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Heat exposure has become a global threat to human health and life with increasing temperatures and frequency
of extreme heat events. Considering risk as a function of both heat vulnerability and hazard intensity, this study
examines whether poor urban dwellers residing in slums are exposed to higher temperature, adding to their vul-
nerable demographic and health conditions. Instead of being restricted by sampling size of pixels or other land
surface zones, this study follows the intrinsic latent patterns of the heat phenomenon to examine the association
between small clusters of slums and heat patterns. Remotely sensed land surface temperature (LST) datasets of
moderate resolution are employed to derive the morphological features of the temperature patterns in the city of
Ahmedabad, India at the local scale. The optimal representations of temperature pattern morphology are learnt
automatically from temporally adjacent images without manually choosing model hyper-parameters. The mor-
phological features are then evaluated to identify the local scale temperature pattern at slum locations. Results
show that in particular locations with slums are exposed to a locally high temperature. More specifically, larger
slums tend to be exposed to a more intense locally high temperature compared to smaller slums. Due to the small
size of slums in Ahmedabad, it is hard to conclude whether slums are impacting the locally high temperature, or
slums are more likely to be located in poorly built places already with a locally high temperature. This study com-
plements the missing dimension of hazard investigation to heat-related risk analysis of slums. The study devel-
oped a workflow of exploring the temperature patterns at the local scale and examination of heat exposure of
slums. It extends the conventional city scale urban temperature analysis into local scales and introduces morpho-
logical measurements as new parameters to quantify temperature patterns at a more detailed level.
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1. Introduction
1.1. Excessive heat and extreme heat events

The global temperature keeps rising (Change, 2014) along with dis-
proportionate variations leading to a change in the frequency of ex-
treme climate events and causing the majority of the global land
surface to experience an increase of extreme heat events (Stocker,
2014; Wigley, 2009). Even worse, as near-surface temperature is largely
governed by the land surface specification, the built environment with
more dense buildings, impervious surfaces, and less vegetation within
urban areas exhibits a doubled warming rate of the global level (Stone
et al., 2013). Such higher temperatures in urban areas, known as
Urban Heat Islands (UHI) (Balchin and Pye, 1947), have been detected
and documented for nearly 200 years (Howard, 1818, 1833). Their mag-
nitude could be up to 12 °C in clear and calm weather condition
(Landsberg, 1981; Oke, 1973, 1981; Oke, 1982). With the advancement
of airborne sensors in monitoring land surface temperature (LST), the
surface UHI is also considered as an important indicator of urban envi-
ronment (Rao, 1972; Roth et al., 1989; Streutker, 2002, 2003; Voogt
and Oke, 1997).

1.2. Discrepancies in local scale heat related risk analysis

With increasingly high temperatures in urban areas, a paradigm
shift has can be observed from disaster response management to proac-
tive risk management (Assembly, 2015; Change, 2014; Chu, 2015; Leal
Filho, 2016). Due to the intra-urban heat risk variations within cities es-
pecially in developing countries, urban dwellers are more likely to be af-
fected by heat-related morbidity and mortality risks (Kjellstrom et al.,
2007; McGeehin and Mirabelli, 2001; Romero-Lankao et al., 2016).
Thus feasible and effective risk management is recommended to be
local level oriented and prioritized for groups with the highest heat
risk (Baker, 2012; Chang et al., 2007; Chu, 2015; Larsen, 2015). Only a
limited number of studies in South Asian cities such as Mumbai, Delhi,
Ahmedabad and Surat in India localized the heat related risks by sug-
gesting that slum dwellers are more vulnerable than others to extreme
heat due to poor demographic, physiological and economic conditions
(Hajat et al., 2005; Nag et al., 2009; Rathi et al., 2017; Romero-Lankao
et al, 2016; Tran et al,, 2013). These studies only addressed risks by ex-
clusively focusing on the heat vulnerability in terms of socioeconomic
attributes (Chaudhury et al., 2000; Dash and Kjellstrom, 2011). How-
ever, as risk is a function of hazard intensity and vulnerability of people
exposed to the hazard (Blaikie et al., 2014; Brooks et al., 2005). Only one
related study in Ahmedabad suggested that slum dwellers may experi-
ence a higher temperature by using a ground survey covering only a
limited number of households (Knowlton et al., 2014). The local scale
exposure pattern of vulnerable slum dwellers to high-temperature haz-
ards in a whole city has never been examined.

It has been widely acknowledged that local scale temperature varia-
tions within urban areas should not be neglected due to the diverse
intra-urban land surface specifications (Arnfield, 2003; Kalnay and Cai,
2003). Slums defined as areas lacking access to satisfactory water, sani-
tation, durable housing or tenure security (Un-Habitat, 2016), are with
dense and poorly built forms and materials subject to extreme heat. Un-
fortunately, high temperature patterns such as the UHI phenomenon
depicted either through in-situ measurements or satellite images are
dominated by the “urban-rural” dichotomy, providing aggregated infor-
mation at city or regional scales (Stewart, 2011a; Stewart, 2011b;
Stewart and Oke, 2012). A handful attempts using thermal satellite im-
ages in examination of the local scale temperature variations are either
restricted by the pixel level or averaging the pixel values into census
tracts or districts bounded by road networks (Amiri et al., 2009;
Buyantuyev and Wu, 2010; Chang et al., 2007; Connors et al., 2013;
Coutts et al., 2016; Kroeger et al., 2018; Norton et al., 2015; Preston
etal., 2011; Stewart and Oke, 2009; Svensson and Eliasson, 2002; Yin

et al.,, 2018). These studies essentially focused on temperature values
with different granularity instead of the intrinsic temperature patterns.
One exception, focusing on local scale LST variation at the phenomenon
level, is based upon visual identification of surface heat islands (Gulbe
etal, 2017).

