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Summary 
 

 

The floating frame formulation is a well-established and widely used 

formulation in flexible multibody dynamics. In this formulation the rigid 

body motion of a flexible body is described by the absolute generalized 

coordinates of the body’s floating frame with respect to the inertial frame. 

The body’s flexible behavior is described locally, relative to the floating 

frame, by a set of deformation shapes. Because in many situations, the 

elastic deformations of a body remain small, these deformation shapes can 

be determined by applying powerful model order reduction techniques to 

a body’s linear finite element model. This is an important advantage of the 

floating frame formulation in comparison with for instance nonlinear 

finite element formulations.  

 

An important disadvantage of the floating frame formulation is that it 

requires Lagrange multipliers to satisfy the kinematic constraint 

equations. The constraint equations are typically formulated in terms of 

the generalized coordinates corresponding to the body’s interface points, 

where it is connected to other bodies or the fixed world. As the interface 

coordinates are not part of the degrees of freedom of the formulation, the 

constraint equations are in general nonlinear equations in terms of the 

generalized coordinates, which cannot be solved analytically.  

 

In this work, a new formulation is presented with which it is possible to 

eliminate the Lagrange multipliers from the constrained equations of 

motion, while still allowing the use of linear model order reduction 

techniques in the floating frame. This is done by reformulating a flexible 

body’s kinematics in terms of its absolute interface coordinates. One could 

say that the new formulation creates a superelement for each flexible body. 

These superelements are created by establishing a coordinate 

transformation from the absolute floating frame coordinates and local 

interface coordinates to the absolute interface coordinates. In order to 

establish such a coordinate transformation, existing formulations 

commonly require the floating frame to be in an interface point. The new 

formulation does not require such strict demands and only requires that 



 

 

 

there is zero elastic deformation at the location of the floating frame. In 

this way, the new formulation offers a more general and elegant solution 

to the traditional problem of creating superelements in the floating frame 

formulation.  

 

The fact that the required coordinate transformation involves the interface 

coordinates, makes it natural to use the Craig-Bampton method for 

describing a body’s local elastic deformation. After all, the local interface 

coordinates equal the generalized coordinates corresponding to the static 

Craig-Bampton modes. However, in this work it is shown that the new 

formulation can deal with any choice for the local deformation shapes. 

Also, it is shown how the method can be expanded to include geometrical 

nonlinearities within a body.  

 

A full and complete mathematical derivation of the new formulation is 

presented. However, an extensive effort is made to give geometric 

interpretation to the transformation matrices involved. In this way the 

new method can be understood better from an intuitive engineering 

perspective. This perspective has led to the proposal of several additional 

approximations to simplify the formulation. Validation simulations of 

benchmark problems have shown the new formulation to be accurate and 

the proposed additional approximations to be appropriate indeed. 

 

  

 

  



 

 

 

Samenvatting 
 

 

In het vakgebied flexibele multibody dynamica wordt het dynamisch 

gedrag van flexibele lichamen vaak beschreven door de zogenaamde 

floating frame formulering. Hierin wordt de starre beweging van een 

lichaam beschreven door de absolute coördinaten van een assenstelsel dat 

meebeweegt (floats) met het lichaam. Flexibel gedrag wordt vervolgens ten 

opzichte van dit lokale assenstelsel beschreven door een set 

vervormingsfuncties. Omdat de elastische vervormingen van een lichaam 

vaak klein blijven, kunnen deze vervormingsfuncties worden bepaald met 

behulp van lineaire eindige-elementenmodellen. Om rekentijd te besparen 

kunnen efficiënte lineaire reductiemethoden worden toegepast. Dit is een 

belangrijk voordeel van de floating frame formulering ten opzichte van 

niet-lineaire eindige-elementenmethoden.  

 

Een belangrijk nadeel van de floating frame formulering is dat Lagrange 

multiplicators nodig zijn om aan de kinematische randvoorwaarden te 

voldoen. Deze randvoorwaarden worden geïntroduceerd door de wijze 

waarop de interfacepunten van een lichaam zijn verbonden aan andere 

lichamen of aan de vaste wereld. De vergelijkingen die hierbij horen zijn 

typisch geformuleerd in termen van de coördinaten die toebehoren aan de 

interfacepunten. Omdat deze coördinaten geen onderdeel zijn van de 

vrijheidsgraden in de floating frame formulering, zijn de kinematische 

randvoorwaarden vaak niet-lineaire vergelijkingen waarvoor een 

analytische oplossing niet zonder meer bestaat. 

 

In dit werk wordt een nieuwe formulering gepresenteerd waarmee het 

mogelijk is om de Lagrange multiplicators te elimineren uit de 

bewegingsvergelijkingen. In de nieuwe formulering blijft het mogelijk om 

lineaire reductiemethoden toe te passen op lokale eindige-elementen-

modellen. Dit wordt gedaan door de kinematica van een flexibel lichaam 

volledig uit te drukken in termen van de absolute interfacecoördinaten. 

Het resultaat is dat elk lichaam kan worden beschreven als een 

superelement. Een superelement is gebaseerd op een speciale 

transformatie van de absolute floating-framecoördinaten en de lokale 



 

 

 

interfacecoördinaten naar de absolute interfacecoördinaten. Om een 

dergelijke transformatie te bewerkstelligen, vereisen reeds beschikbare 

formuleringen dat het floating frame in een interfacepunt ligt. In de 

nieuwe formulering zijn zulke beperkende voorwaarden niet nodig. Het is 

voldoende om te eisen dat er geen elastische vervorming optreedt ter 

plekke van het floating frame – waar dat ook ligt. Op deze manier biedt de 

nieuwe formulering een meer algemene en zeer elegante manier om 

gekoppelde superelementen te beschrijven in de floating frame 

formulering.   

 

Omdat de interfacecoördinaten een onmisbare rol spelen in de benodigde 

coördinatentransformatie, is het aantrekkelijk de Craig-Bamptonmethode 

te gebruiken voor de beschrijving van het flexibele gedrag van een 

lichaam. De gegeneraliseerde coördinaten die horen bij de statische Craig-

Bamptonmodes zijn immers gelijk aan de lokale interfacecoördinaten. 

Echter, in deze thesis zal ook worden beschreven dat de nieuwe 

formulering geschikt is voor een willekeurige keuze voor de lokale 

vervormingsfuncties. Ook wordt toegelicht hoe de formulering zou kunnen 

worden uitgebreid naar een geometrisch niet-lineaire beschrijving binnen 

een lichaam.  

 

De volledige wiskunde afleiding van de nieuwe formulering wordt 

gepresenteerd. Daarnaast is er ook aanzienlijk veel aandacht voor de 

geometrische interpretatie van de relevante transformatiematrices. Op 

deze manier wordt de nieuwe formulering voorzien van een meer 

ingenieursinterpretatie die helpt de formulering te doorgronden. Het is 

deze praktische interpretatie die heeft geleid tot het doen van extra 

aannamen die de formulering aanzienlijk vereenvoudigen. Numerieke 

simulaties die zijn uitgevoerd op een aantal standaardproblemen laten 

zien dat de nieuwe formulering nauwkeurig is en dat de voorgestelde extra 

aannamen zijn gerechtvaardigd.   
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Dear reader, 

 

Over the last couple of weeks, I have finished the contents of the thesis 

that you are currently reading. The idea that my time as a PhD-researcher 

is about to come to an end makes me happy and a bit emotional as well.  

 

Six years ago, whilst in the middle of my master project, my supervisor, 

who inspired me to pursue a study in dynamics, got terminally ill. Directly 

after I obtained my master’s degree, I took over his lecture series. This 

period was an absolute mayhem. With only a couple of days in between 

each lecture, I spent the days and nights preparing them. Although my 

lectures were far from perfect, the students were very respectful, told me 

that they liked the lectures anyway and they appreciated that I did my 

very best. We managed to get through the lecture series together. It was 

in this period that I learned that as a teacher I was making a difference: 

by sharing my passion for the field and my dedication to teach properly, I 

could actually mean something to my students. In the next year, I worked 

hard to get better and I could not have been prouder when later that year 

I was awarded the university’s central educational price. 

 

Of course, in that year I did not do much about my research at all. When I 

talked to colleagues about what I was doing, sooner or later they warned 

me not to forget about my research. And here we are now. My thesis is 

ready and I will defend it before the end of my current contract. Of course 

it is difficult to judge your own work, but I honestly believe that it is a 

proper contribution to my field. I was able to write multiple papers about 

it, received very positive comments on several conferences and I foresee 

many opportunities for future research and applications. I am very 

satisfied with how my thesis turned out.   

 

  



 

 

 

I am convinced that I could only reach this point because of all my teaching 

activities. Whenever I pursued a complicated strategy or whenever I 

finished a tedious mathematical derivation, it did not take very long before 

I wondered how I could explain this to my students. The wish to explain 

my research clearly forced me to look for the hidden elegance in my work, 

to find understandable interpretations of the math, to add intuition, to 

make it appear simple and clean. I think this really made it better.  

 

As it is written on the title page, this thesis is “to obtain the degree of 

doctor,” which means it serves to demonstrate that I am capable of doing 

solid academic research. However, I have not written it for the brilliant 

generations before me, to proof that I righteously belong to their family of 

doctors. It is dedicated to the future generations instead, although I 

understand that my thesis is far from a perfect textbook. It is for those 

who desire to understand my field in the future, that I want to be little 

lantern in the night. It is to lift them up to the greatest of heights. 

 

I sincerely hope that you can sense my good intentions throughout my 

thesis and that even if some sections appear complicated, you can 

appreciate my efforts to write them to the best of my ability.  

 

 

With warm regards, 

 

Jurnan Schilder 

Enschede, October 2018 
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Flexible multibody dynamics is concerned with the study of machines and 

mechanisms that consist of multiple deformable bodies. These bodies are 

connected to each other or to the fixed world in their so-called interface 

points. The joints that are located at these interface points may allow for 

large relative rigid body rotations between the bodies, which causes the 

problem to be of a geometric nonlinear nature. However, the elastic strains 

and deformations within a single body can often be considered as small.  

 

The kinematics of a flexible body can be described in many different ways. 

Different multibody formulations use different degrees of freedom. The 

generalized coordinates used as degrees of freedom determine the way in 

which kinematic constraints between bodies are enforced and also the 

form of the system’s equations of motion. In this work, it is considered that 

the motion of a flexible body can be described by the motion of coordinate 

frames that are attached to the body’s interface points: the so-called 

interface frames. An appropriate choice of deformation shapes defines the 

elastic deformation of the body uniquely.  

 

A coordinate frame can be rigidly attached to an interface point if the 

material in the immediate surroundings of the interface point can be 

assumed to be rigid. From a practical point of view, this is often the case 

when a physical joint is located at such an interface point, as this typically 

comes with a local structural reinforcement. Also, in the specific case of for 

instance slender beams, cross sections are assumed undeformable. In this, 

a coordinate frame attached to the beam’s ends can be related to its axial 

deformation, torsion and bending. For more complex elastic bodies, 

initially perpendicular axes attached to a material point need not be 

perpendicular in the body’s deformed configuration due to shear. However, 

also for these cases it is still possible to uniquely define the orientation of 

a coordinate frame that has its origin attached to a material point. For the 

sake of simplicity, it is considered in this work that the interface frames 

can be rigidly attached to the corresponding interface points.  
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 Existing formulations for flexible multibody dynamics 

 

The methods suitable for the simulation of flexible multibody systems can 

be divided into three general classes: the inertial frame formulations, the 

corotational frame formulations and the floating frame formulations. 

These formulations have essential differences in the way the kinematics 

of a flexible body is described. An extensive literature overview of the 

different formulations was presented in [1]. 

 

The inertial frame formulation is based on the nonlinear Green-Lagrange 

strain definition. Each body is discretized in finite elements using global 

interpolation functions. The degrees of freedom are the absolute nodal 

coordinates: the generalized coordinates corresponding to the nodes of the 

finite element mesh, measured with respect to a fixed inertial reference 

frame. When a body’s interface points coincide with finite element nodes, 

the absolute interface coordinates are part of the degrees of freedom. In 

this case, constraints between bodies can be enforced directly, by equating 

the degrees of freedom of the nodes shared by both bodies. Due to the use 

of the nonlinear strain definition, no distinction is made between a body’s 

large rigid body motion and small elastic deformation. Figure 1.1 shows a 

graphical representation of the inertial frame formulation. Details of this 

formulation can be found in textbooks on the nonlinear finite element 

method, such as [2]. 

 

 
 

Fig. 1.1 Inertial frame formulation for a flexible body. Degrees of freedom are the absolute 

nodal coordinates. The absolute interface coordinates are part of the degrees of 

freedom. 
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The corotational frame formulation can be interpreted as the nonlinear 

extension of the standard linear finite element formulation. Alternatively, 

it can be interpreted as a simplification of the inertial frame formulation 

by using the linear strain definition instead of the nonlinear strain 

definition. Each element of the body’s finite element mesh is given a 

corotational frame that describes the large rigid body motion of the 

element with respect to the inertial frame. Small elastic deformations 

within the element are superimposed using the linear finite element 

matrices, based on the linear Cauchy strain definition [3, 4]. The nonlinear 

finite element model is obtained from the linear finite element model by 

pre- and post-multiplying the element mass and stiffness matrices with 

the rotation matrices corresponding to the corotational frames. The 

absolute nodal coordinates are used as degrees of freedom, such that 

constraints are satisfied similarly as in inertial frame formulations. At 

every iteration, the absolute orientation of the corotational frames is 

determined from the absolute nodal coordinates. Figure 1.2 shows a 

graphical representation of the corotational frame formulation. Details of 

this formulation can be found in textbooks such as [2].  

 

 
Fig. 1.2 Corotational frame formulation for a flexible body. Degrees of freedom are the 

absolute nodal coordinates. The absolute interface coordinates are part of the 

degrees of freedom. 
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The floating frame formulation can be interpreted as the extension of rigid 

multibody formulations to flexible multibody systems. In this formulation, 

a body’s large rigid body motion is described by the absolute coordinates of 

a floating frame that moves along with the body. Elastic deformation is 

described locally, relative to the floating frame using a linear combination 

of deformation shapes. Within the framework of linear elasticity theory, 

the deformation shapes can be determined from a body’s linear finite 

element model. To this end, powerful model order reduction techniques 

can be used. The degrees of freedom consist of the absolute floating frame 

coordinates and the generalized coordinates corresponding to the 

deformation shapes. Since the absolute interface coordinates are not part 

of the set of degrees of freedom, the kinematic constraint equations are 

nonlinear and in general difficult to solve analytically. Hence, Lagrange 

multipliers are required to satisfy the constraint equations when 

formulating the equations of motion. This increases the total number of 

unknowns in the constrained equations of motion and makes them of the 

differential-algebraic type instead of the ordinary differential type. Figure 

1.3 shows a graphical representation of the floating frame formulation. 

Details of this formulation for both rigid and flexible multibody systems 

can be found in textbooks such as [5, 6]. An overview of its essentials will 

be presented in Chapter 2. 

 

 
Fig. 1.3 Floating frame formulation for a flexible body. The degrees of freedom are the 

absolute floating frame coordinates and generalized coordinates corresponding to 

local deformation. 
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 Purpose of this work 

 

The fact that the floating frame formulation is able to exploit the 

advantages of linear model order reduction techniques makes it a very 

efficient formulation when the elastic deformation of bodies can be 

considered as small. In order to develop a more efficient formulation, it is 

desired to combine this advantage with the convenient way in which the 

inertial frame formulation and corotational formulation satisfy the 

kinematic constrains. To this end, the Lagrange multipliers need to be 

eliminated from the floating frame formulation. This can be done if the 

absolute interface coordinates uniquely describe the body’s kinematics. In 

other words, if it is possible to express both the floating frame coordinates 

and the generalized coordinates corresponding to local elastic mode shapes 

in terms of the absolute interface coordinates, the Lagrange multipliers 

can be eliminated.  

 

One could say that in this case a so-called superelement is created: the 

motion of a flexible body is described entirely by the motion of its interface 

points. The term superelement refers to the similar way in which the 

displacement field of a finite element is described uniquely by the 

displacements of its nodes. In the linear finite element method, the use of 

superelements is well-developed for the purpose of model order reduction. 

For geometric nonlinear problems, the development of superelements is 

less straightforward. 

 

The idea to create superelements based on the floating frame formulation 

is not new. The fundamental problem for every superelement formulation 

is how to uniquely determine the motion of the floating frame from the 

motion of the interface points. Several different formulations can be found 

in literature, but in particular the contributions of Cardona and Géradin 

[7, 8, 9] in this field are widely acknowledged in the multibody community. 

The essence of these formulations is discussed in Section 1.3. The principle 

purpose of this thesis is the presentation of a new method for creating 

superelements based on the floating frame formulation. The new 

superelement formulation offers a unique and elegant solution to the 

traditional problem of expressing a body’s floating frame coordinates in 

terms of the interface coordinates. The formulation was published firstly 
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in [10] and presented on multibody dynamics conferences [11, 12]. This 

new formulation is introduced in Section 1.4 

 

In the proposed new method, Craig-Bampton modes [13, 14] are used to 

describe a body’s local elastic deformation. Because the required 

coordinate transformation involves absolute and relative interface 

coordinates, it is suggested naturally to use the Craig-Bampton modes. 

After all, the generalized coordinates corresponding to the static Craig-

Bampton modes (also known as interface modes or boundary modes) are 

in fact equal to the local interface coordinates. However, it is important to 

emphasize that the proposed method is not limited to the use of Craig-

Bampton modes. In literature, many different model order reduction 

techniques are described and a convenient overview of the most standard 

ones can be found in textbooks such as [15]. For this reason, a 

generalization of the new method suitable for any choice of the local 

deformation shapes is included in Chapter 8.  

 

Essential for the presented method is the fact that the static Craig-

Bampton modes are able to describe rigid body motions. Because rigid 

body motion is already being described by the motion of the floating frame, 

the rigid body modes must be eliminated from the Craig-Bampton modes 

in order to describe the system’s motion uniquely. At the same time, this 

property can be used to establish a coordinate transformation that 

expresses both the floating frame coordinates and the local interface 

coordinates corresponding to the Craig-Bampton modes in terms of the 

absolute interface coordinates. This is done by demanding that the elastic 

body has no deformation at the location of the floating frame. Although 

there are several ways to meet this demand, in all cases the rigid body 

motion is removed from the Craig-Bampton modes and the floating frame 

coordinates are related to the absolute interface coordinates 

simultaneously.    
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It is interesting to note that the problem of relating a flexible body’s 

floating frame to the absolute interface coordinates is very similar to the 

problem of relating an element’s corotational frame to its absolute nodal 

coordinates, as for instance addressed in [16, 17]. In this work, the parallel 

between a flexible body in a superelement formulation and a finite element 

in the corotational frame formulation will be demonstrated in more detail 

in Chapter 4. The standard corotational frame formulation in fact neglects 

higher order deformation terms in an element’s mass matrix as well as 

fictitious forces due to quadratic velocity terms. However, in many 

standard textbooks on nonlinear finite element methods and the 

corotational formulation, such as [2], these simplifications are often not 

mentioned. The mathematical derivation of the new superelement 

formulation that is presented in this work can be used to understand the 

exact form of these terms that are often left out of the corotational frame 

formulation. Moreover, by simulating benchmark problems, these 

simplifications will also be justified. In this view, it is also an important 

contribution of this work to demonstrate relevant relations between the 

different flexible multibody formulations. These relations will be 

addressed on several occasions throughout this thesis. 

 

  



 

-9- 

 

 Existing superelement formulations 

 

When each individual Craig-Bampton mode equals zero at the location of 

the floating frame, the motion is described uniquely. A first possibility for 

which this is true is when the floating frame is located at an interface 

point, and the Craig-Bampton modes of that specific interface point are 

not taken into account [7]. Figure 1.4 shows a graphical representation of 

this situation. An important disadvantage of this method is that 

simulation results become dependent on which interface point is chosen. 

Moreover, it is known from literature that better accuracy can be expected 

when the floating frame is located close to the body’s center of mass [9]. 

The effect of the floating frame location on simulation accuracy is studied, 

using the new formulation, by simulation of several benchmark problems. 

The results confirm this statement and are presented in Chapter 5. 

 

 
Fig. 1.4 Floating frame located in an interface point.       
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An alternative with which the floating frame can be positioned in the 

center of mass of the undeformed body is to add an auxiliary interface 

point at the material point that coincides with the center of mass of the 

undeformed body. The Craig-Bampton modes are then determined while 

keeping this auxiliary interface point fixed [9]. Figure 1.5 shows a 

graphical representation of this situation. The accuracy of the second 

method is method is better, in general, than that of the first, but it also 

requires 6 additional degrees of freedom per body. Moreover, the location 

of the floating frame has to be determined before computing the Craig-

Bampton modes. Consequently, if one wants to relocate the floating frame, 

these modes need to be recomputed. 

 

 
Fig. 1.5 Floating frame treated at an auxiliary interface point located at the center of 

mass of the undeformed body. 

 

Finally, it is possible to compute the position and orientation of the floating 

frame as a (weighted) average of the interface coordinates. This strategy 

is used in some corotational frame formulations, but has the disadvantage 

that the floating frame is no longer rigidly attached to a material point on 

the body. As such, the motion of the floating frame has no physical 

meaning other than that it represents the body’s rigid body motion in a 

certain averaged sense. 
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 The new superelement formulation  

 

The strength of the new superelement formulation, is that it allows the 

floating frame to be located at the center of mass of the undeformed body, 

without using an auxiliary interface point. Hence, it does not introduce 6 

additional degrees of freedom. Figure 1.6 shows a graphical representation 

of this situation. In order to arrive at this formulation, no demands are 

made on the Craig-Bampton modes individually. The central thought is 

that as long as any linear combination of Craig-Bampton modes is zero at 

the location of the floating frame, the location of the floating frame can be 

derived uniquely from the absolute interface coordinates.   

 

 
Fig. 1.6 Floating frame located at the center of mass of the undeformed body, which is not 

an interface point. 

 

The development of the new superelement formulation is discussed in 

detail in this work. Starting from the floating frame formulation, it is 

shown that by using a sophisticated coordinate transformation, it is 

possible to express the equations of motion of a flexible body in terms of 

the absolute interface coordinates. This enables a new way of including 

flexibility in a multibody simulation, which is efficient due to the reuse of 

a body’s linear finite element model and the application of the kinematic 

constraints without Lagrange multipliers. 
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Not only will the mathematical details of the new formulation be 

presented, but it is also the purpose of this work to add geometric 

interpretation to the various terms that will be encountered. The author 

wishes to demonstrate that many details can be understood using 

engineering intuition. To this end, interesting and relevant relations 

between the inertial frame, corotational frame and floating frame 

formulations are explained. Complex coordinate transformations are 

supported by graphic and geometric interpretations. In many ways, the 

new superelement formulation may make a significant contribution to 

creating a practical understanding of the various aspects of flexible 

multibody dynamics.  

 

Finally, it is the intention of the author to make the new formulation easily 

understandable for experts in fields closely related to flexible multibody 

dynamics, such as mechanism design, robotics, and precision engineering. 

For this purpose, relevant generalizations of the superelement 

formulation are included at the end of this work.  
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 Outline of this work 

 

Chapter 2 presents an overview of the floating frame formulation. Because 

the new method is based on the floating frame formulation, its essentials 

must be introduced properly. To this end, the kinematics of a flexible body 

are discussed and the equations of motion of a flexible body are derived.  

 

Chapter 3 describes the kinematics of a flexible body in terms of the 

absolute interface coordinates. Kinematic transformations are derived 

that express the absolute floating frame coordinates and local interface 

coordinates in terms of the absolute interface coordinates. These 

transformation matrices are interpreted geometrically.  

 

Chapter 4 describes the kinetics of a flexible body in terms of the absolute 

interface coordinates. The equation of motion of a flexible body in the new 

superelement formulation is presented here. Moreover, the numerical 

solution procedure with which this equation of motion is solved 

incrementally is discussed and interpreted. It will be explained that the 

geometric interpretation introduced in Chapter 3 has led to the discovery 

of justifiable additional assumptions that improve the computational 

efficiency of the method. 

 

Chapter 5 presents simulation results that were performed in order to 

validate the new method. A wide variety of benchmark problems have been 

simulated using many different formulations. The new method is 

compared with these simulations and found to be accurate. Also, the effect 

of additional simplifications and assumptions within the new method on 

the accuracy of simulation results is tested.  

 

Chapter 6 presents the conclusions related to the new superelement 

formulation.  

 

Chapter 7 presents an overview of the author’s recommendations for 

future research. 
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Chapter 8 contains theoretical elaborations of the given recommendations. 

For future applications, the new superelement formulation is generalized 

to account for a general set of deformation modes, such that model order 

reduction methods other than the Craig-Bampton method can be used as 

well. In addition, a generalization to include large deformations within a 

body is described. Preliminary validation results of bodies that have more 

than two interface points are presented. Finally, a formulation in terms of 

screw theory is presented to support the implementation of the new theory 

in for example robotics. 

