soil on sunflower

leaf spectral properties related with chlorophyll absorption,

while no other treatments were found to be statistically

significant. Leaf-Cd and -As concentration are strongly

correlated with LCI (r = –0.707; p = 0.0001 and r = –

0.544; p = 0.013), while lead-Pb correlated with PRI (r = –

0.710; p = 0.002). Leaf-As also showed an inverse rela-

tionship with band depth at 680 nm (r = 0.465; p = 0.039),

that is associated with chlorophyll absorption (Buschmann

and Nagel 1993; Curran et al. 1992; Gitelson and Merzlyak

1996).

Regression Analysis

Partial least square regression (PLSR) analysis was per-

formed to relate leaf-metal concentration to the leaf

Fig. 4 Changes in chlorophyll vegetation indices (NDVI and SR705)

and REIP (SG 1st order) for different metal-contamination treatments.

Error bars are values of ± SEm of 3–4 replicates. The columns with

asterisk (*) are significantly differed from control treatment at

a = 0.05 according to post hoc Tukey HSD test
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reflectance spectra (raw and first derivatives). The PLS

regression reduces the large number of measured collinear

spectral variables to a few non-correlated latent variables

or factors (Abdi 2003). The factors represent the relevant

information in the measured leaf spectral reflectance and

are used to predict the dependent variable, herein leaf-

Fig. 5 Continuum removed spectra of control and metal-contamina-

tion treatments at a 30 and b 45 days of plant growth. Band depth

difference between control and metal-contamination treatments at

c 30 and d 45 days. Positive difference indicates greater absorption

(or deeper band depths) in control than metal-contaminated soils.

Treatments S1-As2 and S3 cause the largest differences

Table 2 Correlation coefficient

(r) of leaf-metal concentration

to vegetation indices and band

depths at selected wavelengths

within the CR absorption

regions

VIs and BDs Leaf-Cd concentrationa Leaf-Pb concentrationa Leaf-As concentrationa

Pearson ‘r’ p values Pearson ‘r’ p values Pearson ‘r’ p values

NDVI - 0.281 0.183 2 0.506 0.046 - 0.433 0.056

LCI 2 0.707 0.0001 - 0.418 0.107 2 0.544 0.013

SR705 2 0.630 0.001 - 0.465 0.069 - 0.368 0.110

PRI 2 0.445 0.029 2 0.710 0.002 - 0.366 0.112

REIP 2 0.626 0.001 - 0.345 0.190 - 0.422 0.064

NDWI 0.447 0.029 - 0.122 0.653 0.114 0.634

NDWI_MIR 0.414 0.044 - 0.163 0.546 - 0.055 0.819

MSI 2 0.645 0.001 0.284 0.286 - 0.049 0.837

BD_495 0.452 0.027 2 0.544 0.003 - 0.375 0.104

BD_680 - 0.248 0.242 - 0.328 0.215 2 0.465 0.039

BD_970 0.431 0.035 0.025 0.927 0.254 0.279

BD_1165 0.500 0.013 0.167 0.538 0.214 0.366

BD_1780 0.497 0.014 - 0.236 0.378 - 0.339 0.144

acorrelation coefficients were calculated for pooled datasets of control and S1-metal-spiking treatments on

30 and 45 days, i.e., for S1-Cd spike, n = 24; S1-Pb spike, n = 16, and S1-As spike, n = 20. No significant

correlation found for S1-Mix, S2, and S3 treatment datasets, hence data not given. Values in bold are

different from 0 with a significance level a = 0.05
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metal concentration. We also tested MLR built upon the

vegetation indices and BDs values at selected wavelengths

within the absorption features. Due to small sample size,

each treatment dataset collected on 30 and 45 days was

combined to improve the statistical significance of the

models. Table 3 and Fig. 6 depict the cross-validated cal-

ibration results of R2 and RMSE using PLSR and MLR

analysis. The final models, which were selected by high R2

and low root-mean-square error (RMSE) values of cross-

validated analysis in each dataset, included different

spectral wavelengths data.

The PLSR using raw reflectance spectra found to be

inferior to models based on Savitzky–Golay filter first-

order derivative spectra. A combination of vegetation

indices, as well as BDs within selected absorption features

also proved to be good predictors of leaf-metal variability.