1.3. The temperature patterns of slum areas

Temperature patterns are essentially continuous in space and time
hidden in noisy discrete observations in the form of in-situ measure-
ments or satellite images, which should be recovered through modeling
(Goodchild, 1987). The UHI at city or regional scale provides an inspir-
ing concept for characterizing temperature patterns through spatial or
morphological parameters such as extent, magnitude and location,
and shows an association between these parameters and city size and
location (Quan et al., 2014; Streutker, 2002, 2003 ). These morphological
parameters capture the intrinsic patterns of the temperature phenome-
non instead of being restricted by the pixel size or artificially defined
land patch units. Recognizing such benefits, this study builds on the
strength of morphological parameters to characterize the local scale
temperature patterns. Similar to the city or regional scale UHI, the pres-
ence of slums are to be associated with local scale morphological fea-
tures of temperature patterns such as “island-shaped” temperature
bumps. Therefore, this study aims to answer: (1) whether slums are
experiencing higher temperature compared to other built environ-
ments, and (2) how slums are associated with local scale temperature
patterns?

2. Study area and data
2.1. Study area

The case study city of Ahmedabad, India is the sixth largest city
of India with a population of approximately 5.6 million and less than
5% of the population lives in slums according to the census
(Chandramouli and General, 2011). However, this statistic excludes a
large part of physically deprived areas such as chawls that are working
class housing of very poor conditions. Local data from the municipality
conclude a much larger amount of population (around 18%) living in
slum conditions, which also matches with insights we have from field
visits (therefore this data is used as a reference in this study)
(Garland, 2016). In general, such areas suffer from high temperature
and frequent heat waves (Azhar et al., 2014). The average summer tem-
perature is 38.8 °C through March to June. The heat waves can intensify
the daily maxima during the hottest month of May, for instance, the
worst heat wave in the recent history of Ahmedabad (in 2010) in-
creased the temperature up to 46.8 °C (Knowlton et al., 2014).

The 56 x 44 km rectangular shaped study area encompasses the en-
tire Ahmedabad municipality and its rural surroundings to represent
land use and land cover diversity (Fig. 1). The coordinates of the north-
western and southeastern corners are “23.22 N, 72.31E” and “22.83 N,
72.84E”, respectively. The municipal boundary along with the adminis-
trative wards is highlighted by black solid lines.

2.2. Data

Using dense automatic weather station (AWS) networks to observe
near-surface air temperature is not possible in developing countries,
where commonly only one AWS (distant from urban areas) can be
found at the airport. Alternatively, the LST recorded by thermal satellite
images with resolutions coarser than 250 m can be used as a strong in-
dicator of the variation of near surface air temperature despite of dis-
tinctively different meteorological and thermodynamic processes
between near surface air temperature and the LST (Coutts et al., 2016;
Klok et al., 2012; Stoll and Brazel, 1992).
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Fig. 1. The study area of Ahmedabad, India shown as (a) false-color Landsat 7 ETM+ image highlighting the built-up environment of the urban core and rural surroundings, and (b) the
Landsat 7 ETM+ thermal image acquired on May 02, 2010 with urban slums shown as green polygons.

Considering that Ahmedabad experiences the highest tempera-
ture in May, the MODerate-resolution Imaging Spectroradiometer
(MODIS) Terra (MOD11A2) and Aqua (MYD11A2) V6 LST/E 8-Day
L3 Global 1 km Grid products (https://ladsweb.modaps.eosdis.
nasa.gov/search/) are used to capture the average LST patterns
every 8 days in May 2010 corresponding to the year of slum data
acquirement. At local time, Terra captures the LST at 10:30 and
22:30, while Aqua captures the LST at 01:30 and 13:30. Generated
by the split-window LST algorithm (Wan and Dozier, 1996), these
daily products are validated with an accuracy better than 1 °C
(0.5 °Cin most cases) (Wan, 2008, 2014). Four sets of 8-day aver-
age daily LST images spanning through the entire month of May
are used providing average daily LST patterns of 1st ~ 8th, 9th
~ 16th, 17th ~ 24th, and 25th ~ 31st, May, respectively. Each set
contains the Terra and Aqua images at the four time points, thus
16 images are used in total. The urban slum boundaries are
obtained from the municipality of Ahmedabad, India, 2010 (Fig. 1

(b)).

3. Methodology

Following the concept of the UHI at the city or regional scale, the la-
tent patterns of the LST is recovered from the noisy observation for mor-
phological characterization of slums locations to examine whether
“island-shaped” morphological features can be associated with the
presence of slums.