 



2 
The floating frame formulation 
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In order to establish a flexible multibody dynamics formulation, the 

equations of motion of a flexible body need to be derived. This requires the 

kinematics of any arbitrary material point on a flexible body to be 

described uniquely in a chosen set of generalized coordinates. In Section 

2.1 the relevant kinematics of the floating frame formulation will be 

discussed. This includes the expressions for the position, velocity, 

acceleration and virtual displacement of an arbitrary point on a flexible 

body. 

 

In Section 2.2, the equations of motion of a flexible body in the floating 

frame formulation are derived. To this end, first the Newton-Euler 

equations of motion for a rigid body are discussed. The extension from 

Newton’s second law to the Newton-Euler equations can be seen as the 

extension from infinitesimal bodies to finite bodies. Subsequently, the 

extension from rigid bodies to flexible bodies is explained. The equations 

of motion of a flexible body are derived from the principle of virtual work, 

which serves as a fundamental physical concept.  

 

This chapter is written after consulting many well-known standard 

textbooks on both rigid and flexible multibody dynamics, among which [5, 

6] as well as the PhD Thesis by M.H.M. Ellenbroek [18]. The work 

presented in this chapter was reused by the author as a basis for the reader 

“Dynamics 3” that was written as study material for the course “Dynamics 

& Control” in the Master’s programme of Mechanical Engineering at the 

University of Twente [19]. A digital copy of this reader is available upon 

request for personal use. 
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 Kinematics of the floating frame formulation 

 

Consider a flexible body moving in a three-dimensional space. In any 

arbitrary material point of the body, a Cartesian coordinate frame is 

rigidly attached. The kinematics of the body can be described by the 

motion of a set of such coordinate frames. Consider two arbitrarily chosen 

material points 𝑃𝑖 and 𝑃𝑗, with coordinate frames 𝐸𝑖 and 𝐸𝑗 rigidly attached. 

Because a pair such as {𝑃𝑖 , 𝐸𝑖} defines both the position and orientation of 

the frame attached to 𝑃𝑖, it will be referred to as the generalized position, 

or simply the position of 𝑃𝑖.  

 

The position of 𝑃𝑖 relative to 𝑃𝑗 can be expressed by the (3 × 1) position 

vector 𝐫𝑖
𝑗,𝑗

 and the (3 × 3) rotation matrix 𝐑𝑖
𝑗
. In this notation, the position 

vector 𝐫𝑖
𝑗,𝑗

 defines the position of 𝑃𝑖 (lower index 𝑖) relative to 𝑃𝑗 (second 

upper index 𝑗) and its components are expressed in the coordinate system 

{𝑃𝑗 , 𝐸𝑗} (first upper index 𝑗). The rotation matrix 𝐑𝑖
𝑗
 defines the orientation 

of 𝐸𝑖 (lower index 𝑖) relative to 𝐸𝑗 (upper index 𝑗) expressed in {𝑃𝑗 , 𝐸𝑗}. The 

graphical representation of the position of 𝑃𝑖 relative to 𝑃𝑗 using the 

position vector and rotation matrix is included in Figure 2.1.  

 

 
Fig. 2.1 Position of 𝑃𝑖 relative to 𝑃𝑗 in terms of a position vector and rotation matrix. 

 

𝐑𝑖
𝑗
 defines a coordinate transformation that can be used to transform a 

vector that is expressed in frame 𝑗 into a vector that is expressed in frame 

𝑖. For example, the components of position vector 𝐫𝑖
𝑗,𝑗

 can also be expressed 

in the frame 𝑖, which is denoted by 𝐫𝑖
𝑖,𝑗

, changing the first upper index.  
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The two vectors 𝐫𝑖
𝑗,𝑗

 and 𝐫𝑖
𝑖,𝑗

 are related as: 

 

 𝐫𝑖
𝑗,𝑗
= 𝐑𝑖

𝑗
𝐫𝑖
𝑖,𝑗

 (2.1)   

 

The rotation matrix is an orthogonal matrix of the proper kind, which 

means that its determinant equals +1 and its transpose equals its inverse, 

which also represents the inverse coordinate transformation, such that: 

 

 (𝐑𝑖
𝑗
)
−1
= 𝐑𝑗
𝑖 , 𝐑𝑖

𝑗
𝐑𝑗
𝑖 = 𝟏 (2.2)   

 

with 𝟏 the (3 × 3) identity matrix. Expressions for the virtual 

displacement and virtual rotation of a material point on a flexible body are 

obtained by taking the variation of the current position. The virtual 

displacement of 𝑃𝑖 relative to 𝑃𝑗 expressed in frame 𝐸𝑗 is denoted by 𝛿𝐫𝑖
𝑗,𝑗

. 

The variation in the rotation matrix 𝐑𝑖
𝑗
 is denoted by 𝛿𝐑𝑖

𝑗
, which is equal 

to a skew symmetric matrix times the rotation matrix itself. This can be 

proved by taking the variation of (2.2) using the product rule: 

 

 𝛿(𝐑𝑖
𝑗
𝐑𝑗
𝑖) = 𝛿𝐑𝑖

𝑗
𝐑𝑗
𝑖 + 𝐑𝑖

𝑗
𝛿𝐑𝑗
𝑖 = 𝟎 (2.3)   

 

This can be rewritten to: 

 

 𝛿𝐑𝑖
𝑗
𝐑𝑗
𝑖 = −𝐑𝑖

𝑗
𝛿𝐑𝑗
𝑖 = −(𝛿𝐑𝑖

𝑗
𝐑𝑗
𝑖)
𝑇
 (2.4)   

 

From this it follows that 𝛿𝐑𝑖
𝑗
𝐑𝑗
𝑖  is skew symmetric and has zeros on its 

main diagonal. Let this skew symmetric matrix be denoted by 𝛿𝛑̃𝑖
𝑗,𝑗

: 

 

 𝛿𝐑𝑖
𝑗
𝐑𝑗
𝑖 = 𝛿𝛑̃𝑖

𝑗,𝑗
 (2.5)   

 

Post-multiplying (2.5) by 𝐑𝑖
𝑗
 shows that the variation in the rotation 

matrix equals a skew symmetric matrix times the rotation matrix itself: 

 

 𝛿𝐑𝑖
𝑗
= 𝛿𝛑̃𝑖

𝑗,𝑗
𝐑𝑖
𝑗
 (2.6)   
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This is an important property of the rotation matrix which follows directly 

from the fact that the rotation matrix is an orthogonal matrix. In the 

above, the tilde operator  ( ∙ )̃ is introduced such that when applied to a 

(3 × 1) vector 𝐚, it yields the skew symmetric (3 × 3) matrix 𝐚̃: 

 

 
𝐚 = [

𝑎1
𝑎2
𝑎3
] , 𝐚̃ = [

0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

] (2.7)   

 

In (2.6), the tilde operator is applied on the vector 𝛿𝛑𝑖
𝑗,𝑗

, which is the vector 

of virtual rotations of frame {𝑃𝑖 , 𝐸𝑖} with respect to {𝑃𝑗 , 𝐸𝑗} with its 

components expressed in {𝑃𝑗 , 𝐸𝑗}. The expressions for the velocity of a 

material point on a flexible body are similar to the expressions for the 

variations. The linear velocity of 𝑃𝑖 is simply the time derivative of  𝐫𝑖
𝑗,𝑗

, 

which is denoted by 𝐫̇𝑖
𝑗,𝑗

. The time derivative of a rotation matrix can be 

expressed as a skew symmetric matrix times the rotation matrix itself: 

 

 𝐑̇𝑖
𝑗
= 𝛚̃𝑖

𝑗,𝑗
𝐑𝑖
𝑗
 (2.8)   

 

This can be derived by taking the time derivative of (2.2) and following the 

same steps as for the variation. In (2.8), 𝛚̃𝑖
𝑗,𝑗

 is the skew symmetric matrix 

containing the elements of the vector 𝛚𝑖
𝑗,𝑗

, which is the instantaneous 

angular velocity vector of frame {𝑃𝑖 , 𝐸𝑖} with respect to {𝑃𝑗 , 𝐸𝑗} with its 

components expressed in {𝑃𝑗 , 𝐸𝑗}.  

 

Expressions for the acceleration of a material point on a flexible body are 

obtained by differentiating the expressions for the velocity once more with 

respect to time. The second time derivative of the position vector 𝐫𝑖
𝑗,𝑗

 is the 

linear acceleration vector 𝐫̈𝑖
𝑗,𝑗

. The time derivative of the angular velocity 

vector 𝛚𝑖
𝑗,𝑗

 is the angular acceleration vector 𝛚̇𝑖
𝑗,𝑗

. The second time 

derivative of the rotation matrix 𝐑𝑖
𝑗
 is obtained by differentiating (2.8) with 

respect to time using the product rule: 

 

 𝐑̈𝑖
𝑗
= 𝛚̇̃𝑖

𝑗,𝑗
 𝐑𝑖
𝑗
+ 𝛚̃𝑖

𝑗,𝑗
𝛚̃𝑖
𝑗,𝑗
 𝐑𝑖
𝑗
 (2.9)   
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Many derivations throughout this work involve manipulations with skew 

symmetric matrices. Many properties that are used for these derivations 

originate from the fact that the cross product between two arbitrary (3×1) 

vectors 𝐚 and 𝐛 can be expressed in terms of a skew symmetric matrix: 

 

 𝐚 × 𝐛 = 𝐚̃𝐛 (2.10)   

 

The components of a skew symmetric matrix can be transformed from one 

frame to another by pre- and post-multiplication with the appropriate 

rotation matrices. For example, let 𝐚̃𝑗 be a skew symmetric matrix of which 

its components are expressed in frame 𝐸𝑗. Then, expressing its components 

in frame 𝐸𝑖 is denoted by 𝐚̃𝑖 and realized as follows: 

 

 𝐚̃𝑗 = 𝐑𝑖
𝑗
𝐚̃𝑖𝐑𝑗
𝑖    ↔   𝐚̃𝑗𝐑𝑖

𝑗
= 𝐑𝑖

𝑗
𝐚̃𝑖 (2.11)   

 

This expression can be obtained by expressing the components of the 𝐚𝑗 in 

frame 𝐸𝑖 and constructing the skew symmetric matrix 𝐚̃𝑖 from the result: 

 

 𝐚𝑗 = 𝐑𝑖
𝑗
𝐚𝑖    ↔  𝐚̃𝑗 = (𝐑𝑖

𝑗
𝐚𝑖̃) = 𝐑𝑖

𝑗
𝐚̃𝑖𝐑𝑗
𝑖     (2.12)   

 

In the floating frame formulation, the absolute position of an arbitrary 

point on a flexible body is expressed in terms of the absolute position of 

the body’s floating frame and the relative position of the point to the 

floating frame. Figure 2.2 shows a graphical representation of how the 

position of an arbitrary point 𝑃𝑖 on a flexible body with respect to inertial 

frame 𝑃𝑂 is described using the body’s floating frame located in 𝑃𝑗. In the 

floating frame formulation, the position vector 𝐫𝑖
𝑂,𝑂

 is expressed as: 

 

 𝐫𝑖
𝑂,𝑂 = 𝐫𝑗

𝑂,𝑂 + 𝐑𝑗
𝑂𝐫𝑖
𝑗,𝑗

 (2.13)   
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Fig. 2.2 Position of 𝑃𝑖 relative to 𝑃𝑂 using floating frame 𝑃𝑗. 

 

In the case of a flexible body, the local position vector 𝐫𝑖
𝑗,𝑗

 is not constant. 

Instead, it is expressed as the sum of the position vector of 𝑃𝑖 relative to 𝑃𝑗 

on the undeformed body 𝐱𝑖
𝑗,𝑗

 and the elastic displacement 𝐮𝑖
𝑗,𝑗

 of this point: 

 

 𝐫𝑖
𝑗,𝑗
= 𝐱𝑖
𝑗,𝑗
+ 𝐮𝑖
𝑗,𝑗

 (2.14)   

  

Assuming that elastic strains and deformations within a single body 

remain small, the linear theory of elasticity can be used to describe local 

elastic deformations based on the linear Cauchy strain definition. This 

allows for the local elastic displacement field to be generally described by 

a linear combination of a set of 𝑁 deformation shapes 𝝓: 

 

        𝐮𝑖
𝑗,𝑗
=∑𝝓𝑘(𝐱𝑖

𝑗,𝑗
)𝜂𝑘

𝑁

𝑘=1

= 𝚽𝑖𝛈, 𝚽𝑖 ≡ [𝝓1(𝐱𝑖
𝑗,𝑗
) … 𝝓𝑁(𝐱𝑖

𝑗,𝑗
)] (2.15)   

 

In this, 𝜂𝑘 is the time dependent generalized coordinate corresponding to 

position dependent deformation shape 𝝓𝑘. Since 𝐱𝑖
𝑗,𝑗

 is constant, the 

following holds for the variation and time derivatives of the local position 

vector 𝐫𝑖
𝑗,𝑗

: 

 

𝛿𝐫𝑖
𝑗,𝑗
= 𝚽𝑖𝛿𝛈, 𝐫̇𝑖

𝑗,𝑗
= 𝚽𝑖𝛈̇, 𝐫̈𝑖

𝑗,𝑗
= 𝚽𝑖𝛈̈ (2.16)   
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Recall Figure 2.2 and (2.13) which show how the absolute position of 𝑃𝑖 is 

expressed using the floating frame. The expression for the virtual 

displacement of 𝑃𝑖 is obtained by taking the variation, using (2.6): 

 

 𝛿𝐫𝑖
𝑂,𝑂 = 𝛿𝐫𝑗

𝑂,𝑂 + 𝛿𝛑̃𝑗
𝑂,𝑂𝐑𝑗

𝑂𝐫𝑖
𝑗,𝑗
+ 𝐑𝑗
𝑂𝛿𝐫𝑖
𝑗,𝑗

 (2.17)   

 

Using the transformation rule (2.11) and the cross product property that 

for any two (3 × 1) vectors 𝐚 and 𝐛 holds that 𝐚̃𝐛 = −𝐛̃𝐚, the second term 

on the right hand side of (2.17) can be rewritten. Together with 

substitution of (2.16), this allows (2.17) to be rewritten in the following 

matrix-vector notation:  

 

 

𝛿𝐫𝑖
𝑂,𝑂 = [𝟏 𝐑𝑗

𝑂(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗
𝐑𝑗
𝑂𝚽𝑖] [

𝛿𝐫𝑗
𝑂,𝑂

𝛿𝛑𝑗
𝑂,𝑂

𝛿𝛈

] (2.18)   

 

The expression for the absolute linear velocity of 𝑃𝑖 in the inertial frame is 

obtained by differentiating (2.13) with respect to time. The result is similar 

to (2.17): 

 

 𝐫̇𝑖
𝑂,𝑂 = 𝐫̇𝑗

𝑂,𝑂 + 𝛚̃𝑗
𝑂,𝑂𝐑𝑗

𝑂𝐫𝑖
𝑗,𝑗
+ 𝐑𝑗
𝑂𝐫̇𝑖
𝑗,𝑗

 (2.19)   

 

The expression for the absolute linear acceleration of 𝑃𝑖 is obtained by 

differentiating once more: 

 

𝐫̈𝑖
𝑂,𝑂 = 𝐫̈𝑗

𝑂,𝑂 + 𝛚̇̃𝑗
𝑂,𝑂𝐑𝑗

𝑂𝐫𝑖
𝑗,𝑗
+ 𝐑𝑗
𝑂𝐫̈𝑖
𝑗,𝑗
+ 𝛚̃𝑗

𝑂,𝑂𝛚̃𝑗
𝑂,𝑂𝐑𝑗

𝑂𝐫𝑖
𝑗,𝑗
+ 2𝛚̃𝑗

𝑂,𝑂𝐑𝑗
𝑂𝐫̇𝑖
𝑗,𝑗

 (2.20)   

 

Substitution of (2.16) and rewriting in matrix-vector form yields:  

   

𝐫̈𝑖
𝑂,𝑂 = [𝟏  𝐑𝑗

𝑂(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗
  𝐑𝑗

𝑂𝚽𝑖] [

𝐫̈𝑗
𝑂,𝑂

𝛚̇̃𝑗
𝑂,𝑂

𝛈̈

] 

                       + [𝟎  𝐑𝑗
𝑂 𝛚̃𝑗
𝑗,𝑂
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗
  2𝐑𝑗

𝑂𝛚̃𝑗
𝑗,𝑂
𝚽𝑖] [

𝐫̇𝑗
𝑂,𝑂

𝛚𝑗
𝑂,𝑂

𝛈̇

] 

(2.21)   
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 Kinetics of the floating frame formulation 

 

Kinetics of a point mass 

Newton’s second law of motion represents the equation of motion of a 

freely moving point mass. It must be understood that this physical law is 

defined for a point mass of mass 𝑚 and that both the resultant force 𝐅 and 

acceleration 𝐚 are defined with respect to an inertial frame. In its best 

known form, it is expressed as: 

 

 𝐅 = 𝑚𝐚 (2.22)   

 

Kinetics of a rigid body 

For a freely moving rigid body, the equations of motion are known as the 

Newton-Euler equations. They can be considered as an extension of the 

above in the sense that Newton’s second law is applied on every 

infinitesimally small mass particle within the rigid body. In the Newton-

Euler equations, integration of all infinitesimal contributions yields 

independent equations for the translational and rotational degrees of 

freedom in the form of a force balance and a moment balance. In fact, the 

extension from Newton’s second law to the Newton-Euler equations is the 

extension from infinitesimal bodies to finite bodies. In their popular form, 

they are expressed as: 

 

 𝐅 = 𝑚𝐚 
 

𝐌 = 𝐈𝛂 + 𝛚̃𝐈𝛚 
(2.23)   

 

In the force balance, 𝐅 represents the resultant applied force on the body, 

𝑚 is the body’s total mass and 𝐚 is the absolute acceleration of the body’s 

center of mass. The force balance is expressed globally, with respect to an 

inertial frame, which in this work will be the global reference frame 

{𝑃𝑂 , 𝐸𝑂}. In the moment balance, 𝐌 is the resultant moment about the 

body’s principal axes, 𝐈 is the second moment of mass matrix about the 

body’s principal axes and 𝛚 and 𝛂 are the angular velocity and acceleration 

vectors respectively. The moment balance is expressed locally, with 

respect to a coordinate system located at the body’s center of mass {𝑃𝐶 , 𝐸𝐶}, 

which is the origin of the body’s principal axes. 
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Kinetics of a flexible body 

When extending from a point mass to a rigid body, it is relatively intuitive 

to understand that the moment balance equations are the required 

additional equations of motion. However, when considering the motion of 

a flexible body, additional generalized coordinates are required to describe 

a body’s local elastic deformation. Because the physical interpretation of 

these coordinates is not straightforward, it is hard to imagine the precise 

form of the required additional equations of motion. For that reason, the 

principle of virtual work is used as a fundamental physical principle from 

which the equations of motion can be derived. It is commonly attributed to 

D’Alembert to reformulate Newton’s second law using the concept of 

virtual displacements. In its well-known form, it is expressed as: 

 

 𝛿𝐫𝑇(𝑚𝐫̈ − 𝐅) = 0, ∀ 𝛿𝐫 (2.24)   

 

which is equivalent to Newton’s second law as the equation must hold for 

all arbitrary virtual displacements 𝛿𝐫. Upon integration of (2.24), the 

principle of virtual work is obtained, which equates the virtual work by 

internal forces to the virtual work by external forces. For a flexible body, 

the virtual work by internal forces consists of the virtual work by inertia 

forces 𝛿𝑊𝑖𝑛 and the virtual work by elastic forces 𝛿𝑊𝑒𝑙. These are equated 

to the virtual work by external forces 𝛿𝑊𝑒𝑥: 

 

 𝛿𝑊𝑖𝑛 + 𝛿𝑊𝑒𝑙 = 𝛿𝑊𝑒𝑥 (2.25)   

 

The virtual work by elastic forces equals the variation in the internal 

strain energy. In the case of a rigid body, the virtual internal work equals 

the virtual work by inertia forces only, because a rigid body cannot deform. 

For the virtual external work, concentrated forces are summed and body 

forces are integrated over the volume of the body. Each of the three terms 

in (2.25) will now be elaborated on. The development of the virtual work 

by inertia forces is the most cumbersome and will be presented first. 
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Virtual work by inertia forces 𝛿𝑊𝑖𝑛 

Let 𝜌𝑖𝑑𝑉 denote the infinitesimally small mass located at 𝑃𝑖 on a body. 

Then, in terms of the notation used in this work, the virtual internal work 

by inertia forces 𝛿𝑊𝑖𝑛 is expressed as:   

 

 
𝛿𝑊𝑖𝑛 = ∫(𝛿𝐫𝑖

𝑂,𝑂)
𝑇
𝐫̈𝑖
𝑂,𝑂

𝑉

𝜌𝑖𝑑𝑉  (2.26)   

 

In the expression for virtual work by inertia forces (2.26), the integrand 

consists of the multiplication (𝛿𝐫𝑖
𝑂,𝑂)
𝑇
𝐫̈𝑖
𝑂,𝑂

. Since (2.21) consists of two 

terms, the required integrand in (2.26) consists of two matrices: a matrix 

that is multiplied by the acceleration of the floating frame and a matrix 

that is multiplied by the velocity of the floating frame. By using the 

appropriate matrix-vector product identities, the result can be written in 

the following form: 

 

(𝛿𝐫𝑖
𝑂,𝑂)
𝑇
𝐫̈𝑖
𝑂,𝑂 = [

𝛿𝐫𝑗
𝑂,𝑂

𝛿𝛑𝑗
𝑂,𝑂

𝛿𝛈

]

𝑇

[
 
 
 
 𝟏 𝐑𝑗

𝑂(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗

𝐑𝑗
𝑂𝚽𝑖

𝐑𝑗
𝑂𝐫̃𝑖
𝑗,𝑗
𝐑𝑂
𝑗
𝐑𝑗
𝑂𝐫̃𝑖
𝑗,𝑗
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗
𝐑𝑗
𝑂𝐫̃𝑖
𝑗,𝑗
𝚽𝑖

(𝚽𝑖)
𝑇𝐑𝑂
𝑗 (𝚽𝑖)

𝑇(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗 (𝚽𝑖)

𝑇𝚽𝑖 ]
 
 
 
 

[

𝐫̈𝑗
𝑂,𝑂

𝛚̇̃𝑗
𝑂,𝑂

𝛈̈

] 

                + [

𝛿𝐫𝑗
𝑂,𝑂

𝛿𝛑𝑗
𝑂,𝑂

𝛿𝛈

]

𝑇

 

[
 
 
 
 𝟎 𝐑𝑗

𝑂  𝛚̃𝑗
𝑗,𝑂
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗

2𝐑𝑗
𝑂𝛚̃𝑗
𝑗,𝑂
𝚽𝑖

𝟎 𝐑𝑗
𝑂 𝛚̃𝑗
𝑗,𝑂
𝐫̃𝑖
𝑗,𝑗
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗
2𝐑𝑗
𝑂𝐫̃𝑖
𝑗,𝑗
𝛚̃𝑗
𝑗,𝑂
𝚽𝑖

𝟎 (𝚽𝑖)
𝑇𝛚̃𝑗
𝑗,𝑂
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗
2(𝚽𝑖)

𝑇𝛚̃𝑗
𝑗,𝑂
𝚽𝑖 ]
 
 
 
 

[

𝐫̇𝑗
𝑂,𝑂

𝛚𝑗
𝑂,𝑂

𝛈̇

] 

(2.27)   

 

In this, the partitioning lines are used to conveniently distinguish between 

the terms that are related to the rigid body motion and the terms that are 

related to the body’s flexible behavior.  
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Integration of (2.27) yields the expression for the virtual work by inertia 

forces: 

 

𝛿𝑊𝑖𝑛 = [

𝛿𝐫𝑗
𝑂,𝑂

𝛿𝛑𝑗
𝑂,𝑂

𝛿𝛈

]

𝑇

∫

 
 
 

[
 
 
 
 𝟏 𝐑𝑗

𝑂(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗

𝐑𝑗
𝑂𝚽𝑖

𝐑𝑗
𝑂𝐫̃𝑖
𝑗,𝑗
𝐑𝑂
𝑗
𝐑𝑗
𝑂𝐫̃𝑖
𝑗,𝑗
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗
𝐑𝑗
𝑂𝐫̃𝑖
𝑗,𝑗
𝚽𝑖

(𝚽𝑖)
𝑇𝐑𝑂
𝑗 (𝚽𝑖)

𝑇(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗 (𝚽𝑖)

𝑇𝚽𝑖 ]
 
 
 
 

𝑉

𝜌𝑖𝑑𝑉 [

𝐫̈𝑗
𝑂,𝑂

𝛚̇̃𝑗
𝑂,𝑂

𝛈̈

] 

     + [

𝛿𝐫𝑗
𝑂,𝑂

𝛿𝛑𝑗
𝑂,𝑂

𝛿𝛈

]

𝑇

 

∫

 
 
 
 

[
 
 
 
 𝟎 𝐑𝑗

𝑂 𝛚̃𝑗
𝑗,𝑂
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗

2𝐑𝑗
𝑂𝛚̃𝑗
𝑗,𝑂
𝚽𝑖

𝟎 𝐑𝑗
𝑂 𝛚̃𝑗
𝑗,𝑂
𝐫̃𝑖
𝑗,𝑗
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗
2𝐑𝑗
𝑂𝐫̃𝑖
𝑗,𝑗
𝛚̃𝑗
𝑗,𝑂
𝚽𝑖