The important wavelengths with significant regression

coefficient were selected for PLSR modeling according to

Martens’ uncertainty test (Westad and Marten 2000) per-

formed with cross-validation, and those wavelengths are

mostly centered around chlorophyll absorption, red-edge,

near infrared, and water absorption regions. For the leaf-Cd

estimation, the best PLSR model based on significant FD

spectral wavelengths (i.e., 607–10, 1067, 1332–33,

1338–45 nm) obtained in the combined datasets of control,

S1-Cd treatments (n = 19) that yielded R2, 0.913, and

RMSE, 6.251 for validation model (Table 3). Good pre-

dictive model for leaf-Cd estimation (R2, 0.913, and

RMSE, 6.251) similarly also obtained for control, S1-Mix,

S2, and S3 treatment dataset (n = 25) using significant FD

spectra. Relatively, inferior predictions of leaf-Cd were

achieved with MLR models based on all VIs and BDs (R2,

0.600, and RMSE, 13.924) for control and S1-Cd treat-

ments dataset. Likely, the PLSR and MLR models,

respectively, based on significant FD spectral wavelengths

(within the 400–2200 nm) and all VIs, BDs showed robust

assessment of leaf-Pb (R2, 0.946 and 0.989, and RMSE,

11.295 and 4.579; validation model) for control and S1-Pb

treatment dataset. The models for leaf-Pb estimation found

inferior for control, S1-Mix, S2, and S3 treatment dataset.

For estimation of leaf-As concentration, only visible

spectral regions (400–800 nm) were found to be particu-

larly suitable, and the cross-validation performance further

improved using most significant wavelengths within visible

region (Table 3). The best fit model of leaf-As estimation

was obtained with R2, 0.962 and RMSE, 8.027 for control,

S1-As treatment dataset (n = 18). Similarly, for dataset of

control, S1-Mix, S2, and S3 treatments (n = 28), the best fit

Table 3 Best-fit PLSR and MLR models for estimation of sunflower leaf-metal concentration

Regression

models

R2

cal.

R2

val.

RMSE

cal.

RMSE

val.

For the prediction of Leaf-Cd concentration

1. PLSR_FD full spectra (400–2200 nm); for control, S1-Cd dataset, n = 19; PC#4 0.848 0.660 7.816 12.336

2. PLSR_FD significant WLa; for control, S1-Cd dataset, n = 19, PC#3 0.934 0.913 5.125 6.251

3. PLSR_FD significant WLb; for control, S1-Mix, S2, S3 dataset, n = 25, PC#3 0.906 0.856 4.702 6.073

4. MLR with selected VIs and BDsc; for control, S1-Cd dataset, n = 22 0.899 0.600 6.977 13.924

For the prediction of Leaf-Pb concentration

5. PLSR_ FD significant WLd; for control, S1-Pb dataset, n = 15; PC#5 0.977 0.946 6.866 11.295

6. MLR with all VIs and BDs at 495, 970, 1780 nm; for control, S1-Pd dataset, n = 15 0.999 0.989 0.379 4.579

For the prediction of Leaf-As concentration

7. PLSR_FD spectra (400–800 nm); for control, S1-As dataset, n = 20; PC#7 0.981 0.641 5.123 24.042

8. PLSR_FD significant WLe within 400–800 nm; for control, S1-As dataset, n = 18; PC#4 0.979 0.962 5.585 8.027

9. PLSR_FD significant WLf within 400–800 nm; for control, S1-Mix, S2, S3 dataset,

n = 28; PC#7

0.995 0.825 17.115 35.062

10. MLR with all VIs; for control, S1-As dataset, n = 17 0.977 0.890 7.108 15.573

Model is expressed in terms of coefficients of determination (R2) and root-mean-square error (RMSE) of calibration, cal and cross-validation, val

models
aSignificant FD wavelengths are: 607–10, 1067, 1332–33, 1338–45 nm
bSignificant FD wavelengths are: 470, 476–77, 780, 979–81, 1078, 1172–76, 1182–83, 1193–96, 1202–04, 1372, 1438–39, 1790–93 nm
cSelected VIs and BDs are: NDVI, LCI, SR705, PRI, NDWI, NDWI_MIR, BD_495, and BD_1165
dMost significant FD wavelengths are within the chlorophyll absorption, red-edge, near infrared, and water absorption regions
eSingificant FD wavelengths are: 411, 426, 432, 535–40, 545, 677–79 nm
fSignificant FD wavelengths are: 410–11, 417–20, 421, 425–26, 434, 465–66, 473–74, 476–77, 481, 488–92, 499, 587–88, 695–695 nm
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model of leaf-As estimation was obtained with R2, 0.825,

and RMSE, 35.062. The MLR calibration model based on

all calculated VIs also yielded good prediction results (R2,

0.890, and RMSE, 15.573) of leaf-As for control, S1-As

treatment dataset (n = 18).