3.1. Latent patterns of temperature variations

Remotely sensed LST suffers from noise and missing data due to un-
desirable weather conditions, atmospheric and radiation interferences,
or sensor malfunctioning (Li et al., 2013). To overcome these limitations,
one can assume the LST of coarse resolution to be a satisfactory proxy of
the variation of near surface air temperature (Coutts et al., 2016), which
is a continuous latent process hidden in discrete noisy image data,
which needs to be recovered (Wang et al.,, 2015b). The benefit of the re-
covery is twofold: (1) the missing values are filled and noises are
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smoothen, and (2) the latent continuous process supports efficient pat-
tern analysis (Goodchild, 1987). While previous studies have shown the
strength of parametric and non-parametric models in recovering of the
latent LST (Rajasekar and Weng, 2009; Streutker, 2002), the prior as-
sumption of forms and hyper-parameters (kernel size) required are ar-
tificially selected, leading to rigorous representation of the latent LST
process at the city scale. Thus the variations within cities are ignored.

The Multi-Task Gaussian Process (MTGP) model is applied in this
study to recover the latent temperature patterns as the model takes ad-
vantage of both the flexibility of non-parametric modeling and machine
learning (Bonilla et al,, 2008; Wang et al,, 2015b). The MTGP model is an
extension of the Gaussian Process (GP) (Rasmussen, 2006) model
(known as Kriging approach in geographic science) by assuming multi-
ple GPs are correlated, where the multiple processes are called Multi-
Task GPs. When this is applied to LST datasets, the MTGP model not
only treats temperature variations in one image to be spatially corre-
lated but also considers temporally adjacent images to be correlated
as Multi-Tasks. Thus the continuous latent patterns of the LST in one
image can be recovered from the observations in that image and from
temporally adjacent images. In this study, the daytime LST images ac-
quired at 10:30 and 13:30 on the same day (within 3 h) with similar
spatial variation patterns are considered as two correlated processes
or tasks in the MTGP model despite of their difference in absolute tem-
perature value. Same assumption applies to the two nighttime images
acquired at 22:30 and 1:30. The MTGP automatically selects the optimal
hyper-parameters to properly resemble the variation of the tempera-
ture while smoothing out noises. The robustness of the MTGP in recov-
ering latent LST patterns by using images with extensive missing pixels
has been well documented (Wang et al., 2015b) and details can be
found in the Appendix A.

3.2. The morphology of latent LST patterns at local scale

The spatial analysis is subject to the issue of scale (Woodcock and
Strahler, 1987), which defines a rough range of the analysis (Arnfield,
2003; Stewart and Oke, 2012). For example, “city-scale” varies along
with the size of cities. The situation also applies to local scale analysis
of LST patterns as the latent LST patterns can be contiguous, crossed or
overlapped to form morphological features with different sizes. As
shown in Fig. 2, it can be difficult to decide whether the ridge or cap

Ridge or cap shaped

convex curve with larger
curvedness and smaller
scale. N

Temperaure

Rut or cup sha/ped concave *,
curve with sharper and LY
larger curvedness and *

smaller scale. i

shaped latent patterns labeled “1” and “3” (highlighted by the solid
red line) are close enough to each other. They can be treated either as
separated or as single “island-shaped” morphological feature
highlighted by the green dashed line ignoring the rut or cup shaped pat-
tern labeled “2”.

The Multi-Scale Shape Index (MSSI) (Bonde et al., 2013) as an exten-
sion of Koenderink's Shape Index (SI) (Koenderink and van Doorn,
1992) is applied to evaluate the morphological features of the latent
LST patterns at the optimal scale. The evaluation thus contains two
steps: 1) optimal scale selection in the scale space (Lowe, 1999), and
2) the morphological evaluation.

The scale space S is generated by projecting the latent LST patterns f
(s) through

N

S(f(s),0) = f(s) x k(s—u,0) = /f(u)k(s—u,@)du, (1)

0

where k(-,-) is the Gaussian kernel with varying smoothing magnitude 6
centered at each location u on the surface s. Thus S is a 3-dimensional
space, where different scales of the original 2-dimensional LST patterns
produced by the smoothing kernel are distributed along the third
dimension.

Selecting the optimal scale at each pixel location implies to find the
characteristic scale that best manifests the local feature at that location.
The local feature should be most stable along the change of the kernel
smoothing magnitude 6 at the characteristic scale. Thus the optimal
scale minimizes the traveled distance of the original pixel shifted by
the smoothing kernel. While the distance shifted on an image surface
is the difference between original and smoothed pixel values, the opti-
mal scale 6* can be found as

a(lIscf,0)—fI
o _2(SU0-11) 2

where the zero derivative means that the local feature at the optimal
scale should remain stable as the scale changes.
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Fig. 2. One dimensional schematic illustration of how local temperature variations should be evaluated at proper scale.
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Then the Sl is evaluated at the optimal scale at each pixel location on
a surface to obtain the MSSI. The Sl is defined as

I Siel-1,1], 3)
2 1

SI = % arctan
m

where k7 and Ky (K7 2 Ky) are the principle curvatures, which can be
evaluated through eigenvalues of the Hessian matrix. The SI encodes
the morphological transition among typical features such as cup, rut,
saddle, ridge, and cap within the interval [—1, 1]. Thus it captures the
spatial and magnitude properties of local LST patterns.

