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Abstract: A very common case for law enforcement is recognition of suspects from a long distance or in a crowd. This is an
important application for low-resolution face recognition (in the authors' case, face region below 40 x 40 pixels in size). Normally,
high-resolution images of the suspects are used as references, which will lead to a resolution mismatch of the target and
reference images since the target images are usually taken at a long distance and are of low resolution. Most existing methods
that are designed to match high-resolution images cannot handle low-resolution probes well. In this study, they propose a novel
method especially designed to compare low-resolution images with high-resolution ones, which is based on the log-likelihood
ratio (LLR). In addition, they demonstrate the difference in recognition performance between real low-resolution images and
images down-sampled from high-resolution ones. Misalignment is one of the most important issues in low-resolution face
recognition. Two approaches — matching-score-based registration and extended training of images with various alignments —
are introduced to handle the alignment problem. Their experiments on real low-resolution face databases show that their

methods outperform the state-of-the-art.

1 Introduction

Biometric face recognition for high-resolution images has been
highly successful. However, low-resolution face recognition, which
refers to the case where at least the probe images are of low
resolution (in our case, a face region below 40 x 40 pixels), is a
challenging task because low-resolution face images contain less
discriminative information than higher-resolution face images.

In low-resolution face recognition, a common surveillance task
is, given a list of suspects, to try to verify whether a person in the
surveillance scene is on this list (in face recognition known as
gallery). Usually, the gallery images are high-resolution frontal
images of high quality. The probe images are taken at a distance
and without user cooperation. We call this sort of images ‘real low-
resolution images’ as opposed to low-resolution images obtained
by down-sampling. The images are not only of low resolution, but
also have a higher-noise level and deviate in other ways from the
high-resolution gallery images. However, most classifiers are
designed to work properly for images of the same high resolution
and cannot handle the resolution and quality mismatch. There are
three approaches to deal with the resolution mismatch in low-
resolution face recognition. The first one is to reconstruct higher-
resolution probes using super-resolution techniques, and perform
comparison with the gallery images in the high-resolution space [1,
2]. The second approach is to down-sample the high-resolution
galleries and compare them with the probes in the low-resolution
space. Since the low-resolution images are smaller than the high-
resolution ones, this approach involves lower computational costs.
The third approach is to compare the low-resolution probe images
to the high-resolution gallery images directly. Most methods
following this approach find mappings to project both low-
resolution and high-resolution images to a common space in which
a direct comparison is performed.

It is hard to compare the existing methods directly due to the
lack of a common protocol: everyone uses a different experimental
setting. Another issue is that most researchers only present closed-
set identification results such as the rank-1 recognition rate. These
results depend highly on the size of the test sets, the number of
subjects and on whether the classifier was trained on the galleries.
Verification results are better suited for direct comparison and they
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directly address a relevant biometric question: ‘Are the two images
of the same person?’.

The evaluation of most existing methods for low-resolution face
recognition is based on images that were aligned at high resolution
and then smoothed and down-sampled (ds) to low resolution.
However, we observe that in [3-6] the face recognition
performance on ds images is much better than on real low-
resolution images. In this paper, we will confirm these observations
and conclude that, in order to produce realistic results, experiments
should be based on real low-resolution images.

In this paper, instead of proposing a general face recognition
method, we deal with problems in the specific scenario as
mentioned above: comparison of low-resolution probes with high-
resolution galleries. We extend our work in [7] concerning a
method especially designed for comparing images captured at
different distances, called mixed-resolution biometric comparison.
This method not only works for different resolutions, but also
captures other differences between images recorded at various
distances. Since proper alignment proves to be crucial for a good
recognition performance, and precise alignment (e.g. via accurately
detected facial landmarks) is difficult for low-resolution images,
we provide two methods to deal with the alignment problem:
matching-score-based registration and extended training with
images with slightly varying alignment. We demonstrate that the
combination of the three methods outperforms the state-of-the-art
for real low-resolution face recognition. In addition, we address the
differences in face recognition performance between ds and real
low-resolution images and pay special attention to proper
evaluation protocols.

We conduct experiments of different settings using images of
varying resolutions. First, we duplicate the experimental protocol
of a state-of-the-art method so that we can directly compare our
methods to it. Then, we set up a more realistic experiment to
demonstrate that our methods are effective in realistic situations.

In the remainder of this paper, we use the terms HiRes, LoRes
and SupRes for high-resolution, low-resolution and super-
resolution.

This paper is organised as follows: Section 2 is a literature
review of existing low-resolution face recognition methods. In
Section 3, we explain why researchers should present results from
real low-resolution images by demonstrating the difference
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Table 1 Papers using ds data as probe

Method Database Nc Ng Np  IMsize Rank-1, % Approach
CKE [5] multi-PIE 229 7 13 6x6 88 LoRes-HiRes
CDA [4] multi-PIE 100 10 10+ 6X6 79 LoRes-HiRes
MDS [3] multi-PIE 237 1 1 12x 10 81 LoRes-HiRes
DTCWT [8] multi-PIE 202 1 20 20 %20 99 SupRes-HiRes
SDA [9] multi-PIE 149 1 10+ 12x12 70 LoRes-HiRes
S2R2 [10] multi-PIE 224 1 13 6x6 73 SupRes—HiRes
MFF [11] FERET 200 1 1 12x 12 84 SupRes—HiRes
NMCF [12] FERET 1195 1 1 12x 12 84 LoRes-HiRes
CLPM [13] FERET 1195 1 1 12x 12 90 LoRes-HiRes
graph DA on multi-manifold [14] AR 126 7 7 87 72 SupRes—HiRes
MM [1] CMUvideo 68 1 16 23x23 81 SupRes-HiRes
EigenSR [15] CMUvideo 68 1 16 10x 10 74 SupRes-HiRes
EigenTr [16] XM2VTS 295 1 1 10x 10 59 SupRes-HiRes
DSR [6] FRGC v2.0 311 8 2 7%6 78 SupRes-HiRes