Fig. 6 Scatter plot of measured

versus predicted leaf-Cd (a),
Leaf-Pb (b), leaf-As
(c) concentration using PLSR

calibration models. Blue and red

lines, respectively, represent the

results of calibration and

validation models. See footnote

at Table 3 for detail of

significant wavelengths
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For all PLSR analysis, the FD wavelengths with sig-

nificant regression coefficient (i.e., relationship between

predictor wavelengths and response variable leaf-metal

concentration; important wavelengths are given at footnote

at Table 3) used in the models are associated with

chlorophyll absorption, red-edge position, and water

absorption regions of spectrum. This finding is coherent

with observed vegetation spectral pattern due to soil metal-

contamination, and it has been also studied by Bandaru

et al. (2010); Hong et al. (2010); Slonecker et al. (2009) for

different test crops and soil metal-contamination.

Conclusion

Leaf reflectance obtained from sunflower grown in metal-

contaminated soils was varied in chlorophyll absorption

and NIR domains of spectrum, and it shows the highest

degree of overall correlation with leaf-metal concentration.

For both metal-spiked and in situ contaminated soils,

positive correlations with visible spectrum, while negative

correlations with NIR and water absorption bands, were

found. Sunflower grown in metal-spiked soil (i.e., S1-As2
and S1-Mix metals) and in in situ metal-contaminated soils

might possibly be examined at early growth stages through

chlorophyll vegetation indices LCI, SR705, and REIP, as

of these indices were found significantly different from the

control values. Shifting of red-edge inflection points by

* 20 nm toward blue wavelength is evident of metal-in-

duced plant stress. Similarly, first derivatives of reflec-

tance, continuum removed absorption features, and band

depth values were found to be the promising spectral fea-

tures in monitoring plant health during phytoremediation

process. Regardless of the kind and number of stressors, the

changes in spectral properties is mainly linked to an

alteration in chlorophyll concentration, water balance, and/

or leaf morphology. Thus, if the specific stressor is known

(metal-induced stress, for example, in present sunflower

study), the measurement of spectral properties is useful for

monitoring early metal-toxicity in plant, but it could be

challenging to distinguish them among individual metal-

induced plant stress. Multivariate regression approaches

confirmed that obtained PLSR and MRL models, respec-

tively, based on first derivative spectral reflectance and

spectral feature likes VIs and BDs could provide good

estimation of the leaf-metal variation. The results demon-

strate that it is feasible to use plant spectral reflectance for

monitoring of physiological stress caused by metal con-

taminants during the process of phytoextraction. As the

spectral variations have been observed at the leaf level

under stable illuminated source in the laboratory, they have

to be further verified at the canopy level and on the metal-

contaminated sites for extending the applications of

hyperspectral remote sensing.
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Kidd, P., Mench, M., Álvarez-López, V., Bert, V., Dimitriou, I.,

Friesl-Hanl, W., et al. (2015). Agronomic practices for improv-

ing gentle remediation of trace element-contaminated soils.

International Journal of Phytoremediation, 17(11), 1005–1037.

https://doi.org/10.1080/15226514.2014.1003788.

Li, X., Liu, X., Liu, M., Wang, C., & Xia, X. (2015). A hyperspectral

index sensitive to subtle changes in the canopy chlorophyll

content under arsenic stress. International Journal of Applied

Earth Observation and Geoinformation, 36, 41–53. https://doi.

org/10.1016/j.jag.2014.10.017.

Maria, S. D., Puschenreiter, M., & Rivelli, A. R. (2013). Cadmium

accumulation and physiological response of sunflower plants to

Cd during the vegetative growing cycle. Plant Soil Environment,

59(6), 254–261.