Along with the MSSI, the curvedness, which is inverse proportional
to the optimal size or scale, is also used to distinguish morphological
features with the same shape but different sizes. At the optimal scale
0", the curvedness is obtained based upon principle curvatures as

2 2
curvedness = \/@. (7)

A complete profile of latent LST patterns can be described with the
combination of the MSSI, curvedness or optimal scale.

4. Results
4.1. The recovery of latent LST patterns

The MODIS LST image data of the study area acquired at 01:30 on
May 01, 2010 is used to illustrate the reliability of the latent LST pattern
recovery. A rarely found original image (Fig. 4(a)) without missing pixel
values is artificially degraded by randomly deleting 10% of the total
pixels to model cloud contaminated images (Fig. 4(b)). The recovered
latent LST is shown in Fig. 4(c). By maximizing the marginal likelihood
in Eq. (6), the recovered latent LST avoids either under- or over-
fitting. The recovery fills the missing values and popularizes the resolu-
tion of the image by a factor of 2 so that the continuous latent LST is
smooth enough for pattern analysis. The recovery has been repeated
30 times to ensure robustness. The average of the 30-time-repetition
shows the difference between the observed and recovered latent LST
to be acceptable with RMSE of 0.086 °C (Fig. 4(d)). The statistical sum-
mary of the observed and recovered LST is presented in Table 1, which
indicates the validity of the assumption applied in the MTGP model.

Relying on the robustness of the MTGP modeling, the latent diurnal
LST patterns in May are recovered by using the MODIS/Terra
(MOD11A2) and MODIS/Aqua (MYD11A2) V6 LST/E 8-Day L3 Global
1 km Grid products. The 8-Day composite data can capture well the av-
erage regulations of diurnal LST patterns in May. The 8-day average la-
tent diurnal LST patterns through 1st to 8th of May 2010 are
recovered and visualized in Fig. 5. The average LST increases from
26.79 °C at 01:30 to 43.75 °C at 10:30, and reaches the daily maximum
of 49.17 °C at 13:30, then drops to 28.71 °C at 22:30.

Different legend intervals are applied for the LST patterns in Fig. 5 to
highlight the spatial distribution of high and low temperature within
the same image. During the day, the highest LST values are found in
rural areas to the west of the study area, which are mostly covered by
seasonal agricultural land, which is not irrigated. Once the solar radia-
tion is available, the input energy is released as sensible heat leading
to higher temperature than found at places with moisture available for
evapotranspiration. During the night, high LST around the urban core
is more prominent due to its high heat capacity with delayed a rise of

Table 1
Comparison between observed original LST and recovered LST patterns (°C).
Min Max Mean Median Std.
Observed 11.05 17.45 13.13 12.81 1.10
Latent 1143 17.40 13.14 12.83 1.09

temperature. Thus the LST of the entire study area drops down after
the sunset, the slower decrease of the LST within the urban core area re-
sults into higher LST compared to rural areas. Such diurnal LST regula-
tions are well documented in previous surface UHI (SUHI) studies
(Gottsche and Olesen, 2001; Imhoff et al., 2010). Areas with lower LST
are found both to the southern and eastern part of the study area
being occupied by fully irrigated croplands, where enough water in
the soil is available for evapotranspiration and split the input energy
of solar radiation more into latent heat and less into sensible heat.

4.2. The morphology of latent LST patterns

Given the diurnal patterns of the LST shown in Section 4.1, the night-
time LST patterns (Fig. 5(a) and (d)), which exhibits full response of the
urban area to the solar radiation, is more meaningful to study how citi-
zens especially slum dwellers are exposed to a potential high tempera-
ture. If only the daytime snapshots of the LST dynamics are used, the
association of the patterns between the LST and slums can be substan-
tially underestimated. Thus the following investigations focus on night-
time LST patterns.

As interpreted in Section 3.2, the MSSI measures morphological fea-
tures such as cup, rut, saddle, ridge, and cap at the optimal local scale.
Take the latent LST patterns in Fig. 4(c) acquired at 01:30 on May 1st
as an example, a visually random distribution of morphological features
can be observed in Fig. 6(a). This is due to the Shape Index (SI) (Eq. (3))
is measured uniformly at pixel level without considering the scale. Thus
the patterns belonging to the same morphological feature are unneces-
sarily evaluated individually. In contrast, the MSSI can better capture
the morphological features by showing meaningful distributions
(Fig. 6(b)). For instance, the visually detectable cap shaped morphol-
ogies in urban areas (highlighted by the black boundary) in Fig. 4
(c) are properly evaluated as larger features where most of the pixels
are estimated as positive MSSI. The cup shaped feature to the northeast
of the study area is also a satisfying example as a cluster of negative
MSSIs. Whereas the variations inside this large cup shaped features
are improperly captured by applying the SI at pixel level, producing a
fragmented morphological evaluation (Fig. 6(a)).