𝟎 (𝚽𝑖)
𝑇𝛚̃𝑗
𝑗,𝑂
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗
2(𝚽𝑖)

𝑇𝛚̃𝑗
𝑗,𝑂
𝚽𝑖 ]
 
 
 
 

𝑉

𝜌𝑖𝑑𝑉 [

𝐫̇𝑗
𝑂,𝑂

𝛚𝑗
𝑂,𝑂

𝛈̇

] 

(2.28)   

 

The first matrix in (2.28) is identified as the global mass matrix 𝐌𝑂 of the 

flexible body: 

 

 

𝐌𝑂 ≡

∫

 
 
 

[
 
 
 
 𝟏 𝐑𝑗

𝑂(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗

𝐑𝑗
𝑂𝚽𝑖

𝐑𝑗
𝑂𝐫̃𝑖
𝑗,𝑗
𝐑𝑂
𝑗
𝐑𝑗
𝑂𝐫̃𝑖
𝑗,𝑗
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗
𝐑𝑗
𝑂𝐫̃𝑖
𝑗,𝑗
𝚽𝑖

(𝚽𝑖)
𝑇𝐑𝑂
𝑗 (𝚽𝑖)

𝑇(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗 (𝚽𝑖)

𝑇𝚽𝑖 ]
 
 
 
 

𝑉

𝜌𝑖𝑑𝑉  (2.29)   

 

The second matrix in (2.28) is identified as the velocity dependent matrix 

of fictitious forces 𝐂𝑂 of the flexible body: 

 

 

𝐂𝑂 ≡

∫

 
 
 
 

[
 
 
 
 𝟎 𝐑𝑗

𝑂 𝛚̃𝑗
𝑗,𝑂
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗

2𝐑𝑗
𝑂𝛚̃𝑗
𝑗,𝑂
𝚽𝑖

𝟎 𝐑𝑗
𝑂 𝛚̃𝑗
𝑗,𝑂
𝐫̃𝑖
𝑗,𝑗
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗
2𝐑𝑗
𝑂𝐫̃𝑖
𝑗,𝑗
𝛚̃𝑗
𝑗,𝑂
𝚽𝑖

𝟎 (𝚽𝑖)
𝑇𝛚̃𝑗
𝑗,𝑂
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
𝐑𝑂
𝑗
2(𝚽𝑖)

𝑇𝛚̃𝑗
𝑗,𝑂
𝚽𝑖 ]
 
 
 
 

𝑉

𝜌𝑖𝑑𝑉  (2.30)   

 

It can be observed that the integrands in both 𝐌𝑂 and 𝐂𝑂 contain terms 

that are being pre- and post-multiplied with rotation matrices. These 

rotation matrices can be taken outside of the integral. In this way, both 

global matrices 𝐌𝑂 and 𝐂𝑂 can be expressed in terms of local matrices 𝐌𝑗 

and 𝐂𝑗 that are being transformed to the global frame as follows: 

 

 𝐌𝑂 = [𝐑𝑗
𝑂]𝐌𝑗[𝐑𝑂

𝑗
], 𝐂𝑂 = [𝐑𝑗

𝑂]𝐂𝑗[𝐑𝑂
𝑗
] (2.31)   
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In this the local mass matrix 𝐌𝑗 is defined as:  

 

 

𝐌𝑗 ≡

∫

 
 
 

[
 
 
 
 𝟏 (𝐫̃𝑖

𝑗,𝑗
)
𝑇

𝚽𝑖

𝐫̃𝑖
𝑗,𝑗

𝐫̃𝑖
𝑗,𝑗
(𝐫̃𝑖
𝑗,𝑗
)
𝑇

𝐫̃𝑖
𝑗,𝑗
𝚽𝑖

(𝚽𝑖)
𝑇 (𝚽𝑖)

𝑇(𝐫̃𝑖
𝑗,𝑗
)
𝑇
(𝚽𝑖)

𝑇𝚽𝑖]
 
 
 
 

𝑉

𝜌𝑖𝑑𝑉  (2.32)   

 

The local matrix of fictitious forces 𝐂𝑗 is defined as: 

 

 

𝐂𝑗 ≡

∫

 
 
 
 

[
 
 
 
 𝟎  𝛚̃𝑗

𝑗,𝑂
(𝐫̃𝑖
𝑗,𝑗
)
𝑇

2𝛚̃𝑗
𝑗,𝑂
𝚽𝑖

𝟎  𝛚̃𝑗
𝑗,𝑂
𝐫̃𝑖
𝑗,𝑗
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
2𝐫̃𝑖
𝑗,𝑗
𝛚̃𝑗
𝑗,𝑂
𝚽𝑖

𝟎 (𝚽𝑖)
𝑇𝛚̃𝑗
𝑗,𝑂
(𝐫̃𝑖
𝑗,𝑗
)
𝑇
2(𝚽𝑖)

𝑇𝛚̃𝑗
𝑗,𝑂
𝚽𝑖]
 
 
 
 

𝑉

𝜌𝑖𝑑𝑉 (2.33)   

 

Note that the integrals in both 𝐌𝑗 and 𝐂𝑗 are expressed in terms of the 

deformed configuration, i.e. they are expressed in terms of 𝐫𝑖
𝑗,𝑗

 instead of 

𝐱𝑖
𝑗,𝑗

. Hence, they are not constant. Yet, these integrals can be expressed as 

a constant matrix, based on the undeformed configuration 𝐱𝑖
𝑗,𝑗

, and higher 

order terms that are either linear or quadratic in terms of the deformation 

𝐮𝑖
𝑗,𝑗

. In this way, 𝐌𝑗 and 𝐂𝑗 can be expressed as follows: 

 

 𝐌𝑗 = 𝐌0
𝑗
+𝐌1

𝑗
+𝐌2

𝑗
, 𝐂𝑗 = 𝐂0

𝑗
+ 𝐂1
𝑗
+ 𝐂2
𝑗
 (2.34)   

 

In this, the subscripts 0, 1 and 2 are used to identify the terms with zeroth, 

first and second order dependency on the deformation respectively. By 

recalling from (2.15) that 𝐮𝑖
𝑗,𝑗
= 𝚽𝑖𝛈, the time dependency of the higher 

order terms can be taken outside the integral. In this way, the higher order 

terms are in fact integrals of the deformation shapes 𝚽𝑖, which are 

constant. Consequently, even for the higher order terms it is not necessary 

to recompute integrals at every iteration step.  

   

In order to be able to express the elastic displacement field as a linear 

combination of deformation shapes, it is assumed that local elastic 

deformations are small. This suggests the effect of elastic deformation on 

the matrices 𝐌𝑗 and 𝐂𝑗 will indeed be of a higher order. In Chapter 5, 
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simulations of various benchmark problems are performed in which the 

effect of these higher order terms is investigated. The validation 

simulations have demonstrated that ignoring higher order terms, i.e. 

taking into account 𝐌0
𝑗
 and 𝐂0

𝑗
 only, still produces accurate results. For this 

reason, no further elaboration on the exact form of the higher order terms 

is given here.  

 

In the partition of the mass matrix (2.32) that is related to the rigid body 

motion, the mass, first moment of mass and second moment of mass 

integrals can be recognized: 

 

 
𝑚𝑗 ≡ ∫𝜌𝑖𝑑𝑉

𝑉

 

 

𝐬̃𝑗 ≡ ∫(𝐫̃𝑖
𝑗,𝑗
)
𝑇

𝑉

𝜌𝑖𝑑𝑉 

 

𝐈𝑗 ≡ ∫ 𝐫̃𝑖
𝑗,𝑗
(𝐫̃𝑖
𝑗,𝑗
)
𝑇

𝑉

𝜌𝑖𝑑𝑉 

(2.35)   

 

Recall that the first moment of mass 𝐬𝑗 defines the body’s center of mass 

𝑃𝐶: the center of mass is located such that 𝐬𝐶 ≡ 𝟎 by construction. 

Consequently, if the floating frame is located at the center of mass of the 

undeformed body, and the higher order terms are neglected, the coupling 

between the force and moment balances conveniently vanishes.  

 

Due to the flexibility, other inertia integrals appear in (2.32) as well. In 

the mass matrix, the submatrix 𝐌Φ, can be recognized. The coupling 

between the rigid body motion and elastic deformations is governed by the 

modal participation factors for the translation 𝐏1 and rotation 𝐏2:  
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𝐌Φ ≡ ∫(𝚽𝑖)

𝑇𝚽𝑖
𝑉

𝜌𝑖𝑑𝑉 

 

𝐏1 ≡ ∫𝚽𝑖
𝑉

𝜌𝑖𝑑𝑉 

 

𝐏2 ≡ ∫ 𝐫̃𝑖
𝑗,𝑗
𝚽𝑖

𝑉

𝜌𝑖𝑑𝑉 

(2.36)   

 

For the purpose of this work, it is considered that these integrals are 

determined based on the body’s linear finite element model. In that case 

𝐌Φ really represents the finite element mass matrix, reduced to the basis 

spanned by the chosen deformation shapes 𝚽. As 𝐏1 and 𝐏2 represent the 

coupling between rigid and flexible behavior, they will be equal to zero 

when the deformation shapes are chosen such that they are orthogonal to 

the rigid body modes. This is the case when the deformation shapes are 

the body’s mode shapes determined with all-free boundaries. As the rigid 

body modes are eigenvectors of the all-free boundary eigenvalue problem, 

their orthogonality with the flexible mode shapes follows directly from the 

orthogonality conditions posed on the eigenmodes. The fact that these 

mode shapes are able to diagonalise the local mass matrix explains their 

common use. However, many alternatives exist for choosing a set of 

deformation shapes, which may have other advantages. Among them are 

the Craig-Bampton modes, which will be used in this work and discussed 

in Chapter 3.  

 

In the fictitious force matrix (2.33), two additional inertia integrals can be 

identified: 

 

 
𝐕1 ≡ ∫ 𝐫̃𝑖

𝑗,𝑗
𝛚̃𝑗
𝑗,𝑂
𝚽𝑖

𝑉

𝜌𝑖𝑑𝑉 

 

𝐕2 ≡ ∫(𝚽𝑖)
𝑇𝛚̃𝑗
𝑗,𝑂
𝚽𝑖

𝑉

𝜌𝑖𝑑𝑉 

(2.37)   
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The presence of 𝛚̃𝑗
𝑗,𝑂

 in these integrals would require to recompute these 

integrals at every iteration step. Fortunately, the integrals can be 

rewritten such that 𝛚̃𝑗
𝑗,𝑂

 is taken outside the integral. To this end, the 

product 𝛚̃𝑗
𝑗,𝑂
𝚽𝑖 is rewritten as follows: 

 

 𝛚̃𝑗
𝑗,𝑂
𝚽𝑖 = −[𝚽̃𝑖][𝛚𝑗

𝑗,𝑂
] (2.38)   

 

In (2.38), [𝚽̃𝑖] is the 3 × 3𝑁 matrix of skew symmetric mode shape matrices 

and [𝛚𝑗
𝑗,𝑂
] is the 3𝑁 × 𝑁 block diagonal matrix of 𝛚𝑗

𝑗,𝑂
: 

 

[𝚽̃𝑖] ≡ [𝝓̃1(𝐱𝑖
𝑗,𝑗
) … 𝝓̃𝑁(𝐱𝑖

𝑗,𝑗
)], [𝛚𝑗

𝑗,𝑂
] ≡ [

𝛚𝑗
𝑗,𝑂

⋱

𝛚𝑗
𝑗,𝑂

] (2.39)   

 

Using (2.38), the inertia integrals 𝑉1 and 𝑉2 in (2.37) can be rewritten as: 

 

 
𝐕1 = −∫ 𝐫̃𝑖

𝑗,𝑗
[𝚽̃𝑖]

𝑉

𝜌𝑖𝑑𝑉 [𝛚𝑗
𝑗,𝑂
] 

 

𝐕2 = −∫(𝚽𝑖)
𝑇[𝚽̃𝑖]

𝑉

𝜌𝑖𝑑𝑉 [𝛚𝑗
𝑗,𝑂
] 

(2.40)   

 

Hence, the inertia integrals that actually need to be computed only consist 

of multiplications of entries 𝐫𝑖
𝑗,𝑗

 and 𝚽𝑖. These products are, however, 

different from the integrals encountered in the mass matrix. Moreover, it 

is not straightforward to relate the integrals to finite element modes. Only 

with additional approximations, such as using a lumped mass 

approximation, can the relation with finite element mass matrix be 

established [18].  

 

Virtual work by elastic forces 𝛿𝑊𝑒𝑙 

The virtual work by elastic forces 𝛿𝑊𝑒𝑙 equals the variation in the strain 

energy. Because the strain energy is independent of rigid body motion, the 

result will only be in terms of the generalized coordinates corresponding 
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to the elastic modes 𝛈 by means of a stiffness matrix 𝐊𝛟. This stiffness 

matrix can be obtained directly from a linear finite element model by 

reducing it to the basis spanned by the chosen set of deformation shapes. 

The virtual work by elastic forces can be written as:  

 

 𝛿𝑊𝑒𝑙 = (𝛿𝛈)
𝑇𝐊𝛟𝛈 (2.41)   

 

In terms of all generalized coordinates that are used in the floating frame 

equation, this can be written as: 

 

 

𝛿𝑊𝑒𝑙 = [

𝛿𝐫𝑗
𝑂,𝑂

𝛿𝛑𝑗
𝑂,𝑂

𝛿𝛈

]

𝑇

𝐊𝑗  [

𝐫𝑗
𝑂,𝑂

𝛑𝑗
𝑂,𝑂

𝛈

] , 𝐊𝑗 ≡ [

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝐊𝛟

]  (2.42)   

 

Note that 𝛑𝑗
𝑂,𝑂

 is used here to denote the parameters that parameterize 

the rotation matrix. They can be interpreted as the summed or integrated 

contributions of all small increments Δ𝛑𝑗
𝑂,𝑂

. Its presence in (2.42) is merely 

a matter of notation, as computation of the elastic forces only requires 

multiplication of 𝐊𝛟 with 𝛈.  

 

Virtual work by external forces 𝛿𝑊𝑒𝑥 

The virtual work due to external forces can be expressed as: 

 

 

𝛿𝑊𝑒𝑥𝑡 = [

𝛿𝐫𝑗
𝑂,𝑂

𝛿𝛑𝑗
𝑂,𝑂

𝛿𝛈

]

𝑇

[

𝐅𝑗
𝑂

𝐌𝑗
𝑂

𝐐Φ

] (2.43)   

 

where 𝐅𝑗
𝑂 is the vector of external forces expressed in the inertial frame 𝐸𝑂 

and 𝐌𝑗
𝑂 is the vector of external moments about the axes of the inertial 

frame 𝐸𝑂. 𝐐Φ represents the generalized forces acting on the elastic 

deformation shapes. They are the projection of the externally applied 

forces on the shapes 𝚽.  
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For body forces, this requires the computation of the following integral: 

 

 
𝐐Φ = ∫(𝚽𝑖)

𝑇𝐟𝑖
𝑗

𝑉

 𝜌𝑖𝑑𝑉 (2.44)   

 

Point forces can be included directly by multiplying them by the value of 

the deformation shapes at the point where they apply. Alternatively, point 

forces can be written in terms of a body force 𝐟𝑖
𝑗
 with the appropriate use 

of the Dirac-delta function.  

 

Equations of motion of a flexible body 

Substitution of the expressions for the virtual work by inertia forces, 

elastic forces and external forces in the principle of virtual work (2.25), 

realizing that this principle must hold for arbitrary 𝛿𝐫𝑗
𝑂,𝑂

, 𝛿𝛑𝑗
𝑂,𝑂

, and 𝛿𝛈, 

yields the equations of motion of a single flexible body in the floating frame 

formulation. These can be written in the following form: 

 

[𝐑𝑗
𝑂]𝐌𝑗[𝐑𝑂

𝑗
]𝐪̈𝑂 + [𝐑𝑗

𝑂]𝐂𝑗[𝐑𝑂
𝑗
]𝐪̇𝑂 + 𝐊𝑗𝐪𝑂 = 𝐐𝑂 (2.45)   

 

where it should be understood that the stiffness matrix does not need to 

be pre- and post-multiplied with rotation matrices, because it contains 

only nonzero terms related to the elastic coordinates 𝛈, which are local. 

Also, it should be noted that constraint forces are still included in 𝐐𝑂. 

When formulating the equations of motion of the entire multibody system, 

these constraint forces will be expressed in terms of the Lagrange 

multipliers. 

 

The notations 𝐪𝑂, 𝐪̇𝑂, and 𝐪̈𝑂 are introduced for the global generalized 

coordinates, velocities and accelerations respectively and 𝐐𝑂 for the global 

generalized forces: 

 

𝐪𝑂 = [

𝐫𝑗
𝑂,𝑂

𝛑𝑗
𝑂,𝑂

𝛈

] , 𝐪̇𝑂 = [

𝐫̇𝑗
𝑂,𝑂

𝛚𝑗
𝑂,𝑂

𝛈̇

] , 𝐪̈𝑂 = [

𝐫̈𝑗
𝑂,𝑂

𝛚̇𝑗
𝑂,𝑂

𝛈̈

] , 𝐐𝑂 = [

𝐅𝑗
𝑂

𝐌𝑗
𝑂

𝐐Φ

] (2.46)   
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It is interesting to mention that in case of a rigid body, when the floating 

frame is located in the body’s center of mass 𝑃𝐶 and its orientation 𝐸𝐶 is 

aligned with the body’s principle axes, the force balance has a diagonal 

mass matrix and a zero velocity matrix. When the moment balance is 

expressed in the floating frame, the equations of motion indeed reduce to 

the Newton-Euler equations: 

 

 𝑚𝐫̈𝐶
𝑂,𝑂 = 𝐅𝐶

𝑂 
 

𝐈𝐶 𝛚̇̃𝐶
𝐶,𝑂 + 𝛚̃𝐶

𝐶,𝑂𝐈𝐶𝛚𝐶
𝐶,𝑂 = 𝐌𝐶

𝑂 
(2.47)   

 

For the dynamic analysis of a flexible multibody system, the equations of 

motion of each flexible body are of the form (2.45). Because the absolute 

interface coordinates are not part of the generalized coordinates 𝐪𝑂, the 

kinematic constraints between bodies cannot be enforced directly. Instead, 

Lagrange multipliers are required to satisfy the constraints when 

formulating the multibody system’s equations of motion. In the next 

Chapter, a coordinate transformation will be established with which the 

equations of motion (2.45) can be expressed in terms of the absolute 

interface coordinates. In this way, a body’s linear finite element model can 

be used to create a superelement for each flexible body and the use of 

Lagrange multipliers is prevented.   

 



 



3 
Kinematics of a flexible body in 

absolute interface coordinates 
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In this chapter, a coordinate transformation is derived with which the 

floating frame coordinates and local interface coordinates are expressed in 

terms of the absolute interface coordinates. This is required so as to 

express a flexible body’s equation of motion in terms of the absolute 

interface coordinates. For this purpose, Craig-Bampton modes are used for 

a local description of a flexible body’s kinematics. After the relevant 

transformation matrices have been derived, additional geometric 

interpretation will be given to them, for more engineering understanding 

of the method. 

 

This new method was published online in the journal paper “On the use of 

absolute interface coordinates in the floating frame of reference 

formulation for flexible multibody dynamics” in Multibody System 

Dynamics on 14-12-2017. The additional geometric interpretation of the 

various matrices involved in this method is based on the journal paper 

“Geometric interpretation of superelements in the floating frame of 

reference formulation” that was submitted for review on 31-07-2018. 
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 Local kinematics of a flexible body using Craig-Bampton 

modes 

 

In the floating frame formulation, many different choices can be made for 

the set of deformation shapes 𝚽 that describe the local elastic deformation 

of a body, as mentioned in the previous chapter. For the reduction of a 

body’s linear finite element model, the Craig-Bampton method is one of 

the most commonly used techniques. This method makes a distinction 

between two types of deformation shapes: static interface modes and 

internal vibration modes. The static Craig-Bampton modes are a body’s 

deformed shape when one of its interface coordinates is given a unit 

displacement, while keeping all other interface coordinates fixed. Using 

these modes only is in fact a static condensation, also known as the Irons-

Guyan reduction. The internal Craig-Bampton modes are the natural 

vibration modes of the body when all interface coordinates are fixed. The 

use of Craig-Bampton modes for the model order reduction of linear finite 

element models can be found in standard textbooks such as [15].  

 

The development of superelements requires a coordinate transformation 

towards absolute interface coordinates. Because the local interface 

coordinates are in fact the generalized coordinates corresponding to the 

static Craig-Bampton modes, it is natural to choose these as the 

deformation shapes. For this reason it is assumed in the remainder of this 

chapter that the static Craig-Bampton modes are indeed used for 

describing local elastic deformations. However, it is important to mention 

that taking into account the internal Craig-Bampton modes as well does 

not introduce any problems for the method whatsoever. This 

generalization is explained in more detail in Chapter 8, which also 

includes thoughts on how any arbitrary reduction basis might be used.   

 

Consider a three-dimensional flexible body of which the position and 

orientation of the floating frame are denoted by the pair {𝑃𝑗 , 𝐸𝑗}. Let 𝑁 be 

the number of interface points on the flexible body. Then the number of 

interface coordinates and thus the number of Craig-Bampton modes is 6𝑁. 

Let 𝑃𝑘 identify the interface point with index 𝑘. The local interface 

coordinates corresponding to this point, which are also the generalized 
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coordinates of the Craig-Bampton modes related to this interface point, 

are denoted by the (6×1) vector 𝐪𝑘
𝑗,𝑗

. The generalized coordinates 𝐪𝑘
𝑗,𝑗

 are 

the small elastic local displacements 𝐮𝑘
𝑗,𝑗

 and rotations 𝛉𝑘
𝑗,𝑗

 of the interface 

points 𝑃𝑘 on the body expressed in the body’s floating frame 𝐸𝑗: 

 

 
𝐪𝑘

𝑗,𝑗
= [

𝐮𝑘
𝑗,𝑗

𝛉𝑘
𝑗,𝑗

] (3.1)   

 

The local elastic deformation of an arbitrary point 𝑃𝑖 on the body can be 

expressed in terms of the local interface coordinates as: 

 

 
𝐪𝑖

𝑗,𝑗
= ∑ 𝚽𝑘(𝐱𝑖

𝑗,𝑗
)

𝑁

𝑘=1

𝐪𝑘
𝑗,𝑗

 (3.2)   

 

Here 𝚽𝑘 is the (6×6) matrix of Craig-Bampton modes of 𝑃𝑘. It describes 

the local elastic displacements and rotations of the material point 𝑃𝑖, which 

has position 𝐱𝑖
𝑗,𝑗

 on the undeformed body. Equation (3.2) can be written in 

compact matrix-vector form as: 

 

 𝐪𝑖
𝑗,𝑗

= [𝚽𝑖]𝐪𝑗,𝑗 (3.3)   

 

Note that whereas in (2.15) 𝚽𝑖 could still be any set of deformation shapes 

evaluated at 𝑃𝑖, in (3.3) [𝚽𝑖] denotes specifically the (6 × 6𝑁) matrix of 

Craig-Bampton modes evaluated at 𝑃𝑖. The (1 × 6𝑁) vector 𝐪𝑗,𝑗 is the set 

of all local interface coordinates: 

 

 

[𝚽𝑖] ≡ [𝚽1(𝐱𝑖
𝑗,𝑗

) … 𝚽𝑁(𝐱𝑖
𝑗,𝑗

)],       𝐪𝑗,𝑗 ≡ [
𝐪1

𝑗,𝑗

⋮

𝐪𝑁
𝑗,𝑗

] (3.4)   

 

When using the Craig-Bampton modes in the floating frame formulation, 

the total number of degrees of freedom will be 6 + 6𝑁: there are 6 absolute 

floating frame coordinates and 6𝑁 local interface coordinates. Now, recall 

the fact that a formulation is desired in terms of the 6𝑁 absolute interface 

coordinates and that the rigid body motions should be eliminated from the 
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Craig-Bampton modes to avoid problems of non-uniqueness. 

Consequently, 6 constraints should be imposed on the local interface 

coordinates 𝐪𝑗,𝑗 , corresponding to the Craig-Bampton modes. In general 

these constraints can be expressed as: 

 

 𝓕(𝐪𝑗,𝑗) = 𝟎 (3.5)   

 

Due to the possible nonlinearities in the general form of (3.5), these 

constraints might not be solved analytically. However, by taking its 

variation, 6 linear equations are obtained in terms of the virtual 

displacements of the interface points 𝛿𝐪𝑗,𝑗  : 

 

 δ𝓕 = ∇𝓕 ∙ 𝛿𝐪𝑗,𝑗 = 𝟎 (3.6)   

 

If (3.6) is satisfied, the virtual displacements of the interface points do not 

allow for a rigid body motion. In most superelement formulations, among 

which the one presented in this work, this is realized by defining the 

floating frame such that there is zero elastic deformation at its location. 