Mariotti, M., Ercoli, L., & Masoni, A. (1996). Spectral properties of

iron-deficient corn and sunflower leaves. Remote Sensing of

Environment, 58(3), 282–288. https://doi.org/10.1016/S0034-

4257(96)00070-3.

Mench, M., Lepp, N., Bert, V., Schwitzguébel, J.-P., Gawronski, S.
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Schwitzguébel, J. P., Nehnevajova, E., & Herzig, R. (2008).

Sustainable approach to remove metals from contaminated soils:

Improved phytoextraction by sunflower mutants. ID 291. In N.

Kalogerakis, F. Fava & S. A. Banwart (Eds.), E-book of abstract

of the fourth European Bioremediaton conference, Crete,

Greece, September 3–6, 2008.

Slonecker, T., Haack, B., & Price, S. (2009). Spectroscopic analysis

of arsenic uptake in Pteris ferns. Remote Sensing, 1, 644–675.

https://doi.org/10.3390/rs1040644.

Sridhar, B. B., Han, F. X., Diehl, S. V., Monts, D. L., & Su, Y.

(2007a). Monitoring the effects of arsenic and chromium

accumulation in Chinese brake fern (Pteris vittata). International

Journal of Remote Sensing, 28(5), 1055–1067. https://doi.org/10.

1080/01431160600868466.

Sridhar, B. B., Han, F. X., Diehl, S. V., Monts, D. L., & Su, Y.

(2007b). Spectral reflectance and leaf internal structure changes

of barley plants due to phytoextraction of zinc and cadmium.

International Journal of Remote Sensing, 28(5), 1041–1054.

https://doi.org/10.1080/01431160500075832.
Sridhar, B. B., Witter, J. D., Wu, C., Spongberg, A. L., & Vincent, R.

K. (2014). Effect of biosolids amendments on the metal and

nutrient uptake and spectral characteristics of five vegeta-

bles plants. Water, Air, and Soil Pollution, 225(2092), 1–14.

https://doi.org/10.1007/s110270-014-2092-9.

Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K.,

Ruttens, A., et al. (2009). Phytoremediation of contaminated

soils and groundwater: Lessons from the field. Environmental

Science and Pollution Research, 16(7), 765–794. https://doi.org/

10.1007/s11356-009-0213-6.

Westad, F., & Marten, H. (2000). Variable selection in near infrared

spectroscopy based on significance testing in partial least squares

regression. Journal of Near Infrared Spectroscopy, 8(2),

117–124. https://doi.org/10.1255/jnirs.271.

Journal of the Indian Society of Remote Sensing (December 2018) 46(12):1925–1937 1937

123

https://doi.org/10.1016/S1360-1385(98)01213-8
https://doi.org/10.1016/S1360-1385(98)01213-8
https://doi.org/10.1016/0034-4257(94)90136-8
https://doi.org/10.1016/0034-4257(94)90136-8
https://doi.org/10.1146/annurev.arplant.56.032604.144214
https://doi.org/10.1146/annurev.arplant.56.032604.144214
https://doi.org/10.2225/vol6-issue3-fulltext-6
https://doi.org/10.1111/j.1469-8137.2005.01519.x
https://doi.org/10.1111/j.1469-8137.2005.01519.x
https://doi.org/10.5721/EuJRS20154816
https://doi.org/10.1080/15226514.2012.702805
https://doi.org/10.1080/15226514.2012.702805
https://doi.org/10.3390/rs1040644
https://doi.org/10.1080/01431160600868466
https://doi.org/10.1080/01431160600868466
https://doi.org/10.1080/01431160500075832
https://doi.org/10.1007/s110270-014-2092-9
https://doi.org/10.1007/s11356-009-0213-6
https://doi.org/10.1007/s11356-009-0213-6
https://doi.org/10.1255/jnirs.271

	Assessing Metal-Induced Changes in the Visible and Near-Infrared Spectral Reflectance of Leaves: A Pot Study with Sunflower (Helianthus annuus L.)
	Abstract
	Introduction
	Materials and Methods
	Sunflower (Helianthus annuus): Pot Experiment Setup
	Spectral Reflectance Measurement of Leaves
	Chemical and Statistical Analysis

	Results and Discussion
	Leaf Spectral Reflectance
	Vegetation Indices and Continuum Removed Spectra
	Regression Analysis

	Conclusion
	Acknowledgements
	References