4.3. The local scale thermal patterns of urban slums

The MSSI not only delineates the spatial morphology of how the
temperature at a location is different from its surroundings but also en-
codes the extent of the difference. As shown in Fig. 3, a location with a
MSSI greater than 0.5 means that the temperature at this location is
higher than the surroundings, while a MSSI of 0-0.5 means the temper-
ature at this location is only higher than part of its surroundings. Fur-
thermore, the curvedness measures the magnitude of the locally high
or low LST. For example, large curvedness indicates large LST gradient
and sharp contrast leading to a prominent morphological feature.

To examine whether slums are exposed to a locally high tempera-
ture, we need to check whether the location with the presence of
slums is associated with a positive MSSIL For illustration, a 1-
dimensional sample is drawn from the central cross-section of the
study area to evaluate the association between the local scale LST pat-
tern at 01:30 on May 1st and the distribution pattern of slums (Fig. 7
(a)). The 1-dimensional LST pattern and slum distribution are shown
in Fig. 7(b) and (c), respectively. The slums are concentrated in urban
areas with no values at both ends of the 1-dimensional sample. The cor-
responding MSSI and curvedness of the sample LST are shown in Fig. 7
(d) and (e), respectively. The scale inversely proportional to the
curvedness is indicated in color (Fig. 9(e)). The presence of slums
roughly corresponds to locally higher LST shown as yellow bars (Fig. 7
(b) and (c)). These places are all associated with positive MSSI values
(Fig. 7(d)). The highest LST shown by the yellow bars to the right are
evaluated with a MSSI of nearly 1 (Fig. 7(d)) indicating a cap shaped
morphology not observable in the 1-dimensional illustration. This cap
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Fig. 3. The surface morphology in the range of the Shape Index (SI).

shaped LST morphology covers a large area and thus is evaluated with
low curvedness and high value of scale (Fig. 7(e)). Fewer slums are
found to the west of the urban area (highlighted by the yellow bars to
the left). These slums are also associated with positive MSSI values
with sharp curvedness and small scale LST morphology (Fig. 7(d) and
(e)).

To further investigate the association between the local scale LST
morphology and the presence of slums, scatter plots (Fig. 8) of the
slum coverage fraction and the LST morphology at each of 500
x 500 m grid are shown in Fig. 4. Considering the small size of slums rel-
ative to the grid size, the morphological feature evaluated at each pixel
location is ensured to cover the slums in the pixel. Thus slums can be
treated as fully exposed to the morphological feature. Fig. 8(a) not
only confirms the findings of Fig. 7 showing the presence of slums is as-
sociated with positive MSSI, but also showing a positive correlation be-
tween the slum coverage fraction and the MSSI. This means that larger
slums are more likely to be located at places with a locally higher tem-
perature. In addition, the slum coverage fraction is negatively correlated

7]
i
e

o0
7.

LST (°C)

LST (C)

with the curvedness meaning that the temperature difference at the lo-
cations of larger slums can be more preeminent than those at the loca-
tions of smaller slums (Fig. 8(b)). However, the correlations shown in
both Fig. 8(a) and (b) weaken as the slum coverage fraction exceeds
15%.

4.4. Comparison of LST patterns of urban slums

Given the exposure of slums to locally high temperature, the corre-
lations shown in Fig. 8 make it intriguing to examine how temperature
patterns differ between slum and non-slum locations. This can be
achieved through comparing the LST patterns of different land use
types with and without the presence of slums. For this purpose, the
major land use and land cover within the study area are extracted
based upon the primary and secondary classes of the Anderson classifi-
cation system (Anderson, 1976) including residential (predominantly
with living apartments), commercial (predominantly for sale of prod-
ucts and services), mixed-use (residential, commercial and other built

(b)
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Fig. 4. The Gaussian Process using machine learning mechanism for recovering temperature patterns. (a) original LST image acquired at 01:30 on May 01, 2010, (b) LST image with 15%
artificially deleted pixels, (c) latent LST patterns recovered from the artificially manipulated image, and (d) comparison between original and recovered LST datasets.
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Fig. 5. The 8-day average daily LST patterns at (a) 01:30, (b) 10:30, (c) 13:30, and (d) 22:30 of May 1-8, 2010.
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Fig. 6. The morphology of latent LST at 01:30 on May 01, 2010. (a) The SI directly applied to the LST patterns without considering the scales of morphological features. (b) The multi-scale SI
evaluated at each pixel location at its optimal scale.
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Fig. 7. One dimensional details of the evaluation of SI, curvedness, and scale/size. (a) One dimensional sample selection, (b) sample shown in one dimension, (c) corresponding slum
fraction coverage in one dimension, (d) the corresponding multi-scale SI and (e) curvedness and scale/size (locally higher LST as shows as yellow bars).

environment could not be mapped individually), industrial (light and
heavy manufacturing plants), and agricultural lands (primarily for pro-
duction of food and fiber). The seasonal agricultural land is excluded
from the analysis because it is located beyond the urban area.
Waterbodies (both natural and artificial rivers and lakes) are included
as water within the urban core area being an important factor in
governing the local scale climate. All pixels containing slums are consid-
ered as one class.