By taking the variation of (3.3) and evaluating the Craig-Bampton modes 

at the location of the floating frame 𝑃𝑗, i.e. letting the arbitrary point 𝑃𝑖 be 

floating frame 𝑃𝑗, a constraint is obtained of the form of (3.6): 

 

 𝛿𝐪𝑗
𝑗,𝑗

= [𝚽𝐶𝐵]𝛿𝐪𝑗,𝑗 = 𝟎 (3.7)   

 

where [𝚽𝐶𝐵] is used to denote the (6 × 6𝑁) matrix of Craig-Bampton (CB) 

modes evaluated at the location of floating frame 𝑃𝑗. Each column of [𝚽𝐶𝐵] 

contains the deformation of the floating frame when the body is deformed 

according to a certain Craig-Bampton mode. Figure 3.1 shows a graphical 

interpretation of [𝚽𝐶𝐵] for a translational (a) and rotational (b) Craig-

Bampton mode of an arbitrarily shaped flexible body.  
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Fig. 3.1 Graphical interpretation of [𝚽𝐶𝐵]. This shows the displacement of the 

floating frame when the body is deformed according to a prescribed 

translational (a) or rotational (b) Craig-Bampton mode. 

 

As mentioned in Chapter 1 and illustrated by Figures 1.4 to 1.6, there are 

multiple ways in which (3.7) can be satisfied. Most methods encountered 

in literature treat the floating frame as an interface point: either the 

floating frame is located at an actual interface point or an auxiliary 

interface point is created at the location of the floating frame. The method 

presented here does not require this. In the next section, it will be shown 

how the location of the floating frame follows from satisfying the 

constraint equation (3.7), without the need that 𝑃𝑗 is an interface point.  
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 Kinematics of a flexible body in terms of absolute interface 

coordinates 

 

In Chapter 2, kinematic relations were derived for the virtual 

displacement of an arbitrary point on a flexible body with respect to the 

inertial frame. In (2.17), let the arbitrary point 𝑃𝑖 be interface point 𝑃𝑘, 

such that for its virtual position holds: 

 

 𝛿𝐫𝑘
𝑂,𝑂 = 𝛿𝐫𝑗

𝑂,𝑂 + 𝛿𝛑̃𝑗
𝑂,𝑂𝐑𝑗

𝑂𝐫𝑘
𝑗,𝑗

+ 𝐑𝑗
𝑂𝛿𝐫𝑘

𝑗,𝑗
 (3.8)   

 

Because the Craig-Bampton modes involve both translational and 

rotational degrees of freedom, an expression is also required for the virtual 

rotation at 𝑃𝑘: 

 

 𝛿𝛑𝑘
𝑂,𝑂 = 𝛿𝛑𝑗

𝑂,𝑂 + 𝐑𝑗
𝑂𝛿𝛑𝑘

𝑗,𝑗
 (3.9)   

 

Using the identities  𝐚̃𝑗𝐑𝑖
𝑗

= 𝐑𝑖
𝑗
𝐚̃𝑖 and 𝐚̃𝐛 = −𝐛̃𝐚, as introduced in Chapter 

2, the second term on the right hand side of (3.8) can be rewritten such 

that it can be combined with (3.9) to: 

 

[
𝛿𝐫𝑘

𝑂,𝑂

𝛿𝛑𝑘
𝑂,𝑂] = [

𝐑𝑗
𝑂 𝟎

𝟎 𝐑𝑗
𝑂] [

𝛿𝐫𝑘
𝑗,𝑗

𝛿𝛑𝑘
𝑗,𝑗

] + [
𝐑𝑗

𝑂 𝟎

𝟎 𝐑𝑗
𝑂] [ 𝟏 −𝐫̃𝑘

𝑗,𝑗

𝟎 𝟏
] [

𝐑𝑂
𝑗

𝟎

𝟎 𝐑𝑂
𝑗

] [
𝛿𝐫𝑗

𝑂,𝑂

𝛿𝛑𝑗
𝑂,𝑂] (3.10)   

 

In compact form this can be written as: 

 

 𝛿𝐪𝑘
𝑂,𝑂 = [𝐑𝑗

𝑂]𝛿𝐪𝑘
𝑗,𝑗

+ [𝐑𝑗
𝑂][−𝐫̃𝑘

𝑗,𝑗
][𝐑𝑂

𝑗
]𝛿𝐪𝑗

𝑂,𝑂
 (3.11)   

 

 

in which 

 

 
[𝐑𝑗

𝑂] ≡ [
𝐑𝑗

𝑂 𝟎

𝟎 𝐑𝑗
𝑂],            [−𝐫̃𝑘

𝑗,𝑗
] ≡ [𝟏 −𝐫̃𝑘

𝑗,𝑗

𝟎 𝟏
] (3.12)   
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From (3.11), it can be understood that the columns of the (6 × 6) matrix 

[−𝐫̃𝑘
𝑗,𝑗

] contain the displacements and rotations of interface point 𝑃𝑘 when 

the deformed body is subjected to infinitesimal rigid body motions: the first 

three columns represent the displacements and rotations due to rigid body 

translations and the last three columns represent the displacements and 

rotations due to rigid body rotations about the origin of the floating frame 

𝑃𝑗. These are both expressed with respect to the floating frame. Equation 

(3.11) can be established for all interface points: 

 

 
𝜹𝐪𝑂,𝑂 = [𝐑̅𝑗

𝑂]𝛿𝐪𝑗,𝑗 + [𝐑̅𝑗
𝑂][𝚽𝑟𝑖𝑔][𝐑𝑂

𝑗
]𝛿𝐪𝑗

𝑂,𝑂
 (3.13)   

 

in which 𝛿𝐪𝑂,𝑂 and 𝛿𝐪𝑗,𝑗 are the (6𝑁 × 1) vectors containing all variations 

of the absolute and local interface coordinates respectively, [𝐑̅𝑗
𝑂] is the 

(6𝑁 × 6𝑁) block diagonal rotation matrix and [𝚽𝑟𝑖𝑔] is the column-wise 

assembly of all matrices [−𝐫̃𝑘
𝑗,𝑗

]: 

 

 

[𝐑̅𝑂
𝑗

] ≡ [

[𝐑𝑂
𝑗

]

⋱

[𝐑𝑂
𝑗

]

],           [𝚽𝑟𝑖𝑔] ≡ [

[−𝐫̃1
𝑗,𝑗

]

⋮

[−𝐫̃𝑁
𝑗,𝑗

]

] (3.14)   

 

Each column of [𝚽𝑟𝑖𝑔] contains the displacement and rotation of all 

interface coordinates when the body is subjected to a rigid body motion in 

a certain direction with respect to the floating frame. Figure 3.2 shows a 

graphical interpretation of [𝚽𝑟𝑖𝑔] for a translational (a) and rotational (b) 

rigid body motion of an arbitrarily shaped flexible body. 
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Fig. 3.2 Graphical interpretation of [𝚽𝑟𝑖𝑔]. This shows is the displacement of all interface 

points when the floating frame is subjected to a prescribed translational (a) or 

rotational (b) rigid body mode. 

 

Using the property (2.2) that 𝐑𝑂
𝑗

𝐑𝑗
𝑂 = 𝟏, equation (3.13) can be rewritten 

such that the virtual change in the local interface coordinates is expressed 

as the difference between the absolute interface coordinates and the 

absolute floating frame coordinates: 

 

 𝛿𝐪𝑗,𝑗 = [𝐑̅𝑂
𝑗

]𝛿𝐪𝑂,𝑂 − [𝚽𝑟𝑖𝑔][𝐑𝑂
𝑗

]𝛿𝐪𝑗
𝑂,𝑂

 (3.15)   

 

At this point, (3.15) can be substituted in the constraint equation (3.7), 

eliminating the rigid body motions. This results in 6 equations from which 

the variation of the absolute floating frame coordinates can be expressed 

in terms of the variation of the absolute interface coordinates: 

 

 𝛿𝐪𝑗
𝑂,𝑂 = [𝐑𝑗

𝑂]([𝚽𝐶𝐵][𝚽𝑟𝑖𝑔])
−1

[𝚽𝐶𝐵][𝐑̅𝑂
𝑗

]𝛿𝐪𝑂,𝑂 (3.16)   

  

In compact form, this can be written as: 

 

 𝛿𝐪𝑗
𝑂,𝑂 = [𝐑𝑗

𝑂][𝐙][𝐑̅𝑂
𝑗

]𝛿𝐪𝑂,𝑂,           [𝐙] ≡ ([𝚽𝐶𝐵][𝚽𝑟𝑖𝑔])
−1

[𝚽𝐶𝐵] (3.17)   
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In Section 3.3, it will be explained that the (6 × 6) matrix product 

[𝚽𝐶𝐵][𝚽𝑟𝑖𝑔] equals the identity matrix 𝟏 on leading order. If the elastic 

deformations remain small, the inverse of this matrix, as it appears in 

definition of [𝐙], can always be computed. By back substitution of (3.17) in 

(3.15) it is also possible to express the variations in the local interface 

coordinates in terms of the variations in the global interface coordinates. 

In short form, this can be written as: 

 

 
𝛿𝐪𝑗,𝑗 = [𝐓][𝐑̅𝑂

𝑗
]𝛿𝐪𝑂,𝑂 ,           [𝐓] ≡ 𝟏 − [𝚽𝑟𝑖𝑔][𝐙] (3.18)   

 

The combination of (3.17) and (3.18) can be used to express the degrees of 

freedom used in the standard floating frame formulation in terms of the 

absolute interface coordinates. This can be applied on the equations of 

motion of each flexible body within the multibody system. The equations 

of motion of the entire flexible multibody system can then be formulated 

without Lagrange multipliers. In compact form, these coordinate 

transformations can be written as: 

 

 
[
𝛿𝐪𝑗

𝑂,𝑂

𝛿𝐪𝑗,𝑗
] = 𝐀δ𝐪𝑂,𝑂,           𝐀 ≡ [

[𝐑𝑗
𝑂][𝐙][𝐑̅𝑂

𝑗
]

[𝐓][𝐑̅𝑂
𝑗

]
] (3.19)   
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 Geometric interpretation of the matrices [𝚽𝒓𝒊𝒈], [𝐙] and [𝐓] 

 

Geometric interpretation of [𝚽𝑟𝑖𝑔] 

Because [𝚽𝑟𝑖𝑔] is based on matrices [−𝐫̃𝑘
𝑗,𝑗

], it contains the rigid body 

modes of a deformed body. This means that a flexible body is considered in 

a deformed configuration and in this configuration the floating frame is 

subjected to rigid body motions. Because the local deformations are 

considered small, it could be argued that the effect of the body’s 

deformation on [𝚽𝑟𝑖𝑔] might be neglected. After all, the contribution of the 

displacement field is of higher order than that of the constant terms in 

[𝚽𝑟𝑖𝑔].  

 

To study the effect of this simplification, [𝚽𝑟𝑖𝑔,0] is introduced as the 

matrix of rigid body modes, based on the undeformed body, which is 

defined as: 

 

 

[𝚽𝑟𝑖𝑔,0] ≡ [

[−𝐱̃1
𝑗,𝑗

]

⋮

[−𝐱̃𝑁
𝑗,𝑗

]

] (3.20)   

 

[𝚽𝑟𝑖𝑔,0] plays an interesting role in the reuse of a body’s linear finite 

element model during the development of the equations of motion in the 

floating frame formulation. To explain this, consider that a body’s linear 

finite element matrices are reduced using the Craig-Bampton modes. The 

reduced local mass matrix is denoted by 𝐌𝐶𝐵
𝑗

 and is constant, where the 

superscript 𝑗 denotes that this mass matrix is expressed locally, relative 

to the floating frame. Because the Craig-Bampton modes are able to 

describe rigid body motions, the rigid body mass matrix 𝐌𝑟𝑖𝑔
𝑗

 can be 

obtained from 𝐌𝐶𝐵
𝑗

 by projecting it onto the rigid body modes [𝚽𝑟𝑖𝑔,0]: 

 

 𝐌𝑟𝑖𝑔
𝑗

= [𝚽𝑟𝑖𝑔,0]
𝑇

𝐌𝐶𝐵
𝑗

[𝚽𝑟𝑖𝑔,0] (3.21)   
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When the floating frame is located in the center of mass of the undeformed 

body and its axes are aligned with the body’s principal axes, 𝐌𝑟𝑖𝑔
𝑗

 is a 

diagonal matrix with the mass and second moments of mass on its main 

diagonal. This can be understood since 𝐌𝐶𝐵
𝑗

[𝚽𝑟𝑖𝑔,0] are the generalized 

inertia forces acting on the interface points due to rigid body motions. Pre-

multiplication by [𝚽𝑟𝑖𝑔,0]
𝑇
 in fact sums all inertia forces due to rigid body 

motions, which yields the resulting inertia forces in the local frame. Hence, 

for translations this must result in the total mass of the body and for 

rotations in the second moment of mass about the principal axes of 

rotation. At this point, recall the partitioned form of the local mass matrix 

(2.32). When the higher order terms in the mass matrix are neglected, it 

is found that the partition corresponding to the rigid body motion exactly 

equals 𝐌𝑟𝑖𝑔
𝑗

.  

 

When one wants to take into account the higher order terms in the mass 

matrix 𝐌𝑗 of a body in its deformed configuration, the partition 

corresponding to the rigid body motion can be approximated by projecting 

𝐌𝐶𝐵
𝑗

 onto [𝚽𝑟𝑖𝑔] instead of [𝚽𝑟𝑖𝑔,0]. Hence, when all Craig-Bampton modes 

are retained to describe the body’s flexible behavior, the local mass matrix 

𝐌𝑗 as defined in (2.32) can be expressed as: 

 

 
𝐌𝑗 ≈ [

𝚽𝑟𝑖𝑔
𝑇

𝟏
] 𝐌𝐶𝐵

𝑗 [𝚽𝑟𝑖𝑔 𝟏] (3.22)   

 

Hence, using [𝚽𝑟𝑖𝑔] it is possible to construct the mass matrix in the 

floating frame formulation directly from a body’s finite element model. For 

the local stiffness matrix in 𝐊𝛟 in (2.42) holds that it can be replaced by 

the finite element stiffness matrix that is reduced using Craig-Bampton 

modes 𝐊𝐶𝐵
𝑗

. Unfortunately, for the velocity dependent matrix of fictitious 

forces 𝐂𝑗 this cannot be done without additional assumptions [18].   
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Geometric interpretation of [𝐙] 

The (6 × 6𝑁) transformation matrix [𝐙] defines the relation between the 

absolute motion of the interface coordinates and the absolute motion of the 

floating frame. In this definition, the matrix product [𝚽𝐶𝐵][𝚽𝑟𝑖𝑔] appears. 

This product can be given a very interesting geometrical interpretation for 

which first the product [𝚽𝐶𝐵][𝚽𝑟𝑖𝑔,0] is considered [20]. To this end, recall 

that [𝚽𝑟𝑖𝑔,0] describes the displacement of the interface points when the 

undeformed body is subjected to a rigid body mode and that [𝚽𝐶𝐵] describes 

the displacement of the floating frame when the interface points are 

displaced. Hence, the matrix [𝚽𝐶𝐵][𝚽𝑟𝑖𝑔,0] describes the displacement of 

the floating frame, when the interface points are given a displacement 

according to a rigid body motion of the floating frame. This is simply a 

(6 × 6) identity matrix. Figure 3.3 shows a graphical interpretation of this 

identity for a translational (a) and rotational (b) rigid body motion of an 

arbitrarily shaped flexible body. 

 

 
Fig. 3.3 Graphical interpretation of [𝚽𝐶𝐵][𝚽𝑟𝑖𝑔,0]. Shown is the displacement of the 

floating frame when the interface points are subjected to a prescribed 

translational (a) or rotational (b) rigid body mode. 

 

The product [𝚽𝐶𝐵][𝚽𝑟𝑖𝑔] can be interpreted similarly, but for the fact the 

rigid body modes are determined based on the body’s deformed 

configuration. This means that one imagines the body in a deformed 
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configuration, determines the actual rigid body modes and then uses the 

Craig-Bampton modes to determine the displacement of the floating frame 

when the interface points of the undeformed body are subjected to the 

deformed body’s rigid body modes. Because it might be reasonable to 

assume only little difference between the rigid body modes of the deformed 

and undeformed body, as explained in the previous chapter, [𝚽𝐶𝐵][𝚽𝑟𝑖𝑔] 

will be close to the identity matrix.  

 

By approximating [𝚽𝑟𝑖𝑔] by [𝚽𝑟𝑖𝑔,0] in (3.17), [𝐙] can be approximated by 

[𝚽𝐶𝐵] itself: 

 

 [𝐙] ≈ [𝚽𝐶𝐵] (3.23)   

 

Consequently, the relation between the absolute motion of the interface 

coordinates and the absolute motion of the floating frame could be 

simplified by: 

 

 𝛿𝐪𝑗
𝑂,𝑂 ≈ [𝐑𝑗

𝑂][𝚽𝐶𝐵][𝐑̅𝑂
𝑗

]𝛿𝐪𝑂,𝑂 (3.24)   

 

In this way, it can be understood that [𝐙] as defined as in (3.17) can be 

interpreted in as the Craig-Bampton modes of a flexible body in its 

deformed configuration. Since [𝚽𝐶𝐵] is constant, the relation between 𝛿𝐪𝑗
𝑂,𝑂

 

and 𝛿𝐪𝑂,𝑂 depends only on the orientation of the floating frame. Because 

determination of 𝛿𝐪𝑗
𝑂,𝑂

 using (3.24) instead of (3.17) is more 

computationally efficient, it is interesting to investigate the validity of this 

approximation. In Chapter 5, simulation results of benchmark problems 

show that when the approximation (3.23) is applied, accurate results are 

still obtained. 

 

Geometric interpretation of [𝐓] 

The (6𝑁 × 6𝑁) transformation matrix [𝐓] defines the relation between the 

absolute  and local motion of the interface coordinates. In its definition, 

the matrix product [𝚽𝑟𝑖𝑔][𝐙] appears. Also this product can be given a 

geometrical interpretation for which it is useful to consider that the 

approximation (3.24) is allowed. Under the same assumptions, [𝚽𝑟𝑖𝑔][𝐙] 
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could be approximated as [𝚽𝑟𝑖𝑔,0][𝚽𝐶𝐵]. For the interpretation of this 

matrix, imagine that the floating frame is displaced according to a Craig-

Bampton mode in [𝚽𝐶𝐵]. Pre-multiplication of this base motion by [𝚽𝑟𝑖𝑔,0] 

yields the displacement of the interface points required to cause this 

floating frame configuration, assuming the body is rigid. Figure 3.4 shows 

a graphical interpretation of this for a translational Craig-Bampton mode 

of an arbitrarily shaped flexible body.  

 

 
Fig. 3.4 Graphical interpretation of [𝚽𝑟𝑖𝑔,0][𝚽𝐶𝐵]. Shown is the displacement of the 

floating frame when the body is deformed according to a prescribed Craig-

Bampton mode (a). [𝚽𝑟𝑖𝑔,0][𝚽𝐶𝐵] represents the displacements that the interface 

points need to make in a rigid body motion, such that the deformation of floating 

frame is the same (b). 

 

With this approximation, the matrix [𝐓] can be written as: 

 

 [𝐓] ≈ 𝟏 − [𝚽𝑟𝑖𝑔,0][𝚽𝐶𝐵] (3.25)   

 

Consequently, the relation between the absolute and local motion of the 

interface coordinates could be simplified by: 

 

  𝛿𝐪𝑗,𝑗 ≈ (𝟏 − [𝚽𝑟𝑖𝑔,0][𝚽𝐶𝐵])[𝐑̅𝑂
𝑗

]𝛿𝐪𝑂,𝑂 (3.26)   
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Now, consider any variation in the absolute interface coordinates. Using 

the matrix [𝐙] and (3.17), it is possible to determine the corresponding 

variation in the absolute floating frame coordinates. Because [𝚽𝑟𝑖𝑔,0][𝚽𝐶𝐵] 

determines the local displacement of the interface coordinates when the 

body would have been rigid, 𝟏 − [𝚽𝑟𝑖𝑔,0][𝚽𝐶𝐵] must describe the difference 

from this due to the body’s elastic deformation. Hence, the matrix [𝐓] can 

be interpreted as the transformation from absolute to local variations of 

the interface coordinates, while it simultaneously removes the 

contribution of rigid body motion. When the above approximations of 

neglecting small deformations are not applied, [𝐓] can still be interpreted 

in the same way, except for the fact that the matrix is based on the body’s 

deformed configuration.  

 

The fact that [𝐓] can be interpreted as a coordinate transformation which 

removes the rigid body motions led to the idea that another multiplication 

by [𝐓] has no influence. After all, the rigid body motions are already 

removed. Based on this, it can be understood that [𝐓] is idempotent. It can 

be shown mathematically that this is the case. By direct computation, it 

can be shown that [𝚽𝑟𝑖𝑔][𝐙] is idempotent: 

 

[𝚽𝑟𝑖𝑔][𝐙][𝚽𝑟𝑖𝑔][𝐙] 

= [𝚽𝑟𝑖𝑔]([𝚽𝐶𝐵][𝚽𝑟𝑖𝑔])
−1

[𝚽𝐶𝐵][𝚽𝑟𝑖𝑔]([𝚽𝐶𝐵][𝚽𝑟𝑖𝑔])
−1

[𝚽𝐶𝐵] 

= [𝚽𝑟𝑖𝑔][𝐙]                                                                    

(3.27)   

 

Now consider the property that when an idempotent matrix is subtracted 

from the identity matrix, the result is another idempotent matrix. Because 

[𝐓] =  𝟏 − [𝚽𝑟𝑖𝑔][𝐙] and [𝚽𝑟𝑖𝑔][𝐙] is idempotent, it follows that [𝐓] is indeed 

idempotent.  

 

Except for the identity matrix, any idempotent matrix is singular, is 

diagonalizable and has eigenvalues that are either 0 or 1. In the case of 

[𝐓], there will be six eigenvalues 0, corresponding to the rigid body modes 

and 6𝑁 − 6 eigenvalues 1, corresponding to the elastic deformations.  
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Consider the eigendecomposition of [𝐓]: 

 

 [𝐓] = 𝐔−1𝚲𝐔 (3.28)   

  

where 𝐔 is the columnwise assembly of eigenvectors of [𝐓] and 𝚲 is the 

diagonal matrix of eigenvalues (0s and 1s).  

 

The fact that [𝐓] removes the rigid body motion from a set of coordinates 

can now be understood mathematically: due to the multiplication by 𝐔, the 

coordinates are projected in the subspace of the rigid body modes. The 

zeros in 𝚲 eliminate this contribution and 𝐔−1 applies the inverse map. 

Hence, only contributions that are not part of any rigid body motion are 

retained by the transformation.  

 

In the next chapter, the coordinate transformations (3.17) and (3.18) are 

applied on the equations of motion in the floating frame formulation (2.45). 

In this way a flexible body’s equation of motion is expressed in terms of 

the absolute interface coordinates.



 



    

4 
Kinetics of a flexible body in 

absolute interface coordinates 
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In this chapter, the coordinate transformations from the absolute floating 

frame coordinates and local interface coordinates towards absolute 

interface coordinates are used to establish the equations of motion of a 

superelement in absolute interface coordinates. For the purpose of static 

analysis, the tangent stiffness matrix is derived by taking the variation of 

the equilibrium equations. 

  

This chapter presents the equations of motion of the new superelement 

method that was published online in the journal paper “On the use of 

absolute interface coordinates in the floating frame of reference 

formulation flexible multibody dynamics” in Multibody System Dynamics 

on 14-12-2017. The derivation of the tangent stiffness matrix is based on 

the journal paper “The tangent stiffness matrix for an absolute interface 

coordinates floating frame of reference formulation” that was submitted to 

Multibody System Dynamics on 05-03-2018.
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 Equations of motion in absolute interface coordinates 

 

In order to derive the equations of motion of a flexible body in terms of its 

absolute interface coordinates, the principle of virtual work can be used as 

a starting point. When expressions for the virtual position, velocity and 

acceleration of an arbitrary point on a flexible body in terms of the absolute 

interface coordinates are known, a similar approach as discussed in 

Chapter 2 will result in the relevant equations of motion. However, since 

the equations of motion in the floating frame formulation (2.45) are well-

established, these can be used as a starting point too: 

 

 [𝐑𝑗
𝑂]𝐌𝑗[𝐑𝑂

𝑗
]𝐪̈𝑂 + [𝐑𝑗

𝑂]𝐂𝑗[𝐑𝑂
𝑗
]𝐪̇𝑂 + 𝐊𝑗𝐪𝑂 = 𝐐𝑂 (4.1)     

 

Or expressed in terms of global matrices: 

 

 𝐌𝑂𝐪̈𝑂 + 𝐂𝑂𝐪̇𝑂 + 𝐊𝑗𝐪𝑂 = 𝐐𝑂 (4.2)     

 

Recall that in this floating frame formulation, the generalized coordinates 

𝐪𝑂 consist of the absolute floating frame coordinates, which describe the 

rigid body motion and the local interface coordinates corresponding to the 

Craig-Bampton modes, which describe local elastic deformations. In 

Chapter 3, the kinematic transformation matrices (3.17) and (3.18) were 

derived that express a virtual change in these coordinates in terms of a 

virtual change in the absolute interface coordinates. In combined form 

these coordinate transformations were written as (3.19): 

 

 
[
𝛿𝐪𝑗

𝑂,𝑂

𝛿𝐪𝑗,𝑗
] = [

[𝐑𝑗
𝑂][𝐙][𝐑̅𝑂

𝑗
]

[𝐓][𝐑̅𝑂
𝑗
]

] δ𝐪𝑂,𝑂 = 𝐀δ𝐪𝑂,𝑂 (4.3)     

 

Following the same procedure, it can be shown that the transformation 

matrix 𝐀 can be used on the level of velocities, and upon differentiation 

with respect to time a transformation is obtained for the accelerations: 

 

 
[
𝐪̇𝑗

𝑂,𝑂

𝐪̇𝑗,𝑗
] = 𝐀𝐪̇𝑂,𝑂, [

𝐪̈𝑗
𝑂,𝑂

𝐪̈𝑗,𝑗
] = 𝐀𝐪̈𝑂,𝑂 + 𝐀̇𝐪̇𝑂,𝑂 (4.4)   
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This coordinate transformation is now substituted in the equations of 

motion (4.1), which yields: 

 

 𝐀𝑇𝐌𝑂𝐀𝐪̈𝑂 + 𝐀𝑇(𝐌𝑂𝐀̇ + 𝐂𝑂𝐀)𝐪̇𝑂 + 𝐀𝑇𝐊𝑗𝐪𝑂 = 𝐀𝑇𝐐𝑂 (4.5)   

 

This can be rewritten to the following form: 

 

 [𝐑̅𝑗
𝑂]𝐌̂𝑗[𝐑̅𝑂

𝑗
]𝐀𝐪̈𝑂,𝑂 + [𝐑̅𝑗

𝑂]𝐂̂𝑗[𝐑̅𝑂
𝑗
] 𝐪̇𝑂,𝑂 + [𝐑̅𝑗

𝑂]𝐊̂𝑗𝐪𝑂 = 𝐐𝑂,𝑂 (4.6)   

 

In this, 𝐌̂𝑗, 𝐂̂𝑗 and 𝐊̂𝑗 are the transformed local system matrices and 𝐐𝑂,𝑂 

contains the generalized external forces acting on the interface points, 

expressed in the global frame. Let the exact expression of the local mass 

matrix 𝐌𝑗 (2.32) be approximated up to second order by (3.22), which 

conveniently reuses the reduced finite element mass matrix 𝐌𝐶𝐵
𝑗

. With 

this, the transformed global mass matrix can be expressed as: 

 

 
𝐀𝑇𝐌𝑂𝐀 = [𝐑̅𝑗

𝑂][[𝐙]𝑇 [𝐓]𝑇] [
𝚽𝑟𝑖𝑔

𝑇

𝟏
]𝐌𝐶𝐵

𝑗 [𝚽𝑟𝑖𝑔 𝟏] [
[𝐙]

[𝐓]
] [𝐑̅𝑂

𝑗
] (4.7)   

 

By direct substitution of the definitions for [𝐙] (3.17) and [𝐓] (3.18), it 

follows that: 

 

 [𝚽𝑟𝑖𝑔 𝟏] [
[𝐙]

[𝐓]
] = 𝟏 (4.8)   

 

With this, the transformed mass matrix becomes simply: 

 

 𝐀𝑇𝐌𝑂𝐀 = [𝐑̅𝑗
𝑂]𝐌𝐶𝐵

𝑗
[𝐑̅𝑂

𝑗
] (4.9)   

 

Note that (4.9) is exact when the approximation (3.22) is used. In other 

words, it is not only exact for the zeroth order terms, but also for the 

approximation of the higher order terms in the deformation. The local 

stiffness matrix 𝐊𝑗 in the floating frame formulation only contains nonzero 

terms in the partition related to the elastic coordinates. This partition 

simply equals 𝐊𝐶𝐵
𝑗

.  

  



 

-57- 

 

 

For this reason, the transformed stiffness matrix can be expressed as: 

 

 𝐀𝑇𝐊𝑗 = [𝐑̅𝑗
𝑂][𝐓]𝑇𝐊𝐶𝐵

𝑗
 (4.10)   

 

With (4.9) and (4.10), the transformed equation of motion reduce to: 

 

 
[𝐑̅𝑗

𝑂]𝐌𝐶𝐵
𝑗

[𝐑̅𝑂
𝑗
]𝐀𝐪̈𝑂,𝑂 + [𝐑̅𝑗

𝑂]𝐂̂𝑗[𝐑̅𝑂
𝑗
] 𝐪̇𝑂,𝑂 + [𝐑̅𝑗

𝑂][𝐓]𝑇𝐊𝐶𝐵
𝑗

𝐪 = 𝐐𝑂,𝑂 (4.11)   

 

It is worth mentioning that the transformed mass matrix in (4.11) that 

holds for a flexible body is of a similar form as one obtains in the 

corotational formulation for a finite element. In the corotational frame 

formulation, the global mass matrix of an individual element is obtained 

by pre- and post-multiplying each local finite element mass matrix by the 

rotation matrices corresponding to the element’s corotational frame.  

 

Moreover, the fictitious forces that are quadratic in the velocities are 

typically not included in standard corotational frame formulations. 

Because in (4.11) the absolute interface coordinates are the degrees of 

freedom, the interface forces due to fictitious forces are in fact only the 

forces that arise due to the relative acceleration of the internal elastic 

deformation relative to the interface points. As elastic deformations are 

assumed small, these forces can in general be expected to be small as well. 

The benchmark problems simulated for validation in Chapter 5 did not 

include these fictitious forces and still show accurate results. Therefore, 

the exact form of the transformed matrix 𝐂̂𝑗 will not be elaborated on 

further.  

 

In the elastic term in the transformed equation of motion (4.11), the Craig-

Bampton stiffness matrix is multiplied by the local interface coordinates, 

resulting in the local elastic force vector. The pre-multiplication by [𝐓]𝑇 

can be interpreted as an operation that eliminates the rigid body 

component, as discussed in Chapter 3. For an undeformed body, this does 

not influence the elastic forces, such that when [𝐓] is approximated using 

(3.25), the result of the elastic term is just [𝐑̅𝑗
𝑂]𝐊𝐶𝐵

𝑗
𝐪. In this, the local 
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elastic forces are simply rotated to the global frame. This is also how the 

elastic forces are described in the corotational frame formulation.  

 

Hence, the standard corotational frame formulation uses a number of 

simplifications to establish the equation of motion of a corotational finite 

element. These simplifications are rarely emphasized in literature 

dedicated specifically to the corotational frame formulation. However, 

from precise formulation presented in this work it can be understood that 

the standard corotational frame formulation:  

 ignores higher order terms in the mass matrix of an element; 

 ignores fictitious forces caused by the elastic deformation within an 

element; 

 ignores elastic deformations when computing the elastic forces within 

an element. 
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 Solving the equation of motion 

 

Equation of motion (4.11) can be interpreted as the equation of motion of 

a superelement, suitable for flexible multibody dynamics simulations. The 

mass and stiffness matrix of the superelement can be conveniently 

obtained from a body’s linear finite element model, by applying Craig-

Bampton reduction. In most practical situations, simulation accuracy is 

sufficient when the fictitious forces are either approximated using terms 

from 𝐌𝐶𝐵
𝑗

, or even neglected, as discussed above.   

 

The fact that it is not possible to establish a coordinate transformation on 

the position level is the reason that the elastic forces in (4.11) are still 

expressed in terms of the local instead of the absolute interface 

coordinates. For this reason, some remarks about the procedure with 

which the equation of motion (4.11) is solved numerically are appropriate. 

To this end, it is important to realize that the equation of motion will 

indeed be solved numerically. This means that the equation of motion is 

not solved directly for the large absolute position of the interface points. 

Instead, it is solved for the small increment in the absolute interface 

coordinates that occurs during the time increment. The time-discretized 

equations are linear in this position increment and tangent to the current 

configuration space. Consequently, the transformation matrix in (4.3) can 

be used to ensure that at every time increment, the increment in the 

absolute interface coordinates is solved. 

 

At the start of the next time increment, the floating frame coordinates and 

local interface coordinates are calculated to find expressions for rotation 

matrix 𝐑𝑗
𝑂 and the elastic forces. As the increment in the absolute interface 

coordinates is known, the increment for the floating frame coordinates can 

be determined from (4.3). However, the error introduced by numerical 

integration may cause the floating frame to drift. For that reason 

additional Newton-Raphson iterations can be applied in which the current 

floating frame coordinates are used as an initial estimate. In simulations 

that were performed for validation purposes in [10, 20, 21], it was found 

that only few Newton-Raphson iterations are actually required. Once both 

the absolute interface coordinates and the absolute floating frame 
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coordinates are determined with sufficient accuracy, the local interface 

coordinates and thus the local elastic deformation can be determined 

consistently. At this point, the equation of motion can be solved. 

 

Depending on the time integration method chosen, computational costs 

may be reduced when aside from the system matrices also the Jacobian of 

these matrices is obtained. In particular, it is found that for both static 

and dynamic simulation the inclusion of the tangent stiffness matrix is 

often essential for both stability and accuracy. This tangent stiffness 

matrix consists of the standard material stiffness matrix and the 

geometric stiffness matrix. The geometric stiffness matrix is required to 

properly include stress-stiffening effects. These are important in the case 

of for instance the equilibrium analysis of structures that undergo large 

deformations or for the dynamic analysis of pre-tensioned structures. For 

this reason, it is useful to derive the expression for the tangent stiffness 

matrix. To this end, the equations of motion (4.11) are reduced to the 

equilibrium equations, which can be rewritten as: 

 

 
[𝐑̅𝑗

𝑂][𝐓]𝑇𝐐𝑖𝑛𝑡
𝑗

= 𝐐𝑒𝑥𝑡
𝑂 , 𝐐𝑖𝑛𝑡

𝑗
≡ 𝐊𝐶𝐵

𝑗
𝐪 (4.12)   

 

The equilibrium equations can be solved incrementally using load 

stepping, which requires a set of linear equations to be solved repeatedly 

in terms of small increments in the generalized coordinates. To this end, 

the variation of (4.12) is taken. In order to emphasize that these equations 

are intended to solve incrementally, Δ( ∙ ) is used for a small numerical 

increment.   

 

 [𝐑̅𝑗
𝑂][𝐓]𝑇Δ𝐐𝑖𝑛𝑡

𝑗
+ [𝐑̅𝑗

𝑂]Δ[𝐓]𝑇𝐐𝑖𝑛𝑡
𝑗

+ Δ[𝐑̅𝑗
𝑂][𝐓]𝑇𝐐𝑖𝑛𝑡

𝑗
= Δ𝐐𝑒𝑥𝑡

𝑂  (4.13)   

 

On the left hand side of (4.13), the terms Δ𝐐𝑖𝑛𝑡
𝑗

, Δ[𝐓] and Δ[𝐑̅𝑗
𝑂] all contain 

variations in the generalized coordinates. Using the coordinate 

transformations presented in Chapter 3, these terms can all be expressed 

as a matrix times a vector of variations in the absolute interface 

coordinates.  
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Hence, the equilibrium equation can be rewritten to the following form: 

 

 𝐊𝑡
𝑂Δ𝐪𝑂,𝑂 = Δ𝐐𝑒𝑥𝑡

𝑂  (4.14)   

 

where 𝐊𝑡
𝑂 is the global tangential stiffness matrix that depends on the 

orientation of the floating frame and the elastic deformation of the body. 

Equation (4.14) can be solved incrementally for the global position of the 

interface coordinates. Given a certain load increment Δ𝐐𝑒𝑥𝑡
𝑂 , (4.14) can be 

solved for the corresponding displacement increment Δ𝐪𝑂,𝑂 by applying 

Newton-Raphson iterations. Then, the global position of the interface 

coordinates can be updated by adding the obtained Δ𝐪𝑂,𝑂 to the current 

position of the interface points. After this, the external load can be 

increased with the next load increment and a possible residual from the 

current step. This procedure can be repeated until the external load is 

applied entirely. Clearly, the full expression for the tangential stiffness 

matrix 𝐊𝑡
𝑂 is needed for this procedure, which requires the rewriting of all 

three terms on the left hand side of (4.13). To this end, the variation of the 

transformation matrix [𝐓] must be derived, for which the variation of the 

transformation matrix [𝐙] is required. 
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 The tangent stiffness matrix 

 

The variation in [𝐙] is obtained by taking the virtual change of its 

definition (3.17): 

 

 𝛿[𝐙] ≡ 𝛿([𝚽𝐶𝐵][𝚽𝑟𝑖𝑔])
−1

[𝚽𝐶𝐵] (4.15)   

 

For an arbitrary invertible matrix 𝐁 the following holds for the variation 

of its inverse:  

 

 𝛿𝐁−1 = −𝐁−1𝛿𝐁 𝐁−1 (4.16)   

 

Using (4.16) and the fact that [𝚽𝐶𝐵] is constant, the variation in [𝐙] is 

expressed as: 

 

 𝛿[𝐙] = −([𝚽𝐶𝐵][𝚽𝑟𝑖𝑔])
−1

[𝚽𝐶𝐵]𝛿[𝚽𝑟𝑖𝑔]([𝚽𝐶𝐵][𝚽𝑟𝑖𝑔])
−1

[𝚽𝐶𝐵] (4.17)   

 

which can be written in compact form as: 

 

 𝛿[𝐙] = −[𝐙]𝛿[𝚽𝑟𝑖𝑔][𝐙] (4.18)   

 

Here, the virtual change in [𝚽𝑟𝑖𝑔] is: 

 

 

𝛿[𝚽𝑟𝑖𝑔] = [

𝛿[−𝐫̃1
𝑗,𝑗

]

⋮

𝛿[−𝐫̃𝑁
𝑗,𝑗

]

] , 𝛿[−𝐫̃𝑘
𝑗,𝑗

] = [𝟎 −𝛿𝐫̃𝑘
𝑗,𝑗

𝟎 𝟎
] (4.19)   

 

To find the variation in [𝐓], take the virtual change of its definition (3.18): 

 

 𝛿[𝐓] = −𝛿[𝚽𝑟𝑖𝑔][𝐙] − [𝚽𝑟𝑖𝑔]𝛿[𝐙] (4.20)   

 

Substitution of (4.18) in (4.20) yields: 

 

 𝛿[𝐓] = −𝛿[𝚽𝑟𝑖𝑔][𝐙] + [𝚽𝑟𝑖𝑔][𝐙]𝛿[𝚽𝑟𝑖𝑔][𝐙] (4.21)   
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In compact form, this can be rewritten to: 

 

 𝛿[𝐓] = −[𝐓]𝛿[𝚽𝑟𝑖𝑔][𝐙] (4.22)   

 

The expressions for 𝛿[𝐙] and 𝛿[𝐓] as established in (4.18) and (4.22) will 

now be used to obtain the tangent stiffness matrix. For the first term in 

(4.13), the virtual change in internal forces 𝛿𝐐𝑖𝑛𝑡
𝑗

 is required. Since the 

local material stiffness matrix 𝐊𝐶𝐵 is constant, this can simply be written 

as: 

 

 𝛿𝐐𝑖𝑛𝑡
𝑗

= 𝐊𝐶𝐵
𝑗

𝛿𝐪𝑗,𝑗 (4.23)   

 

In this expression, with the help of (3.18), the virtual change in local 

interface coordinates is expressed in terms of the virtual change in global 

interface coordinates: 

 

 𝛿𝐐𝑖𝑛𝑡
𝑗

= 𝐊𝐶𝐵
𝑗 [𝐓][𝐑̅𝑂

𝑗
]𝛿𝐪𝑂,𝑂 (4.24)   

 

With (4.24), the increment in the first term in (4.13) can be expressed as: 

 

 [𝐑̅𝑗
𝑂][𝐓]𝑇Δ𝐐𝑖𝑛𝑡

𝑗
= [𝐑̅𝑗

𝑂][𝐊1
𝑗
][𝐑̅𝑂

𝑗
]Δ𝐪𝑂,𝑂,     [𝐊1

𝑗
] ≡ [𝐓]𝑇𝐊𝐶𝐵

𝑗 [𝐓] (4.25)   

 

[𝐊1
𝑗
] can be recognized as the transformed local material stiffness matrix. 

The transformation matrices [𝐓] remove the rigid body component from 

the local material stiffness matrix 𝐊𝐶𝐵
𝑗

 and the rotation matrices [𝐑̅𝑂
𝑗
] 

transform the local material stiffness matrix to the global frame. Note 

again that when the elastic forces are not influenced by rigid body motion, 

such that when [𝐓] is based on the body’s undeformed configuration, 

approximation (3.25) applies and it follows simply that [𝐊1
𝑗
] = 𝐊𝐶𝐵

𝑗
. 

 

In order to rewrite the second term in (4.13), the following notation is 

introduced first: 

 

 𝐐̂𝑖𝑛𝑡
𝑗

= [𝐓]𝑇𝐐𝑖𝑛𝑡
𝑗

 (4.26)   
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The virtual change in [𝐓] is required in (4.13). Upon substitution of (4.22) 

and (4.26), this can be written as: 

 

 [𝐑̅𝑗
𝑂]𝛿[𝐓]𝑇𝐐𝑖𝑛𝑡

𝑗
= −[𝐑̅𝑗

𝑂][𝐙]𝑇 𝛿[𝚽𝑟𝑖𝑔]
𝑇
𝐐̂𝑖𝑛𝑡

𝑗
 (4.27)   

 

The multiplication of 𝛿[𝚽𝑟𝑖𝑔]
𝑇
𝐐̂𝑖𝑛𝑡

𝑗
 can be expanded as: 

 

 

𝛿[𝚽𝑟𝑖𝑔]
𝑇
𝐐̂𝑖𝑛𝑡

𝑗
= [[

𝟎 𝟎

𝛿𝐫̃1
𝑗,𝑗

𝟎
] … [

𝟎 𝟎

𝛿𝐫̃𝑁
𝑗,𝑗

𝟎
]]

[
 
 
 
 
 
 [

𝐅̂𝑖𝑛𝑡,1
𝑗

𝐌̂𝑖𝑛𝑡,1
𝑗

]

⋮

[
𝐅̂𝑖𝑛𝑡,𝑁

𝑗

𝐌̂𝑖𝑛𝑡,𝑁
𝑗

]
]
 
 
 
 
 
 

 (4.28)   

 

The generalized forces 𝐐̂𝑖𝑛𝑡,𝑘
𝑗

 of interface point 𝑘 are decomposed in the 

forces 𝐅̂𝑖𝑛𝑡,𝑘
𝑗

 and moments 𝐌̂𝑖𝑛𝑡,𝑘
𝑗

. Equation (4.28) can be rewritten to: 

 

 

𝛿[𝚽𝑟𝑖𝑔
𝑗

]
𝑇
𝐐̂𝑖𝑛𝑡

𝑗
= [𝐅̂𝑖𝑛𝑡

𝑗
]
𝑇
𝛿𝐪𝑗,𝑗,       [𝐅̂𝑖𝑛𝑡

𝑗
] ≡

[
 
 
 
 
 [𝟎 𝐅̃̂𝑖𝑛𝑡,1

𝑗

𝟎 𝟎
]

⋮

[𝟎 𝐅̃̂𝑖𝑛𝑡,𝑁
𝑗

𝟎 𝟎
]
]
 
 
 
 
 

 (4.29)   

 

With this, the second term in (4.13) becomes: 

 

 [𝐑̅𝑗
𝑂]𝛿[𝐓]𝑇𝐐𝑖𝑛𝑡

𝑗
= −[𝐑̅𝑗

𝑂][𝐙]𝑇[𝐅̂𝑖𝑛𝑡
𝑗

]
𝑇
𝛿𝐪𝑗,𝑗 (4.30)   

 

At this point, the transformation from the local interface coordinates to 

the global interface coordinates can again be made using (3.18): 

 

 [𝐑̅𝑗
𝑂]𝛿[𝐓]𝑇𝐐𝑖𝑛𝑡

𝑗
= −[𝐑̅𝑗

𝑂][𝐙]𝑇[𝐅̂𝑖𝑛𝑡
𝑗

]
𝑇
[𝐓][𝐑̅𝑂

𝑗
]𝛿𝐪𝑂,𝑂 (4.31)   
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With (4.31), the increment in the second term in (4.13) can be expressed 

as: 

 

 
[𝐑̅𝑗

𝑂]Δ[𝐓]𝑇𝐐𝑖𝑛𝑡
𝑗

= [𝐑̅𝑗
𝑂][𝐊2

𝑗
][𝐑̅𝑂

𝑗
]Δ𝐪𝑂,𝑂 ,     [𝐊2

𝑗
] ≡ −[𝐙]𝑇[𝐅̂𝑖𝑛𝑡

𝑗
]
𝑇
[𝐓] (4.32)   

 

For the third term in (4.13), the variation of the rotation matrix is 

rewritten with (2.8): 

 

 𝛿[𝐑̅𝑗
𝑂][𝐓]𝑇𝐐𝑖𝑛𝑡

𝑗
= [𝐑̅𝑗

𝑂]𝛿𝛑̃𝑗
𝑗,𝑂

𝐐̂𝑖𝑛𝑡
𝑗

 (4.33)   

 

Now 𝛿𝛑𝑗
𝑗,𝑂

 and 𝐐̂𝑖
𝑗
 can be interchanged by considering the following: 

 

𝛿𝛑̃𝑗
𝑗,𝑂

𝐐̂𝑖
𝑗
= [

𝛿𝛑̃𝑗
𝑗,𝑂

⋱

𝛿𝛑̃𝑗
𝑗,𝑂

] [

𝐐̂𝑖,1
𝑗

⋮

𝐐̂𝑖,𝑁
𝑗

] = −

[
 
 
 
 
 
 [

𝟎 𝐅̃̂𝑖,1
𝑗

𝟎 𝐌̃̂𝑖,1
𝑗

]

⋮

[
𝟎 𝐅̃̂𝑖,𝑁

𝑗

𝟎 𝐌̃̂𝑖,𝑁
𝑗

]
]
 
 
 
 
 
 

[𝐑𝑗
𝑂] [

𝛿𝐫𝑗
𝑂,𝑂

𝛿𝛑𝑗
𝑂,𝑂] (4.34)   

 

This can be written in compact form as: 

 

𝛿𝛑̃𝑗
𝑗,𝑂

𝐐̂𝑖
𝑗
= −([𝐅̂𝑖𝑛𝑡

𝑗
] + [𝐌̂𝑖𝑛𝑡

𝑗
])[𝐑𝑗

𝑂] [
𝛿𝐫𝑗

𝑂,𝑂

𝛿𝛑𝑗
𝑂,𝑂] ,      [𝐌̂𝑖𝑛𝑡

𝑗
] ≡

[
 
 
 
 
 [

𝟎 𝟎

𝟎 𝐌̃̂𝑖,1
𝑗 ]

⋮

[
𝟎 𝟎

𝟎 𝐌̃̂𝑖,𝑁
𝑗 ]

]
 
 
 
 
 

 (4.35)   

 

Substitution of (4.35) and using the transformation (3.17) to express the 

virtual position of the floating frame in terms of the virtual position of the 

interface coordinates yields for the third term in (4.13): 

 

 𝛿[𝐑̅𝑗
𝑂][𝐓]𝑇𝐐𝑖𝑛𝑡

𝑗
= −[𝐑̅𝑗

𝑂]([𝐅̂𝑖𝑛𝑡
𝑗

] + [𝐌̂𝑖𝑛𝑡
𝑗

])[𝐙][𝐑̅𝑂
𝑗
]𝛿𝐪𝑂,𝑂 (4.36)   
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And so the increment in the third term in (4.13) can be expressed as: 

 

Δ[𝐑̅𝑗
𝑂][𝐓]𝑇𝐐𝑖𝑛𝑡

𝑗
= [𝐑̅𝑗

𝑂][𝐊3
𝑗
][𝐑̅𝑂

𝑗
]Δ𝐪𝑂,𝑂,      [𝐊3

𝑗
] ≡ −([𝐅̂𝑖𝑛𝑡

𝑗
] + [𝐌̂𝑖𝑛𝑡

𝑗
]) [𝐙] (4.37)   

 

Combining (4.25), (4.32) and (4.37) yields an expression for the 

incremental change in the equilibrium equation in terms of the 

incremental change in global interface coordinates: 

 

 [𝐑̅𝑗
𝑂]([𝐊1

𝑗
] + [𝐊2

𝑗
] + [𝐊3

𝑗
])[𝐑̅𝑂

𝑗
]Δ𝐪𝑂,𝑂 = Δ𝐐𝑒𝑥𝑡

𝑂  (4.38)   

 

And thus the expression for the tangential stiffness matrix is obtained: 

 

 𝐊𝑡
𝑂 = [𝐑̅𝑗

𝑂]([𝐊1
𝑗
] + [𝐊2

𝑗
] + [𝐊3

𝑗
])[𝐑̅𝑂

𝑗
] (4.39)   

 

It can be seen that 𝐊𝑡
𝑂 consists of a local stiffness matrix, rotated to the 

global frame. The local tangential stiffness matrix contains the local 

material stiffness matrix in [𝐊𝟏
𝑗
]. The matrices [𝐊2

𝑗
] and [𝐊3

𝑗
] together form 

the local geometric stiffness matrix 𝐊𝑔
𝑗
, which depends explicitly on the 

internal forces by means of [𝐅̂𝑖𝑛𝑡
𝑗

] and [𝐌̂𝑖𝑛𝑡
𝑗

]. Moreover, the geometric 

stiffness matrix depends on the deformation of the body by means of the 

transformation matrices [𝐙] and [𝐓].  