The median value of LST for each land use and cover type is shown
in Fig. 9. Although the highest LST is found in residential areas, the
median LST at the residential areas is 29.59 °C and lower than
31.27 °C found at places with presence of slums. Furthermore, 50%
of the LST values are found at the high end of the plot of places
with slums. High median LSTs are also found for commercial and in-
dustrial land uses with values of 30.89 °C and 30.61 °C. These areas
are often densely built and industrial plants may not only absorb
solar radiation but also emit anthropogenic heats. The LST of non-
seasonal agricultural has the widest LST range, which may be due
to irrigation and presence of waterbodies. Static waterbodies may
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absorb energy during the day and become warm, whereas flowing
water of the Sabarmati River can be much cooler. A similar situation
is found in MSSI (Fig. 9(b)), where values of places with slums are
clustered at the higher end with a maximum value of 0.98. Only the
lower quartile (25%) of the MSSI values are below 0.6 meaning that
the morphology of the LST patterns around slums are nearly cap
shaped. Commercial, industrial and mixed-use lands also tend to
contribute to locally high LST. Waterbodies can be positive because
the high specific heat capacity of water, which can lead to locally
higher LST during the nighttime. The lower three quartiles of the
curvedness of the LST morphology at places with slums (comprising
75% of the values) are concentrated at the lower end with a median
of 0.01. This means that these places are more likely to intensify
the prominence of locally high temperature.

Combining the findings of Section 4.3, one can conclude that slums
are likely to be located at places with higher temperature. However,
due to the small size of slums within a pixel, it is difficult to quantita-
tively identify the major factors contributing to the locally high LST at
this point.
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Fig. 8. The association between urban slum fraction coverage and morphology of the latent LST patterns represented as (a) the MSSI and (b) curvedness.
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conditions).

Potential interpretations can be either that slum houses tend to
be clustered at densely and poorly built locations producing locally
high LST, or slums are also contributing to locally high LST. Beyond
image-based approaches, census-based surveys and participatory
mapping have already shown that slums are associated with specific
site conditions including hazardous location and densely yet poorly
built old city with job opportunities (Kohli et al., 2012). High build-
ing density, limited vegetation, and poor roof materials are also ob-
served within slums (Davis, 2006; Kohli et al., 2012; Kuffer et al.,
2017; Taubenbdck and Kraff, 2014). The above conditions produce
land surface specifications of high building density, limited sky
view factor, low vegetation coverage, low surface albedo and high
impervious surface coverage, which provoke high LST within and
around slums (Wang and Ouyang, 2017). Quantifying relationships
among the LST and the land surface specifications requires more de-
tailed building level surveys or very high resolution 3-dimensional
measurements, e.g. using Unmanned Aerial Vehicles (UAVs)
(Gevaert et al., 2017; Gevaert et al., 2016; Sliuzas et al., 2017). Fur-
thermore, the relationships at local scale can vary because the land
surface specifications are combined and impact the LST differently
across the city (Georgescu et al., 2014; Gill et al., 2007; Wang and
Ouyang, 2017). For example, in Ahmedabad, slums in residential
areas and industrial areas interact with local LST differently along
with their surrounding environment. The relationship needs to be
examined in more detail with surveys or high resolution data to
identify how major land surface specifications impact local LST be-
fore prioritizing mitigation and adaptation strategies.

Finally, a preliminary year-round analysis is deployed to show how
LST at places with slums varies through months compared to the
study area (Fig. 10). All of the MODIS 8-day images at 01:30 in 2010
are used for year-round analysis resulting in 3 to 4 data points for
each month. Only the maximum and median LSTs are shown. Due to
the monsoon season between June and September, the LST data is sub-
stantially disturbed by frequent and abundant precipitation and thus no
data can be shown. Similar to the information in Fig. 9, the maximum
LST at places with slums is not necessarily yet very close to the highest
LST of the study area throughout the year, whereas the median LST of
places with slums is higher than that of the entire study area throughout
the year.

5. Discussion

Examining the exposure of vulnerable slum dwellers to high tem-
perature hazard is highly demanded, however, the temperature as a
geographic phenomenon is dynamic and uncertain. Thus several theo-
retic, technical implications and limitations are worth discussing.

5.1. Using the LST as a proxy of near surface air temperature

Using LST patterns to investigate the heat exposure of slums brings
the concern of how far one should proceed to use LST as a proxy of
near surface air temperature variation. Due to the limited number of
studies (Vancutsem et al., 2010; ZakSek and Schroedter-Homscheidt,
2009; Zhu et al., 2013), it is difficult to conclude that the correlation be-
tween LST and near surface air temperature is sufficiently understand
(Tomlinson et al., 2011). Following the suggestion of using nighttime
LST images with lower resolution to approximate the variation of near
surface air temperature may, to a large extent, eliminate uncertainties
(Kloog et al., 2014; Yan et al., 2009; Zhu et al., 2017), but it is strongly
recommended to conduct a localized case-specific analysis of LST-air
temperature coupling in future studies. In contrast, substantial parame-
terization is required to adjust the daytime LST to reach agreement with
near surface air temperature (Voogt and Oke, 2003).