 

The equations of motion presented in this chapter, including the tangent 

stiffness matrix, are implemented in a numerical program that can be used 

to perform flexible multibody dynamics simulations. In this, the finite 

element mass and stiffness matrices of a body are reused in the 

superelement formulation. Validation of this formulation with benchmark 

problems has shown that it produces reliable results. These validation 

simulations are discussed in the next chapter. 



   

5 
Validation 
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In this chapter, simulations are presented in which the new superelement 

formulation is compared with other software packages (Spacar, Ansys and 

Adams) that use different formulations. Therefore, it is important to make 

a clear distinction between the several methods before presenting the 

simulation results. Because of different customs in the terminology of 

different methods, the term component is introduced here to identify a part 

of a system with clear physical boundaries. A component is discretized in 

bodies. Each body has a floating frame attached to it, such that is able to 

describe large translations and rotations. Elements that are also able to 

describe this, such as corotational elements or fully nonlinear elements 

are, in this sense bodies. To emphasize the difference, linear finite 

elements cannot do this and are therefore not regarded as bodies. In the 

floating frame formulation, bodies are discretized in linear elements, 

which describe elastic deformations with respect to the body’s floating 

frame. 

 

In the new superelement formulation, all Craig-Bampton modes of all 

interface points are taken into account for all bodies in the system. This 

means six Craig-Bampton modes per interface point for three-dimensional 

analysis and three Craig-Bampton modes per interface point for two-

dimensional analysis. In all cases, the floating frame is located at the 

center of mass of the undeformed body, unless stated otherwise.  

 

Spacar is a finite element based multibody software package that uses the 

corotational formulation [22]. For each beam element, a fixed number of 

physically meaningful deformation modes is defined which are expressed 

as analytical functions of the absolute nodal coordinates. Flexible elements 

are modelled by allowing non-zero deformations. If the deformations 

remain sufficiently small, they can be described in a single co-rotational 

frame and related to dual stress resultants using linear beam models. In 

the present validation examples, the standard beam element is used [23], 

but it is interesting to note that a superelement formulation has been 

developed for general two-node beam-like elements in Spacar [24, 25].  
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The formulation used in Spacar is different than the standard corotational 

formulation, because it uses a consistent mass formulation and fictitious 

forces are not ignored [26]. Due to these similarities with the new 

superelement formulation presented in this work, it is expected that when 

the number of bodies in the new superelement formulation equals the 

number of elements in Spacar, simulation results are very close.  

 

Ansys is used for nonlinear finite element analysis. Standard two-node 

beam elements are used in the analysis. Ansys uses an inertial frame 

formulation and a nonlinear strain definition. This is a fundamentally 

different formulation from the new superelement formulation. For that 

reason, small differences might occur when a small number of elements / 

bodies are used. This is not expected, because the nonlinear strain 

definition is able to properly describe large rigid body motions. 

 

Adams uses the floating frame formulation in combination with Lagrange 

multipliers in all simulations. For each body, flexibility is included by 

means of local deformation shapes. These deformation shapes are included 

in Adams by means of a modal neutral file. This file contains the body’s 

free-free natural modes that are determined from a linear finite element 

model in Ansys. In the simulations presented here, the number of free-free 

modes taken into account equals the number of degrees of freedom of the 

finite element model minus the rigid body modes. For example, a three-

dimensional beam that consists of 2 elements has 18 nodal degrees of 

freedom. Hence, 18 − 6 = 12 free-free modes are taken into account. As 

explained in Chapter 4, the reuse of a body’s linear finite element model, 

causes that some inertia terms cannot be determined exactly. Terms 

related to the rigid-flexible coupling and fictitious forces are approximated 

using a lumped mass matrix. It can be expected that these approximations 

may cause differences in simulations when a small number of elements is 

used.  
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In Section 5.1, the general validation of the new superelement formulation 

is presented. These simulations show excellent accuracy of the new 

method. In Section 5.2, the effect of the floating frame location on 

simulation accuracy is investigated. It is found that better accuracy is 

obtained when the floating frame is located in a body’s center of mass than 

when the floating frame is located in an interface point. In Section 5.3, the 

effect of simplifications in the coordinate transformation matrices involved 

in the new superelement formulation is studied. It is found that neglecting 

the effect of elastic deformation on the transformation matrices is 

acceptable when the elastic deformations within a body remain small.  
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 Validation of the superelement formulation 

 

For validation purposes, the simulation of several benchmark problems 

has been performed. The validation problems consist of a static cantilever 

beam subjected to a large vertical tip force, a 2D and 3D slider-crank 

mechanism with a flexible connector and a 3D spinning beam on a 

spherical joint.   

  

Equilibrium analysis of a cantilever beam 

A cantilever beam with circular cross section was modelled with 10 bodies. 

The total length of the beam is 1 m. The outer radius of the cross section 

is 0.01 m with a wall thickness of 1 mm. The Young’s modulus is 70 GPa. 

The beam was incrementally loaded at its tip starting at 100 N and 

increasing to 10 kN. The load acts in vertical direction at all times. Results 

have been obtained with the new method, Spacar and Ansys. The 

computed deformed beam shapes are shown in Figure 5.1 for applied loads 

of 100 N, 500 N, 2000 N and 10000 N. The figure shows good agreement 

between the new code and both Spacar and Ansys for this number of 

bodies. Differences occur when fewer bodies are used. This will be 

discussed in Section 5.2. 
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Fig. 5.1 Deflection of a cantilever beam subjected to a vertical tip force. 

 

Transient analysis of a 2D slider-crank mechanism 

The dynamic 2D slider-crank problem is adopted from [23] and shown in 

Figure 5.2. The rigid crank 0.15 m in length is rotating with a constant 

angular velocity of 150 rad/s. The flexible connector 0.3 m in length has a 

uniform circular cross section with a diameter of 6 mm. In the simulation 

a Young’s modulus of 200 GPa and a mass density of 7870 kg⁄m3 are used. 

The end of the connector is attached to a slider with a mass that equals 

half the mass of the connector. The slider is able to translate without 

friction on its base.  

 

The angular velocity of the crank introduces an initial linear velocity and 

an angular velocity of the connector, assuming no deformation. In the new 

superelement formulation, the connector is modeled with two bodies. In 

Spacar, two elements are used. In Adams, a modal neutral file is created 

based on the 6 free-free modes of the connector’s linear finite element 

model that consists of 2 elements.  
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Fig. 5.2 2D Slider-crank mechanism with flexible connector. 

 

 

As output, the displacement of the midpoint of the connector perpendicular 

to the undeformed beam was determined and plotted against the crank 

angle. The results are shown in Figure 5.3. This figure also shows the 

results obtained with Spacar and Adams. It can be seen that the new 

method agrees very well with the results obtained with Spacar. The results 

obtained with Adams show small differences. Apart from the possible 

approximations mentioned before, it should also be noted that the Adams 

model only has 1 floating frame for the connector. In the new superelement 

formulation, both bodies have a floating frame, which may describe the 

deformed configuration of the connector better than the Adams model.  

 

 

 
Fig. 5.3 Midpoint deformation of the flexible connector as a function of the crank angle. 
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Transient analysis of a 3D slider-crank mechanism  

The dynamic 3D slider-crank mechanism is adopted from [27] and shown 

in Figure 5.4. The physical properties of the mechanism are the same as 

in the 2D case described before. The horizontal position 𝑑 of the rotation 

axis is 0.1 m. In the initial configuration, the crank is oriented vertically 

upward. The models in the new superelement formulation, Spacar and 

Adams are similar as described before, but now expanded to the three-

dimensional case.   

 

 
Fig. 5.4 3D Slider-crank mechanism with flexible connector. 

 

As output, the displacement of the midpoint of the connector in its local 𝑦-

direction was determined and plotted against the crank angle. The results 

are shown in Figure 5.5. It can be seen that also in this case, the results 

obtained with the new method are very close to the results obtained with 

Spacar. The results obtained with Adams again show a small differences 

in comparison with the other two methods. In this example in particular, 

it can be seen that the results produced by Adams show a slightly higher 

frequency of vibration than the results obtained by the new method and 

Spacar. This might very well be due to the fact that Adams uses a lumped 

mass matrix, which is known to result in higher vibration frequencies.  
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Fig. 5.5 Mid-point deformation of the flexible connector as a function of the crank angle. 

 

Transient analysis of a 3D beam on a spherical joint 

The 3D spinning beam on a spherical joint is adopted from [9] and shown 

in Figure 5.6. The physical properties, prescribed loads and simulation 

settings are the same as described in this reference: the beam has length 

141.42 mm, cross section 9.0 mm2 and area moment of inertia 6.75 mm4. 

The material has a mass density 7800 kg/m3 and Young’s Modulus 210 

GPa. A torque of 0.2 Nm is applied about the vertical axis during the first 

10.2 seconds. 15 seconds later, at 𝑡 = 25.2 sconds, an impulsive vertical tip 

force of 100 N is applied. 

 

 
Fig. 5.6 Flexible beam on a spherical joint. 
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In the new superelement formulation, the connector is modelled with two 

bodies. In Spacar, two elements are used. In Adams, a modal neutral file 

is created based on the 12 free-free modes of the connector’s linear finite 

element model that consists of 2 elements.  

 

As output, the absolute angular velocity about the vertical axis at the base 

of the beam was determined and plotted as a function of time. The  results 

are shown in Figure 5.7. It was observed in [9] that different methods show 

different results only after the impulsive vertical force is applied. In Figure 

5.7 it can be seen that all methods used here produce very similar results 

even after this moment. However, it should be noted that although the new 

superelement formulation and Spacar predict similar vibration 

amplitudes after the force is applied, Adams predicts a slightly smaller 

vibration amplitude.  

 

 
Fig. 5.7 Angular velocity about the vertical axis of the beam as a function of time. 

 

It is also worthwhile comparing all results with the ones published in [9]. 

In figures 9, 10 and 11 of this work by Cardona, several floating frame 

formulations are compared with the results of a nonlinear finite element 

formulation. It can be seen that all results shown in Figure 5.7 are similar 

to the nonlinear finite element formulation in [9]. In fact, the difference 

between the new method, Spacar and Adams is very small in comparison 

with the difference between the nonlinear finite element formulation and 
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any of the floating frame formulations in [9]. For the sake of illustration, 

Figures 10 and 11 from [9] are reproduced here in Figure 5.8 to emphasize 

how good the agreement of the new method is in comparison with other 

formulations. When comparing these figures, take careful note of the 

different scales of the 𝑦-axis. It can be observed that after 50 seconds, the 

result of the nonlinear finite element formulation in Figure 5.8 is slightly 

below 0.1 rad/s, which agrees very well with Figure 5.7. 

 

 
Fig. 5.8 Figure is reproduced from Figures 10 and 11 in [9]. Solid line is the result 

obtained with the nonlinear finite element formulation, which is close to all the 

lines in Figure 5.7. Dashed lines are obtained with the floating frame formulation 

using different inertia options considered in [9]. 
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Conclusion 

Based on the above simulations of benchmark problems, it is concluded 

that the new superelement formulation yields reliable results when it is 

compared with other formulations. 
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 Effect of the floating frame location 

 

In general, better simulation accuracy is obtained when the floating frame 

is located in the body’s center of mass than when the floating frame is 

located in an interface point. This can be explained by the fact that when 

the floating frame is located in an interface point relatively large elastic 

deformations are required to describe the motion of material points on the 

body’s far end. When the floating frame is located near the center of the 

body, smaller elastic deformations are required to describe the same body 

shape. Because the assumption of small displacements is fundamental to 

the floating frame formulation, accuracy is best when the floating frame is 

located such that elastic deformations are minimized. This concept is 

visualized for a beam in  Figure 5.9, where the dotted lines represent the 

undeformed shape of the beam. 

 

 
Fig. 5.9 A flexible body in its deformed configuration and its undeformed configurations 

(dashed lines) for floating frame locations at an interface point and at the 

undeformed body’s center of mass. 

 

Several simulations have been performed to validate that indeed better 

accuracy is obtained when the floating frame is located in the body’s center 

of mass than when the floating frame is located in an interface point. These 

validation problems consist of a cantilever beam subjected to a transient 

tip force and a fast rotating beam subjected to a transient tip force.  

 

Simulations in which the beams consist of 10 bodies are performed as a 

reference. With this number of bodies, all formulations have converged to 

the same solution. Then, simulations with fewer bodies are performed to 

illustrate the fundamental differences between the formulations. These 

differences are explained best when only using a small number of bodies, 

although the overall simulation accuracy might be unacceptable for 

practical purposes. However, from the simulations it is concluded that the 
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new superelement formulation in which the floating frame is located in 

the center of mass also gives reasonable results when using a smaller 

number of bodies. 

 

Transient analysis of a cantilever beam 

The same cantilever beam is used as in the static problem described in 

Section 5.1. However, in this case, a transient vertical tip force is applied. 

In 0.05 s, the force is increased linearly from 0 to 2500 N and maintained 

constant at this value after 0.05 s. First, the simulation is performed using 

10 bodies and validated with Spacar, from which it is concluded that the 

new method yields reliable results. Then, simulations are performed with 

1 body according to the new method in which the floating frame is located 

at the center of mass or at the left or right interface point. Figure 5.10 

shows the vertical tip position as a function of time. It can be seen that 

when a floating frame is located in an interface point, the simulation 

becomes unstable. In the new formulation, the simulation is stable, yet it 

shows a lower frequency and also an amplitude offset with respect to the 

correct solution.  

 

 
Fig. 5.10 Vertical tip position of the beam. Validation of the new method with Spacar for 

10 bodies and the effect of the floating frame position for 1 body. 
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Figure 5.11 shows the results for the simulations that are performed with 

3 bodies. In this case, all three methods produce stable results. However, 

the new method is found most accurate, although locating the floating 

frame in the left interface point is of similar accuracy. It is concluded that 

when increasing the number of bodies, all methods converge to the correct 

solution, but the new method is found most accurate.      

 

 
Fig. 5.11 Vertical tip position of the beam. The effect of the floating frame position for 3 

bodies. 

 

Transient analysis of a rotating beam 

In the rotating beam problem, the same beam properties are used as in the 

previous cantilever beam problem. The beam is hinged at its left interface 

point and given a constant angular velocity of 100 rad/s. During the first 

0.01 s of the simulation, a constant tip force of 50 N is applied 

perpendicular to the beam, in the plane of rotation. Figure 5.12 shows a 

graphical representation of the problem.  
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Fig. 5.12 Graphical representation of the rotating beam problem, subjected to a transient 

perpendicular tip force. 

 

First, the simulation is performed using 10 bodies and validated with 

Spacar, from which it is concluded that the new method yields reliable 

results. Then, simulations are performed with 1 body using the new 

method and compared with the traditional floating frame formulation in 

which the floating frame is located in the left or right interface point. 

Figure 5.13 shows the tip deflection as a function of time. It can be seen 

that when using 1 body only, the new method is reasonably close to the 10-

body simulation, although a difference is observed. Placing the floating 

frame in the left interface point yields simulation results that are far from 

the correct solution. In this case the constraints at the hinge can be 

satisfied exactly, but because only 1 body is used, the remaining model is 

simply a rotating linear beam element. Because this model is unable to 

include stress stiffening, larger amplitudes and longer vibration periods 

are observed. Placing the floating frame in the right interface point shows 

instable behavior after a rotation of 2 rad.  
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Fig. 5.13 Deflection of the tip of the beam, measured relative to its dynamic equilibrium 

position. Validation of the new method with Spacar for 10 bodies and the effect of 

the floating frame position for 1 body. 

 

Figure 5.14 shows the results for the simulations that are performed with 

2 bodies. It can be seen that all simulations are stable and that the new 

method produces the most accurate results. Also from this example it is 

concluded that when increasing the number of bodies, all methods 

converge to the correct solution, but the new method is found most 

accurate when using fewer bodies.      
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Fig. 5.14 Deflection of the tip of the beam, measured relative to its dynamic equilibrium 

position. The effect of the floating frame position for 2 body. 

 

Conclusion 

Based on the above simulations of benchmark problems, it is concluded 

that better accuracy is obtained when the floating frame is located at the 

center of mass of an  undeformed body than when the floating frame is 

located at an interface point. This difference in accuracy becomes most 

pronounced when the number of bodies is low. This means that when the 

floating frame is located at a body’s center of mass, fewer bodies are 

required to obtain the same accuracy as when the floating frame would 

have been located at an interface point.  
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 Effect of the simplification of the matrices [𝚽𝒓𝒊𝒈], [𝐙] and [𝐓] 

 

It was explained in Chapter 3 that the matrices [𝚽𝑟𝑖𝑔], [𝐙] and [𝐓] can be 

given a very elegant geometric interpretation. For this interpretation, it 

was found a convenient thought experiment to consider these matrices to 

be based on an undeformed body instead of a deformed body. In this way 

it was discovered that [𝚽𝑟𝑖𝑔] describes the motion of the interface points 

when the floating frame is subjected to rigid body modes, [𝐙] describes the 

motion of the floating frame when the interface points are subjected to 

rigid body modes and [𝐓] describes the elastic deformation of the 

coordinate transformation from global to local interface coordinates. 

Because the local elastic deformations are small, the hypothesis is that 

their effect on [𝚽𝑟𝑖𝑔], [𝐙] and [𝐓] might be small as well.  

 

As it would increase the computational efficiency to consider these 

matrices as constant, the effect of neglecting the higher order terms is 

investigated. To this end, simulations are performed on three benchmark 

problems that were already introduced above: the equilibrium analysis of 

a cantilever beam, the 2D slider-crank mechanism shown in Figure 5.2 

and the rotating beam problem shown in Figure 5.12. 

 

Equilibrium analysis of a cantilever beam 

Figure 5.15 shows the equilibrium configuration of the beam when 

subjected to 250 N, 1000 N and 10000 N, using 10 and 3 bodies, using both 

the exact and approximated transformation matrices. It was already 

validated in Section 5.1 that the simulation results with 10 bodies are 

accurate. When using 10 bodies, no significant difference was observed 

between the exact and approximated transformation matrices.   

 

It can be seen that when using fewer bodies, a larger deflection is obtained. 

Hence, a single body clearly underestimates the stiffness. One could say 

that when increasing the number of bodies, the exact solution is being 

converged to “from the soft side”. It is difficult to prove that this is the case 

from the equations directly, yet this behavior is observed in multiple 

simulations. It can be seen that when the transformation matrices are 

based on the undeformed body, the solution is better than when using the 
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exact definition. When the transformation matrices are approximated, the 

body is assumed stiffer than in reality throughout the transformation. 

Based on the simulation results, it is found that this partially counteracts 

the fact that when using fewer bodies, a softer system is created. 

 

 
Fig. 5.15 Deflected beam configuration. Comparison with 3 and 10 bodies, using exact and 

approximated transformation matrices. 

 

It should be noted that significant differences occur only for large 

deformations. From Figure 5.15 it can be seen that in particular near the 

clamping, the curvature in the beam is very large. As a result, the body 

that is connected to the clamping, is subjected to deformations that go 

beyond the linear range. In this case, the fundamental assumption that 

local deformations remain small is violated, such that one should 

anticipate inaccurate results. As a comparison, another simulation has 

been performed in which the three bodies are given different lengths of 

𝐿/7, 2𝐿/7 and 4𝐿/7. Figure 5.16 shows the simulation results, from which 

it can be seen that high accuracy is now also obtained, even at these large 

deformations.  
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Fig. 5.16 Deflected beam configuration. Comparison with 3 and 10 bodies, using exact and 

approximated transformation matrices. The 3 bodies have partial lengths 1/7, 2/7, 

4/7. 

 

Transient analysis of a 2D slider-crank mechanism 

Figure 5.17 shows the midpoint deformation of the flexible connector of 

the slider-crank mechanism for simulations using 10 and 2 bodies, using 

both the exact and approximated transformation matrices. It can be seen 

that in general all simulation results are comparable, with some minor 

differences between 5 and 6 rad. A zoomed-in detail of the simulation 

results shows that when the transformation matrices are approximated as 

constant, the results are closer to the exact solution.  
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Fig. 5.17 Midpoint deformation of the connector. Comparison with 2 and 10 bodies, using 

exact and approximated transformation matrices. 

 

Transient analysis of a rotating beam 

For the rotating beam problem, Figure 5.18 shows the tip deflection as a 

function of time when using 10 and 1 bodies, using both the exact and 

approximated transformation matrices. It can be seen that when using 

only 1 body, the period of vibration becomes longer. This is consistent with 

the previous observation that using fewer bodies makes the system softer. 

Also in this example, it is found that when using the approximated 

transformation matrices, the simulation results get closer to the exact 

solution. 
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Fig. 5.18 Deflection of the tip of the beam, measured relative from its dynamic equilibrium 

position. Comparison with 1 and 10 bodies, using exact and approximated 

transformation matrices. 

 

Conclusion 

Based on the above simulations of benchmark problems, it is concluded 

that the influence of higher order terms in the transformation matrices is 

small whenever the local elastic deformations of a body remain small. In 

that case, the higher order terms in [𝚽𝑟𝑖𝑔], [𝐙] and [𝐓] can be neglected 

without influencing the simulation accuracy. When the number of bodies 

is low, the effect of this approximation is most pronounced. Yet in these 

cases, the error due to using too few bodies is partially compensated by the 

error due to large deformations within a single body. This means that 

when constant transformation matrices are used, fewer bodies are 

required to obtain the same accuracy as when this approximation is not 

made. It would be interesting to see if it is possible to show mathematically 

that the new superelement formulation underestimates the stiffness. 



   

 



6 
Conclusion 
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New superelement formulation 

Describing the kinematics of a flexible multibody system comes down to 

the kinematic formulation of the motion of the interface points. In the 

inertial frame and corotational frame formulations, the absolute interface 

coordinates are part of the degrees of freedom, allowing for a direct 

application of the constraints. This is in contrast to the floating frame 

formulation, which requires the use of Lagrange multipliers. In this work, 

it has been demonstrated that the absolute floating frame coordinates, and 

the local elastic coordinates that appear in the equation of motion of a 

floating frame formulation, can be replaced by the absolute interface 

coordinates. Consequently, no Lagrange multipliers are required to 

enforce the kinematic constraints. In this way a new superelement 

formulation is obtained that can be used for the simulation of a system’s 

flexible multibody dynamics. Validation of the method with static and 

dynamic benchmark problems described in literature has shown to yield 

reliable results in all cases. It was shown that the new formulation 

produces better results than a floating frame formulation in which the 

floating frame is located at an interface point. Even when a very small 

number of flexible bodies are used, the new method yields reasonable 

results. 

 

The use of Craig-Bampton modes 

In the development of the presented superelement formulation, the use of 

Craig-Bampton modes as a body’s local deformations shapes has been 

crucial. The rigid body motions that can be described by these Craig-

Bampton modes are employed to eliminate the floating frame coordinates 

from the system. This is done by imposing the constraint that any linear 

combination of the Craig-Bampton modes should be such that there is no 

elastic deformation at the location of the floating frame. Due to the 

nonlinear nature of the kinematic relations, this constraint is imposed on 

the variations in the relevant coordinates. From the kinematics it follows 

that variations of local interface coordinates can be expressed as the 

difference between variations of the absolute interface coordinates and 

variations of the absolute floating frame coordinates. The constraint 

provides the possibility of eliminating the variation of the absolute floating 

frame coordinates by the variation in the absolute interface coordinates. 

Subsequently also the variation in the local interface coordinates can be 
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eliminated by the variation in the absolute interface coordinates. By using 

Newton-Raphson iterations and the constraints, it is possible to prevent 

drift at the position level.  

 

Advantages of the new superelement formulation 

The new superelement formulation can be applied to systems that consist 

of arbitrarily shaped three-dimensional bodies that have an arbitrary 

number of interface points. It offers the possibility of reducing geometric 

nonlinear systems by applying important model order reduction 

techniques in a body’s local frame. In this way a body’s linear finite 

element model can be reused in the multibody analysis. Existing 

superelement formulations require the floating frame to be located at an 

interface point. It was shown that better accuracy is obtained when the 

floating frame is located in the body’s center of mass. The strength of the 

new formulation is that the floating frame can be located in the center of 

mass, without the need for an interface point in the center of mass. In this 

way, the new formulation offers a unique and elegant solution to the 

traditional problem of how to create efficient superelements.   

 

Similarities with corotational frame formulation 

In this work, it was explained that relating a flexible body’s floating frame 

to the absolute interface coordinates is very similar to the problem of 

relating an element’s corotational frame to its absolute nodal coordinates. 

The mathematically correct formulation of the kinematics of the new 

superelement formulation also provides a good understanding of the 

approximations made in corotational methods. These approximations 

consist of neglecting: 

 higher order terms in the mass matrix of an element 

 fictitious forces caused by the elastic deformation within an element 

 elastic deformations when computing the elastic forces within an 

element. 

 

Geometric interpretation of the transformation matrices 

Elaborate work was done to give the transformation matrices involved in 

the new superelement formulation a geometric interpretation. A 

substantial effort was made to add more engineering intuition to the 

mathematical formulation. For this purpose, it is crucial to understand 
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that [𝚽𝑟𝑖𝑔] represents the motion of the interface points when a body’s 

floating frame is given a prescribed rigid body motion. The fact that this 

matrix is based on the deformed configuration of the body means that 

neither [𝐙] nor [𝐓] are constant but depend on the elastic deformation. 

However, when one considers the undeformed configuration of a body, [𝐙] 

simply describes the deformation of the floating frame when interface 

coordinates are moving according to Craig-Bampton modes. In this case 

[𝐓] eliminates the contribution of rigid body motion from the absolute 

interface coordinates and provides the local interface coordinates. The 

geometric interpretations of transformation matrices [𝐙] and [𝐓] as 

presented in this work resulted in the idea that they could be well 

approximated using the rigid body modes of the undeformed body [𝚽𝑟𝑖𝑔,0] 

instead of [𝚽𝑟𝑖𝑔]. Simulation of benchmark problems has shown that this 

approximation is justified and results in good accuracy even when a small 

number of bodies are used.  



7 
Recommendations 
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This work has shown that the new superelement formulation is a very 

elegant and attractive method of creating reduced order models of flexible 

multibody systems. In order to employ its benefits over existing methods, 

it is recommended to focus future research on several generalizations and 

further validations to make the formulation applicable in more situations 

and in more fields of research. 

 

In particular, it is worthwhile investigating the possibility of using other 

deformation shapes to describe a body’s local displacement field. So far, 

only the use of static Craig-Bampton modes has been implemented. It is 

natural to extend this to the internal Craig-Bampton modes as well, such 

that more complicated deformations can be described. For further 

generalization it is worthwhile examining whether a coordinate 

transformation to absolute interface coordinates can be applied when an 

arbitrary set of deformation shapes is used. 

 

In this work, the assumption that the local elastic deformations remain 

small was of crucial importance. However, there are many applications for 

which deformations of a single body will become large, for instance in the 

case of large stroke flexure mechanisms. For these applications, it is 

worthwhile investigating the possibility of combining geometric nonlinear 

model order reduction techniques on a body’s nonlinear finite element 

model.  

 

The validations performed in this work were limited to bodies with two 

interface points. However, the formulation allows for an arbitrary number 

of interface points. For this reason, it is recommended to include more 

complicated bodies in the benchmark portfolio. A natural expansion would 

be to construct superelements for - for example - plates, but ideally the 

possibility to include any finite element model in the multibody 

formulation should be implemented. 

 

For most fields of engineering dynamics, the multibody formulation used 

in this work is standard. However, there are many related fields of 

research in which it is very common to formulate a system’s dynamics in 

terms of screw theory and lie algebras. This is in particular the case for 

the likes of robotics, control engineering and mechanism design. In order 

to make the new superelement formulation suitable for application in 

these fields, it is useful to reformulate the kinematics and kinetics in terms 

of screw theory. 

 



 

-97- 

 

 

The author is aware that in order to cover all above recommendations, 

much additional research is required. In a certain way it is easy to list 

everything that can be done and has not been done yet as a 

recommendation. However, the research of the above topics might have 

very interesting practical applications. For that reason, the author 

expresses his dedication to execute this research in the future. To 

demonstrate his current thoughts on the matter, the author has presented 

some initial theoretical steps in the direction of the recommendations 

mentioned in Chapter 8. This substantiates the recommendations a little 

more. 



 



8 
Generalizations  

for future research 
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In this chapter, the author wishes to give his current thoughts on the 

possibilities of the new superelement formulation for future research. This 

chapter presents generalizations of the current method in several 

directions. However, it should be understood that this contains only the 

mathematical formulations without the supporting numerical examples. 

The purpose is to substantiate the recommendations from Chapter 7 a 

little bit further. The author wants the reader to focus on the general 

direction of these thoughts. For this reason, it should be anticipated that 

the presented derivations will not be as elaborate as in other parts of this 

work. For the purpose of keeping this chapter compact, intermediate steps 

will be left out, briefly described by text or replaced by relevant references.  

 

In order to create superelements based on the floating frame formulation, 

the absolute floating frame coordinates and local coordinates 

corresponding to the elastic deformation shapes need to be expressed in 

terms of the absolute interface coordinates. In Chapter 3, it was explained 

that because the local interface coordinates are in fact the generalized 

coordinates corresponding to the static Craig-Bampton modes, it is natural 

to choose these modes to describe the local elastic displacement field. 

However, in the Craig-Bampton method, the set of static interface modes 

is in general augmented with internal vibration modes. These internal 

Craig-Bampton modes are obtained by computing the vibration modes of 

the body while all interface points are fixed.  

 

In Section 8.1, it is explained how the internal Craig-Bampton modes can 

be taken into account when constructing the superelements according to 

the method described in the previous chapters. In Section 8.2, it is 

explained how the method can be generalized further, by using any set of 

deformation modes - not necessarily Craig-Bampton modes - to describe 

local deformations. Section 8.3 presents the method with which it is 

expected to include geometrical nonlinearities within a body using a 

modified local reduction basis that is based on Craig-Bampton modes. This 

method would allow for large deformations within a flexible body. Section 

8.4 presents some preliminary validation results for bodies with more than 

2 interface points. In particular this contains the simulation of benchmark 

problems using plates. In Section 8.5, it is explained how the new 

superelement formulation can be obtained in terms of screw theory. 
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In this chapter, the author reused earlier work of conference papers 

“Model order reduction of large stroke flexure hinges using modal 

derivatives” [28] and “An absolute interface coordinates floating frame of 

reference formulation for plates” [29] that were accepted at the ISMA 

Noise and Vibration Engineering Conference 2018 in Leuven and the 

journal paper “A new superelement formulation for flexible multibody 

systems using screw theory” [30] that is being prepared for submission.
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 Including internal Craig-Bampton modes 

 

Consider a flexible body with 𝑁 interface points. The local elastic 

deformation of an arbitrary point 𝑃𝑖 on the body is expressed in terms of 

the 6𝑁 static Craig-Bampton modes and 𝑀 internal Craig-Bampton modes 

as follows: 

 

 
𝐪𝑖

𝑗,𝑗
= ∑ 𝚽𝑘(𝐱𝑖

𝑗,𝑗
)

𝑁

𝑘=1

𝐪𝑘
𝑗,𝑗

+ ∑ 𝝍𝑙(𝐱𝑖
𝑗,𝑗

)

𝑀

𝑙=1

𝜂𝑙
𝑗,𝑗

 (8.1)   

 

In this, 𝚽𝑘 is the (6×6) matrix of static Craig-Bampton modes 

corresponding to interface point 𝑃𝑘 and 𝝍𝑙 is the (6 × 1) vector of the 

internal Craig-Bampton mode which corresponds to the natural coordinate 

𝜂𝑙
𝑗,𝑗

. Equation (8.1) can be written in compact matrix-vector form as: 

 

 𝐪𝑖
𝑗,𝑗

= [𝚽𝑖]𝐪𝑗,𝑗 + [𝚿𝑖]𝛈𝑗,𝑗 (8.2)   

 

with: 

 

 

[𝚽𝑖] ≡ [𝚽1(𝐱𝑖
𝑗,𝑗

) … 𝚽𝑁(𝐱𝑖
𝑗,𝑗

)],       𝐪𝑗,𝑗 ≡ [
𝐪1

𝑗,𝑗

⋮

𝐪𝑁
𝑗,𝑗

] 

 

[𝚿𝑖] ≡ [𝝍1(𝐱𝑖
𝑗,𝑗

) … 𝝍𝑀(𝐱𝑖
𝑗,𝑗

)] ,       𝛈𝑗,𝑗 ≡ [
𝜂1

𝑗,𝑗

⋮

𝜂𝑀
𝑗,𝑗

] 

(8.3)   

 

Again, it is demanded that there is zero elastic deformation at the location 

of the floating frame. By taking the variation of (8.2) and evaluating the 

Craig-Bampton modes at the location of the floating frame 𝑃𝑗, a modified 

form of the constraint (3.7) is obtained:  

 

 𝛿𝐪𝑗
𝑗,𝑗

= [𝚽𝐶𝐵]𝛿𝐪𝑗,𝑗 + [𝚿𝐶𝐵]𝛿𝛈𝑗,𝑗 = 𝟎 (8.4)   

 

where [𝚿𝐶𝐵] is used to denote the (6 × 𝑀) matrix of internal Craig-

Bampton modes evaluated at the floating frame 𝑃𝑗.  
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In comparison with (3.7), the term [𝚿𝐶𝐵]𝛿𝛈𝑗,𝑗 is added to the constraint, 

because the internal modes may also cause a deformation at 𝑃𝑗. At this 

point, recall the kinematic relation (3.15) that expresses the variation of 

the local interface coordinates in terms of the variation of the absolute 

interface coordinates and the variation of the absolute floating frame 

coordinates: 

 

 𝛿𝐪𝑗,𝑗 = [𝐑̅𝑂
𝑗

]𝛿𝐪𝑂,𝑂 − [𝚽𝑟𝑖𝑔][𝐑𝑂
𝑗

]𝛿𝐪𝑗
𝑂,𝑂

 (8.5)   

 

By substituting (8.5) in (8.4), the rigid body motions can be eliminated 

from the Craig-Bampton modes and the variation of the absolute floating 

frame coordinates can be expressed in terms of the variation of the local 

interface coordinates and the variation of the natural coordinates of the 

internal modes: 

 

 𝛿𝐪𝑗
𝑂,𝑂 = [𝐑𝑗

𝑂]([𝚽𝐶𝐵][𝚽𝑟𝑖𝑔])
−1

([𝚽𝐶𝐵][𝐑̅𝑂
𝑗

]𝛿𝐪𝑂,𝑂 + [𝚿𝐶𝐵]𝛿𝛈𝑗,𝑗) (8.6)   

 

In compact form this can be written as: 

 

 𝛿𝐪𝑗
𝑂,𝑂 = [𝐑𝑗

𝑂]([𝐙][𝐑̅𝑂
𝑗

]𝛿𝐪𝑂,𝑂 + [𝐙2]𝛿𝛈𝑗,𝑗),

[𝐙2] ≡ ([𝚽𝐶𝐵][𝚽𝑟𝑖𝑔])
−1

[𝚿𝐶𝐵] 
(8.7)   

 

It can be seen that the relation between 𝛿𝐪𝑗
𝑂,𝑂

 and 𝛿𝐪𝑂,𝑂 is the same as in 

Eq. (3.17) and that the relation between 𝛿𝐪𝑗
𝑂,𝑂

 and 𝛿𝛈𝑗,𝑗 is accounted for 

simply by an additional transformation matrix [𝐙2]. By back substitution 

of (8.7) in (8.5), it is possible to express the variation of the local interface 

coordinates in terms of the variation of the global interface coordinates 

and the variation of the natural coordinates of the internal modes: 

 

 𝛿𝐪𝑗,𝑗 = [𝐓][𝐑̅𝑂
𝑗

]𝛿𝐪𝑂,𝑂 + [𝐓2]𝛿𝛈𝑗,𝑗 , [𝐓2] ≡ −[𝚽𝑟𝑖𝑔][𝐙2] (8.8)   
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For the sake of completeness, it is mentioned that when the 

transformation matrices are determined based on the body’s undeformed 

configuration,  [𝚽𝐶𝐵][𝚽𝑟𝑖𝑔] = 𝟏. With this simplification, [𝐙2] ≈ [𝚿𝐶𝐵] and 

[𝐓2] ≈ −[𝚽𝑟𝑖𝑔][𝚿𝐶𝐵], similarly as described in Chapter 3. In the floating 

frame formulation, the equation of motion is expressed in terms of the 

absolute floating frame coordinates, local interface coordinates and local 

natural coordinates. Using (8.7) and (8.8), the following coordinate 

transformation can be established: 

 

 

[

𝛿𝐪𝑗
𝑂,𝑂

𝛿𝐪𝑗,𝑗

𝛿𝛈𝑗,𝑗

] = [

[𝐑𝑗
𝑂][𝐙][𝐑̅𝑂

𝑗
] [𝐑𝑗

𝑂][𝐙2]

[𝐓][𝐑̅𝑂
𝑗

] [𝐓2]

𝟎 𝟏

] [
𝛿𝐪𝑂,𝑂

𝛿𝛈𝑗,𝑗 ] (8.9)   

 

This coordinate transformation can now be applied to the equation of 

motion, following the same procedure as described in Chapter 4. Note that 

the transformed equation of motion is now also expressed in terms of the 

natural coordinates 𝛈𝑗,𝑗. Because these natural coordinates correspond to 

deformation modes that are zero at the interface points, they will not be 

present in any kinematic constraint equation. Hence, the constraint 

equations can still be satisfied directly, without the use of Lagrange 

multipliers, also when the internal Craig-Bampton modes are taken into 

account. 

  



 

-105- 

 

 

 Including a general set of deformation modes 

 

Consider the general case in which a body’s elastic deformation is 

described locally with an arbitrary set of 𝑀 deformation shapes. In this 

section it is explained how even for this general case, the presented method 

for creating superelements can still be applied. However, the deformation 

shapes should be able to describe rigid body motions. If this is not the case, 

the rigid body modes need to be added to the deformation shapes. The 

resulting formulation depends on the dimension 𝑚 ≤ 𝑀 of the subspace 

spanned by the deformation shapes on the 6𝑁 interface coordinates. The 

strategy depends on whether 𝑚 is larger than, equal to or smaller than 6𝑁. 

These different cases will be elaborated on after the general formulation 

is introduced.   

 

The variation in the position of an arbitrary point 𝑃𝑖 on the flexible body 

can be expressed in the same way as before: 

 

  𝛿𝐪𝑖
𝑗,𝑗

= [𝚽̅𝑖]𝛿𝛇𝑗,𝑗 (8.10)   

 

where [𝚽̅𝑖] now denotes the (6 × 𝑀) matrix of arbitrary deformation 

shapes evaluated at 𝑃𝑖 and 𝛿𝛇𝑗,𝑗 is the variation of the corresponding 

generalized coordinates. The constraint that there is no deformation at the 

location of the floating frame 𝑃𝑗 can be expressed as: 

 

  𝛿𝐪𝑗
𝑗,𝑗

= [𝚽̅𝑗]𝛿𝛇𝑗,𝑗 = 𝟎 (8.11)   

  

To create a superelement based on the floating frame formulation, again 

a relation is required between the absolute floating frame coordinates, 

local generalized coordinates corresponding to the deformation modes and 

absolute interface coordinates. From the method presented in this work, it 

is known how to establish this relation if the local interface coordinates 

are used to describe the body’s deformation.  
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For this reason, the variations in the interface points 𝛿𝐪𝑗,𝑗 are first 

expressed in terms of the variations of the generalized coordinates 𝛿𝛇𝑗,𝑗, 

by evaluating (8.10) at every interface point: 

 

 
𝛿𝐪𝑗,𝑗 = [𝚽̅𝐼𝑃]𝛿𝛇𝑗,𝑗 , [𝚽̅𝐼𝑃] ≡ [

𝚽̅1

⋮
𝚽̅𝑁

] (8.12)   

 

where [𝚽̅𝐼𝑃] is the (6𝑁 × 𝑀) matrix of deformation modes evaluated at the 

interface points. The local generalized coordinates need to be expressed in 

terms of the local interface coordinates. Equation (8.12) can be inverted 

as: 

 

 𝛿𝛇𝑗,𝑗 = [𝚽̅𝐼𝑃]+𝛿𝐪𝑗,𝑗 (8.13)   

 

Here, in general [𝚽̅𝐼𝑃]+ denotes the pseudoinverse of [𝚽̅𝐼𝑃]. In general 

(8.13) is an approximation of the generalized coordinates in the least 

square sense. Substitution in (8.11) yields a constraint in terms of the local 

interface coordinates: 

 

 [𝚽̅𝑗][𝚽̅𝐼𝑃]+𝛿𝐪𝑗,𝑗 = 𝟎 (8.14)   

 

The remaining steps to express the absolute floating frame coordinates in 

terms of the absolute interface coordinates are the same as before. To this 

end, equation (8.5) is substituted in (8.14) and rewritten to: 

 

𝛿𝐪𝑗
𝑂,𝑂 = [𝐑𝑗

𝑂][𝐙𝑔𝑒𝑛][𝐑̅𝑂
𝑗

]𝛿𝐪𝑂,𝑂 , [𝐙𝑔𝑒𝑛] ≡ ([𝚽̅𝑗][𝚽̅𝐼𝑃]+[𝚽𝑟𝑖𝑔])
+

[𝚽̅𝑗][𝚽̅𝐼𝑃]+ (8.15)   

 

where [𝐙𝑔𝑒𝑛] is introduced as the general transformation matrix. Back 

substitution in (8.5) yields for the local interface coordinates: 

 

 𝛿𝐪𝑗,𝑗 = [𝐓𝑔𝑒𝑛][𝐑̅𝑂
𝑗

]𝛿𝐪𝑂,𝑂 , [𝐓𝑔𝑒𝑛] ≡ 𝟏 − [𝚽𝑟𝑖𝑔][𝐙𝑔𝑒𝑛] (8.16)   
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Finally, the relation between the local generalized coordinates and the 

absolute interface coordinates is obtained by back substitution of (8.16) in 

(8.13): 

 

 𝛿𝛇𝑗,𝑗 = [𝚽̅𝐼𝑃]+[𝐓𝑔𝑒𝑛][𝐑̅𝑂
𝑗

]𝛿𝐪𝑂,𝑂 (8.17)   

 

The equation of motion in the floating frame formulation can be expressed 

in terms of the absolute interface coordinates as follows: 

 

 
[
𝛿𝐪𝑗

𝑂,𝑂

𝛿𝛇𝑗,𝑗
] = [

[𝐑𝑗
𝑂][𝐙𝑔𝑒𝑛][𝐑̅𝑂

𝑗
]

[𝚽̅𝐼𝑃]+[𝐓𝑔𝑒𝑛][𝐑̅𝑂
𝑗

]
] 𝛿𝐪𝑂,𝑂 (8.18)   

 

For every numerical increment, the equations of motion can be solved for 

an increment in the absolute interface coordinates. Then the increment in 

the floating frame coordinates and local generalized coordinates need to be 

computed in order to determine the body’s elastic deformation.  

 

1. Craig-Bampton modes: 𝒎 = 𝑴 = 𝟔𝑵 

Consider the case where the static Craig-Bampton modes are used. Now 

𝑚 = 𝑀 = 6𝑁 and [𝚽̅𝐼𝑃] equals the identity matrix. In this case the above 

formulation reduces to the standard form discussed in the previous 

chapters.  

 

2. Other deformation shapes: 𝒎 = 𝟔𝑵 

Consider the case where 𝑚 = 6𝑁 other deformation shapes are chosen, but 

with a linear combination of these shapes a unit deformation of each 

interface point can still be described. In this case, the deformation shapes 

span the same space on the interface points as the Craig-Bampton modes. 

However, because other deformation are used, the body may have internal 

elastic deformations that are different from the Craig-Bampton modes. In 

this case, the relation between the generalized coordinates 𝛿𝛈𝑗,𝑗 and local 

interface coordinates 𝛿𝐪𝑗
𝑗,𝑗

 (8.11) can uniquely be inverted. Hence, [𝚽̅𝐼𝑃]+ 

equals [𝚽̅𝐼𝑃]−1 and (8.14) is exact. 
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3. More deformation shapes: 𝒎 > 𝟔𝑵 

Consider the case where the partition of deformation shapes on the 

interface points is larger than the number of interface coordinates: 𝑚 >

6𝑁. In this case the local interface coordinates are not able to uniquely 

determine the body’s deformation. To solve this problem, it is proposed to 

decompose the space spanned by the deformation shapes into a subspace 

that is uniquely spanned by the 6𝑁 local interface coordinates and a 

subspace of size 𝑀 − 6𝑁 that has zero deformation at the interface points. 

After this decomposition, the strategy explained in the previous section 

can be used. For this purpose, the deformation shapes are manipulated 

such that a form similar to (8.2) is obtained. Substitution of (8.10) and 

(8.12) in the variation of (8.2) yields:  

 

 𝛿𝐪𝑖
𝑗,𝑗

= [𝚽̅𝑖]𝛿𝛇𝑗,𝑗 = [𝚽𝑖][𝚽̅𝐼𝑃]𝛿𝛇𝑗,𝑗 + [𝚿𝑖]𝛿𝛈𝑗,𝑗 (8.19)   

 

where [𝚿𝑖] is a (6 × (𝑀 − 6𝑁)) matrix of yet unknown internal deformation 

shapes. This can be rewritten as: 

 

 [𝚿𝑖]𝛿𝛈𝑗,𝑗 = ([𝚽̅𝑖] − [𝚽𝑖][𝚽̅𝐼𝑃])𝛿𝛇𝑗,𝑗 (8.20)   

 

The (6 × 𝑀) matrix [𝚽̅𝑖] − [𝚽𝑖][𝚽̅𝐼𝑃] has a nullspace with size 6𝑁. Using a 

singular value decomposition, 𝑀 − 6𝑁 linearly independent columns can 

be obtained. These columns form [𝚿𝑖]. Hence, when 𝑀 > 6𝑁, the internal 

deformation shapes [𝚿𝑖] are obtained from the singular value 

decomposition of [𝚽̅𝑖] − [𝚽𝑖][𝚽̅𝐼𝑃] and after that treated similarly as 

internal Craig-Bampton modes. 

 

4. Less deformation shapes: 𝒎 < 𝟔𝑵 

Consider the case where the partition of deformation shapes on the 

interface points is smaller than the number of interface coordinates: 𝑚 <

6𝑁. This means that the body has less freedom to deform than interface 

coordinates. Hence, the interface coordinates are not all independent, but 

are somehow constrained by the limited number of deformation shapes. 

This means that the expression that relates the generalized coordinates to 

the interface coordinates (8.13) should be augmented with additional 

constraints that are posed on the interface coordinates. In this case, it 
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should be determined which subspace of the interface coordinates is not 

spanned by the chosen deformation shapes. Then, the local interface 

coordinates should be constrained such that this subspace is suppressed. 

In this way it would be possible to for instance suppress axial deformation 

of a beam and include only its bending and torsion.  

 

From the above discussion it should be understood that the method of 

creating superelements as presented in this work cannot be applied only 

when static Craig-Bampton modes are used, but also for an arbitrary set 

of deformation shapes. This set of deformation shapes must be able to 

describe rigid body motion or augmented with rigid body modes. 

Depending on the interface space spanned by this (augmented) set, a 

different strategy is used to manipulate the deformation shapes such that 

the same superelement formulation can be applied.  
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 Including local geometric nonlinearities 

 

Consider problems in which large deformations occur within a body. For 

these cases a geometrical nonlinear formulation is also required locally. It 

is considered that in these cases a nonlinear finite element model of a body 

is available. Unfortunately, linear model order reduction techniques 

cannot be applied to these geometrical nonlinear problems. To account for 

geometric nonlinearities, the linear reduction basis can be augmented 

with modal derivatives [31], which can be interpreted as a second order 

enhancement. This method has been used for many problems before and 

the author has applied it in earlier work for the study of large stroke 

flexure mechanisms [28, 32].  

 

In [33], Wu et al. have explained how modal derivatives can be applied to 

augment a linear reduction basis of Craig-Bampton modes by their modal 

derivatives. This method was applied successfully to reduce several 

structural dynamics problems. Since the new superelement formulation 

presented in this work uses Craig-Bampton modes to describe a body’s 

local elastic behavior, it is suggested to apply the method in [33] to create 

a model order reduction method suitable for flexible multibody systems in 

which each body may be subjected to large deformations. In order to 

include these modal derivatives in the formulation, the strategy explained 

in Section 8.2 can be used. 

 

Consider a flexible body of which its linear elastic behavior is described 

with sufficient accuracy by the Craig-Bampton modes. These may be both 

the static interface modes and the internal vibration modes, but without 

loss of generality only the static Craig-Bampton modes are considered 

here.  

 

The modal derivative 𝛉𝑖𝑗 denotes the sensitivity of Craig-Bampton mode 

𝝓𝑖 with respect to an elastic deformation in Craig-Bampton degree of 

freedom 𝑞𝑗. The modal derivatives are computed as [32, 33]: 

 

 
𝛉𝑖𝑗 = −𝐊−1

𝜕𝐊

𝜕𝑞𝑗

𝝓𝑖 (8.21)   
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where 𝐊 = 𝐊(𝐪) should be interpreted as the nonlinear finite element 

model’s stiffness matrix of the body with all interface coordinates fixed, 

except for all coordinates of the interface point of which 𝑞𝑖 is a generalized 

coordinate. As an example, consider a two-dimensional beam. Figure 8.1 

shows the Craig-Bampton modes related to the bending deformation of the 

right interface point (𝜙1, 𝜙2) and the three corresponding modal 

derivatives (𝜃11, 𝜃12, 𝜃22). Note that the Craig-Bampton modes describe a 

deformation in the transverse direction 𝑣(𝑥), whereas the modal 

derivatives describe a deformation in the axial direction 𝑢(𝑥). Hence, the 

modal derivatives describe the shortening of the beam that occurs when it 

is subjected to bending. From Figure 8.1, 𝜃11 should be interpreted as the 

shortening of the beam, when the beam is subjected to a transverse 

displacement according to 𝜙1. Similarly, 𝜃22 is the shortening of the beam 

when the beam is subjected to a transverse displacement according to 𝜙2.  