5.2. Characterizing the local scale heat patterns with enriched parameters

While vulnerability analysis has been extended into urban areas to
focus on certain groups with lower socioeconomic levels, a localized
analysis of exposure to hazard should also be conducted to localize
risk evaluations. However, conventional heat related meteorological
studies are commonly conducted at regional or city scale, ignoring the
heat variations within urban areas. Recent local scale analysis of heat
patterns within urban areas are locally aggregated or averaging temper-
ature disregarding the fact that intrinsic temperature patterns are not
restricted by the aggregation boundaries of neighborhoods, census
tracts and land use patches(Coutts et al., 2016; Norton et al., 2015).
The morphological-based characterization of LST patterns follows the
suggestion of focusing on the intrinsic pattern of the meteorological
phenomenon before relating it to any land surface factors (Oke, 1982).
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The morphological features evaluated through the MSSI are not re-
stricted by the pixel size or land use patches thus parameters derived
from features properly capture the intrinsic patterns of the LST. Such
an evaluation at the phenomenon level can be considered as a signifi-
cant progress as previous studies focused on local temperature dynam-
ics in artificially defined geographic units without considering the
intrinsic variations and patterns of the phenomenon itself.

Parameters for characterizing local scale temperature patterns are
highly demanded. Although the phenomenon of UHI has been docu-
mented for nearly 200 years (Howard, 1833), the characterization of
the UHI by using geospatial techniques can be traced back for only the
last 15 years marked by the milestone study of the UHI in Houston, US
(Streutker, 2002). Spatial properties of the UHI (e.g., the extent and
range) have only been initiated recently along with the availability of
geospatial data and advancement of modeling techniques. As the inves-
tigation reaches into local scale, existing parameters failed to delineate
the spatial properties of the locally higher LST because of limitations in
modeling techniques or data sources. Thus excessive heat is commonly
investigated through solely comparing the temperature values. The
morphological analysis adds to the spatial dimension complementing
the current approach and providing the opportunity to understand
more about dynamics and impacts of the high temperature especially
for vulnerable groups at local scale. As the temperature value and the
morphology of the temperature patterns capture different properties
of the phenomenon, it is highly recommended to use parameters such
as MSSI and curvedness along with existing ones such as diurnal tem-
perature range (DTR), maximum, and minimum (Stewart, 2011a) to
provide a full picture of temperature dynamics.

5.3. The dynamics of the LST

The LST as a geographic phenomenon is dynamic in both space and
time. Biased conclusions are commonly drawn from limited observation
of LST patterns at a certain scale and a particular point of time. Taking
advantage of the high temporal resolution of MODIS data, this study
has found that the LST in urban areas is higher during the nighttime
and lower during the daytime compared to the rural surroundings,
which can potentially be the opposite in other (less arid) cities. The find-
ings are consistent with previous ones obtained in arid and non-arid cit-
ies (Charabi and Bakhit, 2011; Emmanuel and Fernando, 2007; Golden,
2004; Haashemi et al., 2016; Rasul et al., 2017; Tran et al.,, 2013; Wang
et al.,, 2015a; Zhou et al,, 2014). Thus defining places with high temper-
ature should take this uncertainty into account. This leads to the uncer-
tainty in the association between LST and land surface components. For
instance, the locally high temperature at the places with slums can be
substantially underestimated if only daytime LST is considered. Now,
the findings in this study indicate that slums may suffer from the
prolonged excessive heat during nighttime in addition to the daytime
solar radiation.

5.4. Implications for sustainable and resilient urban development

The conventional three-pillar structure of environmental, social and
economic sustainability has recently been redefined and shifted to a
scheme where socioeconomic sustainability is encompassed by envi-
ronmental sustainability (Wu, 2013). Understanding heat dynamics,
human-climate interactions and environmental impacts of urban devel-
opment form the foundation of sustainable socioeconomic develop-
ment. In sustainable urban planning practice, decision makers and
planners demand detailed guidelines that can be implemented stepwise
and incrementally (Chang et al., 2007; Wang and Ouyang, 2017). Thus
heat mitigation should be locally oriented. The localized analysis of
the intrinsic patterns of the LST can bridge the gap between meteorol-
ogy and urban planning. It provides the planning domain with the op-
portunity to prioritize and pinpoint localized mitigation targets
(Stewart, 2011a).