 

 
Fig. 8.1 Craig-Bampton modes and modal derivatives related to a 2D beam’s right 

interface point.  
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It is important to mention that the modal derivatives have a nonzero 

deflection at the interface points. Consequently, motion of the interface 

points causes excitation of both the local interface coordinates 

corresponding to the Craig-Bampton modes and the generalized 

coordinates corresponding to the modal derivatives. However, it is possible 

to modify the basis of the modal derivatives by subtracting the component 

that is already present in the static Craig-Bampton modes. It is interesting 

to note that this is in fact the same procedure as discussed in Section 8.2 

for the case that 𝑀 > 6𝑁. Because the modified reduction basis is obtained 

by elementary column operations, they span the same reduced space. This 

strategy was also proposed in [33].  

 

Let 𝐪 denote all generalized coordinates corresponding to the local finite 

element model of the body. It can be partitioned in the boundary nodes 𝐪𝑏 

at the body’s interface points and internal nodes 𝐪𝑖. The proposed local 

reduction is as follows: 

 

 
𝐪 = [

𝐪𝑏

𝐪𝑖 ] = [
𝟏 𝟎
𝚽 𝚯

] [
𝐪𝑗,𝑗

𝛇𝑗,𝑗 ] (8.22)   

 

where 𝚽 is the set of Craig-Bampton modes, 𝚯 is the set of all modified 

modal derivatives and here 𝛇𝑗,𝑗 denote their generalized coordinates. If the 

internal Craig-Bampton modes are also taken into account, the local 

reduction basis can be written as: 

  

 

𝐪 = [
𝐪𝑏

𝐪𝑖
] = [

𝟏 𝟎 𝟎
𝚽 𝚿 𝚯

] [

𝐪𝑗,𝑗

𝛈𝑗,𝑗

𝛇𝑗,𝑗

] (8.23)   

 

In this way, an efficient description of a body’s local deformation is 

obtained. The strategy for establishing the coordinate transformation from 

local interface coordinates to absolute interface coordinates is the same as 

before. However, it should be anticipated that as a consequence of the 

geometric nonlinearities, the calculation of the elastic forces may require 

additional Newton-Raphson iterations in the solution procedure.  
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As a first validation of this solution strategy, an equilibrium analysis is 

performed on several flexure mechanisms in [28], since flexure elements 

are typically subjected to deformations outside the linear range. Figure 8.2 

shows the equilibrium configuration of a cross flexure mechanism that is 

subjected to a bending moment. Both flexures are modelled using 10 

elements. It can be seen that when each flexure is reduced using 2 Craig-

Bampton modes and 3 corresponding modal derivatives, the simulation 

results are still very close to the unreduced model and the results obtained 

by the nonlinear finite element analysis of Ansys. It can be seen that the 

proposed reduction basis produces slightly stiffer than exact results, as 

one should expect from model order reduction.  

 

 
Fig. 8.2 Equilibrium analysis of a cross flexure mechanism subjected to a bending 

moment 
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 Bodies with more than two interface points 

 

The new superelement formulation can be applied to bodies that consist of 

an arbitrary number of interface points. However, in this work only 

validation problems have been presented that use beams. In [29], the 

author has contributed to the validation of the new method for plates. In 

this section, a preliminary static result is presented that is reused from 

[29]. This example merely serves to demonstrate that it is possible to 

implement bodies with more than two interface points in the method. 

However, in order to fully demonstrate the validity of the method for 

plates, additional benchmark problems should be studied. In particular, 

examples in which beam theory does not hold anymore would be of 

interest.  

 

Consider a cantilever plate that is subjected to two equal forces on its two 

tip nodes that remain vertical at all times. The cantilever has length 10 

m, width 1 m and thickness 0.1 m. The Young’s modulus is 12 GPa and 

the Poisson ratio is 0.3. Figure 8.3 shows the deformed shape of the 

cantilever for several values of the applied load. In the new superelement 

formulation, 10 bodies are used for which each body includes all 24 Craig-

Bampton modes. The results are compared with simulations obtained with 

the inertial frame formulation of Ansys where 10 standard 4 node shell181 

elements are used, the corotational formulation in Spacar where 10 beam 

elements are used and the new superelement formulation where 10 beams 

are used to model the bodies. Figure 8.4 shows the normalized transverse 

(𝑤/𝐿) and axial (−𝑢/𝐿 ) displacements. It can be seen that there is a close 

resemblance in the simulation results obtained with the four different 

formulations.  

  



 

-115- 

 

 

 
Fig. 8.3 Deflected shape of the cantilever plate for different loads. 

 

 
Fig. 8.4 Displacement components of the cantilever plate. 
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 Superelement formulation in terms of screw theory 

 

The method presented in this work was developed entirely in terms of 

conventional engineering coordinates. However, in some areas of 

dynamics, it is common to formulate both the kinematics and kinetics 

using screw theory. In this notation, the location and orientation of a 

coordinate frame are conveniently combined in a homogenous 

transformation matrix and its time derivative is defined by the twist 

vector. Standard works about screw theory can be found for instance in 

[34, 35, 36]. For purposes in multibody dynamics, efforts have been made 

to formulate certain often-used elements, such as (geometrically exact) 

beams, in terms of screw theory [37]. Due to the compact notation of screw 

theory, it is also applied in fields closely related to multibody dynamics, 

for example robotics and mechanism design.  

 

For this reason, the author has developed the new superelement 

formulation in terms of screw theory. A journal paper entitled “An absolute 

interface coordinates floating frame of reference formulation using screw 

theory” is being prepared [30]. A summary is presented here.  

 

Consider a flexible body with floating frame {𝑃𝑗 , 𝐸𝑗} and an arbitrary 

material point {𝑃𝑖 , 𝐸𝑖}. The position vector 𝐫𝑗
𝑂,𝑂

 and rotation matrix 𝐑𝑗
𝑂 can 

be conveniently combined to form the (4×4) matrix 𝐇𝑗
𝑂, which is defined 

as: 

 

 
𝐇𝑗

𝑂 ≡ [
𝐑𝑗

𝑂 𝐫𝑗
𝑂,𝑂

𝟎 1
] (8.24)   

 

In screw theory, the matrix 𝐇𝑗
𝑂 is commonly known as the homogenous 

transformation matrix from 𝑃𝑗 to 𝑃𝑂. It can be used to write the translation 

and rotation of a vector in a single operation. To show this, the absolute 

position of 𝑃𝑖 as introduced in Eq. (2.18) can be written in the following 

form: 

 

 
[𝐫𝑖

𝑂,𝑂

1
] = [

𝐑𝑗
𝑂 𝐫𝑗

𝑂,𝑂

𝟎 1
] [𝐫𝑖

𝑗,𝑗

1
] (8.25)   
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In this way, the homogenous transformation matrix 𝐇𝑗
𝑂 can be recognized 

as the matrix that transforms the position of 𝑃𝑖 relative to 𝑃𝑗 to the position 

of 𝑃𝑖 relative to 𝑃𝑂. Figure 8.5 shows a graphical representation of the 

global position of 𝑃𝑖 using the floating frame 𝑃𝑗 in terms of the coordinate 

transformations discussed above.  

 

 
Fig. 8.5 Graphical representation of the absolute position of arbitrary point 𝑃𝑘 on a 

flexible body expressed as the superposition of the absolute position of the floating 

frame 𝑃𝑗 and the position of 𝑃𝑘 relative to 𝑃𝑗. The figure shows the relevant 

position vectors 𝐫 and homogenous transformation matrices 𝐇. 

 

Equation (8.25)  can be written in short as: 

 

 𝐩𝑖
𝑂,𝑂 = 𝐇𝑗

𝑂𝐩𝑖
𝑗,𝑗

 (8.26)   

 

where 𝐩𝑖
𝑂,𝑂

 and 𝐩𝑖
𝑗,𝑗

 are now used to denote the (4×1) vectors that consist 

of the actual position vectors 𝐫𝑖
𝑂,𝑂

 and 𝐫𝑖
𝑗,𝑗

 augmented with a 1. An 

important advantage of using the homogenous transformation matrices is 

that they can be used to denote a transformation of position and 

orientation in a single convenient operation. By direct multiplication of the 

matrices, it can be checked that the following compact notation holds: 

 

 𝐇𝑖
𝑂 = 𝐇𝑗

𝑂𝐇𝑖
𝑗
 (8.27)   

 

  



 

-118- 

 

 

The time derivative of the homogenous transformation matrix 𝐇𝑗
𝑂 can be 

found by differentiating (8.24): 

 

 
𝐇̇𝑗

𝑂 = [
𝛚̃𝑗

𝑂,𝑂𝐑𝑗
𝑂 𝐫̇𝑗

𝑂,𝑂

𝟎 1
] (8.28)   

 

It can be shown that the time derivative of a homogenous transformation 

matrix can be written as a matrix times the homogenous transformation 

matrix itself: 

 

 𝐇̇𝑗
𝑂 = 𝛏̃𝑗

𝑂,𝑂𝐇𝑗
𝑂 (8.29)   

 

Using the fact that 𝐇𝑗
𝑂 denotes the inverse transformation of 𝐇𝑂

𝑗
, the 

expression for 𝛏̃𝑗
𝑂,𝑂

 can be computed by post-multiplying (8.29) by 𝐇𝑂
𝑗
. The 

result can be written as: 

 

 
𝛏̃𝑗

𝑂,𝑂 = 𝐇̇𝑗
𝑂𝐇𝑂

𝑗
= [

𝛚̃𝑗
𝑂,𝑂 𝐫̇𝑗

𝑂,𝑂 + 𝐫̃𝑗
𝑂,𝑂𝛚𝑗

𝑂,𝑂

𝟎 0
] (8.30)   

 

It can be seen that the elements of the (4×4) matrix 𝛏̃𝑗
𝑂,𝑂

 can be constructed 

from the (6×1) vector 𝛏𝑗
𝑂,𝑂

 known as the twist, which is defined as: 

 

 
𝛏𝑗

𝑂,𝑂 ≡ [
𝛚𝑗

𝑂,𝑂

𝐫̇𝑗
𝑂,𝑂 + 𝐫̃𝑗

𝑂,𝑂𝛚𝑗
𝑂,𝑂] (8.31)   

 

The twist can be interpreted as a velocity vector in which the linear 

velocity of 𝑃𝑗 is replaced by the linear velocity of the point that is 

instantaneously coinciding with 𝑃𝑂. This means that for a rigid body, the 

twist is independent of the location of the floating frame, which is 

convenient. However, for the flexible bodies under consideration in the 

present work, this is no longer the case. 

 

The global twist of an arbitrary point on the flexible body 𝑃𝑘 can be 

expressed in terms of the global twist of the floating frame 𝑃𝑗 and the local 

twist of 𝑃𝑘 relative to 𝑃𝑗.  
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This is done by differentiating (8.27) with respect to time. By rewriting the 

result, the relation is expressed in the following form: 

 

 
𝛏𝑘

𝑂,𝑂 = 𝛏𝑗
𝑂,𝑂 + 𝐀𝑗

𝑂𝛏𝑘
𝑗,𝑗

,           𝐀𝑗
𝑂 ≡ [

𝐑𝑗
𝑂 𝟎

𝐫̃𝑗
𝑂,𝑂𝐑𝑗

𝑂 𝐑𝑗
𝑂] (8.32)   

 

Here the (6×6) matrix 𝐀𝑗
𝑂 is introduced as the matrix that transforms the 

local twist 𝛏𝑘
𝑗,𝑗

 to the global frame. In this transformation, 𝐀𝑗
𝑂 is similar to 

the rotation matrix 𝐑𝑗
𝑂 transforming a position vector and to the 

homogenous transformation matrix 𝐇𝑗
𝑂 transforming an augmented 

position vector. Because 𝐀𝑗
𝑂 is constructed from elements already in 𝐇𝑗

𝑂, it 

is known as the adjoint transformation matrix of 𝐇𝑗
𝑂 or simply the adjoint 

of 𝐇𝑗
𝑂. In literature it is also commonly denoted as 𝐀𝐝𝑗

𝑂, 𝐴𝑑𝐇𝑗
𝑂 or 𝐴𝑑(𝐇𝑗

𝑂). 

The notation used here is chosen for its compactness. It is interesting to 

note the following relations between the velocity vector 𝐪̇𝑗
𝑂,𝑂

 and the twist 

𝛏𝑗
𝑂,𝑂

: 

 

 𝐪̇𝑗
𝑂,𝑂 = [−𝐫̃𝑗

𝑂,𝑂]𝛏𝑗
𝑂,𝑂    ↔     𝛏𝑗

𝑂,𝑂 = [𝐫̃𝑗
𝑂,𝑂]𝐪̇𝑗

𝑂,𝑂
 (8.33)   

 

Consider that the static Craig-Bampton modes are used to describe the 

body’s deformation. Following a similar strategy as presented in Chapter 

3, it is possible to express the local twist 𝛏𝑖
𝑗,𝑗

 of an arbitrary point on a 

flexible body in terms of the local twist of the interface points 𝛏𝑗,𝑗: 

 

 

𝛏𝑖
𝑗,𝑗

= [𝐫̃𝑖
𝑗,𝑗

][𝚽𝑖] [−𝐫̃𝑗,𝑗]𝛏𝑗,𝑗, [−𝐫̃𝑗,𝑗] ≡ [

[−𝐫̃1
𝑗,𝑗

]

⋱

[−𝐫̃𝑁
𝑗,𝑗

]

] (8.34)   
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By rewriting (8.32), the local twist of the interface points can be expressed 

in the difference between the global twist of the interface points and the 

twist of the floating frame. By demanding zero elastic deformation at the 

location of the floating frame, the floating frame’s twist can be expressed 

in terms of the global interface twists: 

  

 

𝛏𝑗
𝑂,𝑂 = 𝐀𝑗

𝑂[𝐙][−𝐫̃𝑗,𝑗][𝐀𝑂
𝑗

]𝛏𝑂,𝑂 , [𝐀𝑂
𝑗

] ≡ [

𝐀𝑂
𝑗

⋱

𝐀𝑂
𝑗

] (8.35)   

 

With this relation, it also becomes possible to express the local interface 

velocities in terms of the global interface twists: 

 

 𝐪̇𝑗,𝑗 = [𝐓][−𝐫̃𝑗,𝑗][𝐀𝑂
𝑗

]𝛏𝑂,𝑂 (8.36)   

 

In (8.35) and (8.36), the transformation matrices [𝐙] and [𝐓] are defined 

the same as in Eq. (3.17) and (3.18). At this point, it is possible to 

transform the equations of motion of a flexible body from the floating 

frame formulation to a superelement formulation in terms of the global 

twists of the interface points. Alternatively, the equations of motion can 

be derived directly from the principle of virtual work. In this way, the 

equation of motion in the floating frame formulation is not required first. 

A full derivation of this procedure is presented in [30] and is beyond the 

scope of this section. The resulting equations of motion take a similar form 

as derived in Chapter 4: 

 

 𝐌̅𝛏̇𝑂,𝑂 + 𝐂̅𝛏𝑂,𝑂 + 𝐊̅𝐪𝑗,𝑗 = 𝐰𝑂,𝑂 (8.37)   

 

in which 𝐌̅, 𝐂̅ and 𝐊̅ are the generalized mass matrix, fictitious force 

matrix and stiffness matrix, respectively. 𝐰𝑂,𝑂 is the absolute vector of 

externally applied wrenches on the interface points. Note that, in the same 

way as in Chapter 4, the elastic forces are still expressed in the local 

interface coordinates, as no closed form of the transformation exists on the 

position level.  
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hebben gehad op mijn leven. Ik ben jullie veel dank verschuldigd! 

 

Allereerst wil ik mijn ouders bedanken voor jullie inspanningen mij op te 

voeden. Ik denk niet dat ik dat zelf beter had kunnen doen. Ik ben heel 

gelukkig dat ik door jullie grote steun en liefde onbezorgd heb kunnen 

studeren en heb kunnen werken aan mijn onderzoek. Het is fijn om te 

weten dat ik altijd op jullie kan rekenen. Ook wil ik mijn zusje Milou erg 

bedanken. Niet voor iets in het bijzonders, maar gewoon omdat je het 

leukste, liefste en grappigste zusje bent dat ik me kan voorstellen. Ik hou 

heel erg van jullie!  

 

Natuurlijk verdienen álle collega’s van Technische Mechanica mijn dank 

voor het zijn van hele fijne collega’s. Jullie hebben ervoor gezorgd dat ik 

met plezier aan het werk ging. In het bijzonder wil ik mijn kantoorgenoten 

bedanken: Arjan, Pieter, Alexandre, Derek, Marieke, Erwin, het was me 

een groot genoegen om lange tijd met jullie een kantoor te delen. Anne en 

Erwin wil ik vooral bedanken voor jullie hulp in mijn eerste jaren van mijn 

PhD. Jullie waren een goed voorbeeld. Axel, ik wil jou erg bedanken voor 

al je hulp bij mijn demonstraties en bij metingen onder -voor jou- extreme 

omstandigheden. De geweldige ondersteuning van Debbie en Belinda kan 

ik ook niet onbenoemd laten. Ik kan me niet voorstellen hoe de Noordring 

zou functioneren zonder jullie.  

 

  



 

 

 

Door zelf les te geven, ben ik er achter gekomen dat je als gemotiveerde 

docent echt het verschil kunt maken voor je studenten. In mijn tijd op het 

Zuyderzee College en aan de Universiteit Twente heb ik van veel goede 

docenten les gehad. Daarom lijkt het me gepast om de vijf docenten die mij 

blijvend wisten te inspireren hier te noemen. Ik wil mevrouw Brons, 

mevrouw Vermeulen en meneer Takens enorm bedanken voor jullie 

bevlogenheid voor en het plezier waarmee jullie me naar school lieten 

gaan. Ik wil Rob Hagmeijer bedanken voor zijn geweldige colleges. Ik weet 

nog dat ik na het eerste college stromingsleer dacht “Wow, zo moet dat 

dus.” Je bent de docent die ik altijd wilde zijn. Tenslotte wil ik Peter van 

der Hoogt bedanken voor het enthousiasme voor Dynamica dat hij me 

heeft gegeven. Zeer droevig was zijn overlijden kort na mijn afstuderen. 

Elles, Maja, Bert, Rob, Peter, ik voel me een zeer bevoorrecht mens van 

jullie les te hebben gehad! 

 

In de afgelopen zes jaar heb ik veel afstudeerders begeleid en van hen heb 

ik veel geleerd. Naast goede afstudeerders waren jullie vaak ook hele 

goede studentassistenten die me van veel werkdruk hebben verlicht. Koen 

en Mieke, jullie werk is enorm zinnig gebleken voor mijn onderzoek en ik 

ben heel blij dat we samen verschillende artikelen hebben kunnen 

schrijven. Mieke, ik kijk met veel plezier terug op je aanwezigheid in onze 

villa in Praag. Ik wil jou in het bijzonder bedanken voor de grote 

inspanning die je hebt verricht om alle figuren in dit boekje er een beetje 

fatsoenlijk uit te laten zien. Zonder jou was het lelijk geworden.  

 

Ik prijs me gelukkig in alle fasen van mijn tijd als scholier, student en 

PhD-er goede vrienden nabij te hebben gehad: 

 

Astrid en Mirjam, ik kijk met ontzettend veel plezier terug op onze 

gezamenlijke periode op het gymnasium. Hoewel de romereis van toen 

leuk was, vond ik onze eigen romereis, 10 jaar later, eigenlijk veel 

specialer. Ik zie uit naar alle food & drinks trips die nog gaan komen. 

 

Klaas-Jan, ik wil jou enorm bedanken voor onze gedeelde studietijd, 

waarin we veel projecten en vakken samen hebben gedaan. In het 

bijzonder denk ik terug aan de sommensets van Fluid Mechanics 2, die 

eindeloos leken. Ik vond het fijn dat met jou te kunnen doen. Meer nog wil 



 

 

 

ik je bedanken voor het zijn van een goede vriend toen we allebei klaar 

waren met onze studie. Alle avonden die we vulden met uiteenlopende 

bordspellen en goede lange gesprekken over de zin van het leven zijn me 

zeer dierbaar. Hoewel dat er de komende twee jaar iets minder zullen zijn, 

reken ik erop dat we dat daarna kunnen inhalen. 

 

Chris, in welk pretpark we elkaar voor het eerst hebben ontmoet, kan ik 

me niet meer herinneren. Maar ik ben heel gelukkig dat we na zo veel jaar, 

en zo veel afgelegde kilometers achtbaantrack nog steeds niet zijn 

uitgekeken op onze gezamenlijke hobby. De tijd waarin we de internetfora 

domineerden is dan misschien geweest, maar ik ben nog altijd erg blij met 

jou als reisgenoot en als goede vriend. 

 

Voor het delen van mysterieuze weekenddagen wil ik alle bewoners van 

het Spookhuis; Boukje, Femke, Laura, Erik, Friso, zeer bedanken. Jullie 

zijn allemaal schitterende mensen, maar toch het allerbest als volledig 

gezelschap. Ik ga er van uit dat ook wanneer de laatste negen cases ooit 

zijn opgelost, we genoeg andere redenen kunnen verzinnen om nog meer 

weekenden samen door te brengen. 

 

Een aantal mensen verdient mijn grote dank, omdat zij mijn leven op een 

unieke manier hebben veranderd. Ik denk dat ik dankzij de volgende 

mensen een veel rijker mens ben geworden: 

 

Chao, I would like to thank you very much for that one day you invited me 

to a game of badminton. It must have been more than 8 years ago since I 

did some serious sports and that is something you really changed. For that 

I am very grateful. Our endless series of tiresome singles on this particular 

Saturday I will never forget. 

 

Het team van Studium Generale, maar in het bijzonder Peter en Hiska, ik 

ben jullie enorm dankbaar voor het moment dat ik in een praktisch lege 

theaterzaal naar opera heb kunnen kijken. Het was een overweldigende 

ervaring van hele grote schoonheid. De vele avonden dat ik hierna heb 

kunnen genieten van met name dans en ballet zijn erg waardevol voor me 

geweest. Voor mijn kennismaking met de kunsten verdienen jullie veel lof.  



 

 

 

Het is enorm bijzonder hoe één iemand op zo veel verschillende gebieden 

precies het juiste voorbeeld kan zijn. Boukje, ik ben heel gelukkig dat ik je 

heb leren kennen. Veel uitgebreider dan dat ik hier kan doen, schreef ik je 

al eens hoe blij ik ben met jouw inspiratie op het sportveld, in de keuken, 

in het theater en in de collegezaal. Eerder dacht ik dat er wel aspecten 

zouden zijn waarop je misschien een minder goed voorbeeld bent, maar 

inmiddels sluit ik niet uit dat paaldansen enorm verlichtend zou kunnen 

zijn. Ik overweeg het. Je bent een goede muze en een nog veel betere 

vriendin. 

 

Tenslotte schieten woorden te kort om te beschrijven hoe groot mijn 

grensoverschrijdende dank is voor de twee geweldige personen zonder wie 

mijn promotie absoluut niet mogelijk was geweest.  

 

Marcel, je bent een fantastische begeleider! Ik kijk echt met heel veel 

plezier terug onze tijd samen. Je had altijd leuke ideeën, goede vragen en 

interessante theorieën die ik niet altijd direct begreep. Zo herinner ik me 

een ochtend waarop ik je vertelde dat ik eindelijk begreep wat je me een 

jaar eerder had gevraagd. Die vraag had ik toen wel diezelfde ochtend nog 

beantwoord. Inmiddels denk ik dat ik je bijna altijd snap. Ik denk dat je 

zo’n goede begeleider was, omdat het je is gelukt om jouw enthousiasme 

op mij over te brengen. Dat werkt zeer aanstekelijk.   

 

André, je bent een fantastische promotor! Ik wil je ontzettend bedanken 

voor je grote vertrouwen in mij. Vanaf het moment dat ik studentassistent 

was bij stijfheid en sterkte ben je een hele goede leermeester geweest. Je 

hebt me veel vrijheid gegeven in mijn onderzoek en je had altijd goed 

advies. In de meeste gevallen had je gelijk. De bovenmenselijke 

inspanningen die je hebt geleverd om mijn docentschap mogelijk te maken 

en om me op de UT te kunnen laten blijven, ontroeren me zeer. Ik hoop 

dat ik ook tijdens je welverdiende pensioen af en toe een beroep kan doen 

op je wijze raad.  

 

 

Ten diepste zijn jullie allemaal hele lieve schatjes, dank jullie wel! 

  



 

 

 

  



 

 

 

 