Sustainable cities intrinsically rely on resilience to absorb, recover
from and adapt to external disturbance (Marchese et al., 2018). Focus-
ing on heat exposure of slums conforms to the rationale of improving
urban resilience by starting with the most vulnerable groups exposed
to hazards (Chu, 2015). Mitigation and adaptation of extreme heat
within and around slums is equivalent to improving the lower bound
of resilience of a city in coping with climate hazards. However, the dy-
namics of the LST addressed in Section 5.3 is also reflected in its forma-
tion mechanism. The dynamics hinder the identification of major land
surface factors impacting the LST due to the time and location of obser-
vation, spatial heterogeneity and spatial diversity of land surface com-
position and configuration (Wang et al., 2016). This contributes to the
frequently observed hesitation in establishing effective mitigation and
adaptation policies (Georgescu et al., 2014; Gill et al., 2007). For in-
stance, even though the increase of vegetation cover has been recog-
nized as an efficient way to mitigate high temperature, planting
vegetation in a place already covered by abundant trees with various
types may bring distinctively different cooling consequences than in a
place with a large fraction of impervious surface. This also applies to
mitigating high LST at places with slums. Besides, the densely packed
slum houses potentially signify the thermal effect of roofs, which re-
quire more detailed information through high resolution imagery or
LiDAR point cloud in conjunction with micro-scale modeling to obtain
the shape, orientation and albedo of the roofs (Ban-Weiss et al., 2015;
Susca et al., 2011; Zhao et al., 2015). Thus effective mitigation strategies
need to be developed after scrutinizing the relationship between the
LST and land surface factors. Besides, land surface specification indica-
tors are insufficiently recognized by decision makers and planners.
While indicators such as vegetation coverage, impervious surface and
building volumes can be modified through planning and design codes
and regulations, other important heat responsive indicators such as
sky view factors are yet be included into planning and design regula-
tions. It means that increasing the transferability of knowledge in cli-
mate study to the planning domain is demanded for effective
mitigation and adaptation policies.

6. Conclusions

Through exploring the exposure of slums to high temperature, this
study develops a framework to examine the local scale morphological
patterns of temperature. This morphological characterization facilitates
the application of spatially sensitive parameters to the LST patterns and
improves the understanding of the intrinsic pattern of the temperature
phenomenon. The locally high temperature coincides with the presence
of slums indicating that places with slums are exposed to an excessive
heat compared to their local surroundings. Furthermore, the morpho-
logical parameters of the LST patterns indicate that larger slums are
more likely to be located at places with a locally higher temperature.
However, it is difficult to conclude if slums themselves partially govern
the locally high temperature. By comparing the LST patterns at places
with slums and those at places of other land use and cover types the
study shows that places with slums are with higher temperature com-
pared to places without slums. Due to the small size of slums, a sub-
pixel level analysis is required for concluding whether slums contribute
to the high temperature or whether slums are clustered at a poorly built
environment already with high temperature.

There are two major implications of the study. Firstly, local scale in-
vestigation of the heat helps to better understand the potential hazard
faced by vulnerable groups in urban areas, and progressively better cap-
tures the risks. Secondly, a local scale study of the temperature fills the
research gap between meteorology and urban planning as planners and
decision-makers are searching for more localized guidelines. Several is-
sues need to be clarified and improved in future studies. For instance,
the higher temporal resolution of MODIS data means detailed spatial
variations of the LST are ignored and may lead to biased conclusions.
In addition, the exposure to a heat hazard can be caused by not only
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high temperature but also dramatic variation of temperature, thus tem-
poral investigation of the temperature patterns is demanded.
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Appendix A

In mathematical formalization of the MTGP, the LST datasets D with
the same spatial coverage and acquired at different times on different
images can be defined as D = {(x;ty)|i = 1,...,n,j = 1,...,m}, where X;
is the index of i*" spatial location in d dimensional space R? (R? in this
case), nn is the number of pixels on one image, and m is the number of
images considered as multi-tasks in the model (m = 2 in this case).
Here, t;; denotes the observed LST value at location x; on the ™M image
producing the multi-task formalization, where each task j corresponds
to an image at a time containing n data points (tyj,...ts;). The MTGP im-
poses no exact prior form on the LST observations such as t = f(x) + &
with noise e~N(0, 02). Instead, it generalizes the function into an infi-
nitely long vector [f;,...,f,]". Any finite set of the vector is jointly Gauss-
ian. The model f(x) ~ GP(m(x), K'K*) is completely specified by the
mean function m(x) and covariance function. Kis a covariance structure
incorporating the inter-task information shared between tasks, and k* is
the covariance between measurement locations. The Automatic Rele-
vance Determinant (ARD) is applied as a 2-dimensional version of the
Squared Exponential (SE) covariance function. Within the Bayesian
scheme, make inference of latent LST value f* becomes to solve the con-
ditional probability and gives

. - . P(tX, f)P(fX)
P(f*|X". X, t) = /(P(f \X,I)W>df

~N(M@) + K ) (K+021) " (t-ME), (4)
K(x*,x")—K(x", %) [K(x,x) + 021 _11((x,x*)

The mean of the LST f” is achieved through

f;=m@x) + (Kek (x*7x))T<l<f ®K* + A®I ) (t=m(x)), 5)
where ® operates the Kronecker product of matrices or vectors. K" and
K* are inter and intra-task covariance matrices, respectively. k”is a col-
umn vector denoting task covariance involving inference. k* is the co-
variance between locations, and A is a diagonal matrix in which noise
o are recorded.

Machine learning is applied by using the normalizing term of the
Bayesian structure in Eq. (4) to learn the hyper-parameters of the ARD
covariance function, by maximizing the log marginal likelihood as

log | P(EX.FPUIX)AS
t(l(+o§l)’1t—% log|1(+o§1|—g log2r. (6)
The trade-off between data fitting and model complexity is automat-

ically controlled by the data fit term —t(K + o2I)~ 't and complexity
penalty term log|K + o?2l|, which is referred as William of Occam's

principle of “Plurality should not be assumed without necessity”
(Rasmussen, 2006; Rasmussen and Ghahramani, 2001).
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