N¢ is number of subjects for testing, Ng is number of images per subject in the gallery set, Np is number of images per subject in the probe set and IMsize is the probe image size (in
pixels). CKE: Coupled kernel embedding, CDA: Coupled discriminant analysis, MDS: Multidimensional scaling, SDA: simultaneous discriminant analysis, MFF: Multi-resolution
feature fusion, NMCF: nonlinear mappings on coherent features, DTCWT: Dual-Tree Complex Wavelet Transform , CLPM: coupled locality preserving mappings, DSR:
discriminative super-resolution, CBD: Semi-coupled basis and distance metric learning, MM: Morphable model, EigenTr: eigen transformation.

Table 2 Papers using real LoRes data as probe

Method Database Gallery Probe Nc Ng Np Rank-1, % Approach

CKE [5] SCface mug-shot dist1 130 1 5 8 LoRes-HiRes
DSR [6] SCface dist2 dist1 130 5 5 22 SupRes-HiRes
CBD [17] SCface dist3 dist2 100 4 1 53 LoRes-HiRes
CDA [4] localvideo Photograph video 161 5 5 53 LoRes-HiRes
DTCWT [8] localvideo Photograph video 34 1? 1 56 SupRes-HiRes

N¢ is number of subjects for testing, Ng is number of images per subject in the gallery set and Np is number of images per subject in the probe set. As for the SCface database, the

images from dist1, dist2 and dist3 are captured at a distance of 4.2, 2.6 and 1.0 m.

between using ds and real low-resolution probes. Our proposed
methods — mixed-resolution biometric comparison, matching-
score-based registration and extended training are introduced in
Section 4. In Section 5 we report results and Section 6 presents the
conclusions.

2 Approaches to LoRes—-HiRes comparison

Face recognition for low resolution is different from face
recognition for high resolution. First, it is much harder to detect
landmarks reliably and accurately in LoRes images. In addition,
LoRes images contain far less discriminative information than
HiRes images. There is a small, but growing body of literature that
specifically addresses the problem of LoRes face recognition.
Important references of LoRes face recognition are listed in
Tables 1 and 2. Table 1 lists papers that present experiments on ds
probe images and Table 2 lists papers using real LoRes probe
images. We separate the papers in two tables because the
evaluation of the two types of data is different. We will discuss the
differences in Section 3. In the tables, we include the methods, the
experimental settings and rank-1 recognition rates. As we can see,
each paper presents experiments in a different setting even when
they use the same database. For example, there are three papers
which conducted experiments on the surveillance camera face
(SCface) database in Table 2, but they have different numbers of
subjects for testing, different numbers of gallery and probe images
per subject. This makes it impossible to compare the methods
objectively.

As mentioned in Section 1, existing methods solve the
resolution mismatch problem mainly by following the three
approaches: applying SupRes to LoRes probes, down-sampling
HiRes gallery images and direct LoRes—HiRes comparison. We
will discuss the existing methods based on the three approaches.
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2.1 SupRes versus HiRes comparison

Since most face recognition systems are designed for HiRes
images, many researchers reconstruct HiRes versions from the
LoRes probes using SupRes techniques to make use of the
information contained in the HiRes gallery images and conduct
comparison in the HiRes space.

The simplest SupRes approach is interpolation. It up-samples
the LoRes images, but does not use additional information about
the images, e.g. that they are faces. Thus, the resulting images
usually have poor recognition performance because there is still a
large difference between the gallery and probe images.

Face hallucination refers to SupRes techniques that were
specially designed to improve face image quality. Baker and
Kanade [18] proposed a method that learns a priori on the spatial
distribution of image gradients for frontal face images. Then, this
prior is incorporated in the maximum a posteriori (MAP)
framework. Wang and Tang [16] proposed a face hallucination
method using eigen transformation. The input LoRes image is
represented as a linear combination of the LoRes images in the
training set by principal component analysis (PCA). The SupRes
image is reconstructed using the corresponding HiRes training
images with the same coefficients.

Though the face hallucination methods can enhance visual
image quality, the restored information may not contribute to better
face recognition. Therefore, researchers started to work on SupRes
methods that aim to improve face recognition performance.
Gunturk et al. [15] proposed to apply SupRes in an eigen domain
that reconstructs only the necessary information for recognition.
Hennings-Yeomans et al. [19] built a model for SupRes based on
Tikhonov regularisation and a linear feature extraction stage. This
model can be applied when images from training, gallery and probe
sets have varying resolutions. This approach is extended in [10] by
adding a face prior to the model and using relative residuals as
measures of fit. Zou and Yuen [2] developed a data constraint to
minimise both the distances between the constructed SupRes
images and the corresponding HiRes images as well as the
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distances between SupRes images from the same class. This
method is extended in [6] with a linearity cluster. Bilgazyev et al.
[8] proposed a method that uses dual-tree complex wavelet
transform to extract high-frequency components of training
images. Then, the SupRes features are represented as a weighted
combination of the HiRes training images and the weights are the
same as the ones that represent the input LoRes probe using
corresponding LoRes training images. Zhang et al. [1] proposed a
SupRes method in morphable model space, which provides HiRes
information required by both reconstruction and recognition.

Though applying SupRes to LoRes probes makes the
comparison with HiRes galleries possible in the HiRes space, the
process of SupRes usually brings in artefacts or noise which might
influence the face recognition performance.

2.2 LoRes versus ds HiRes comparison

Down-sampling HiRes gallery images and conducting comparison
in the LoRes space is a very simple way for LoRes to HiRes
comparison. It requires lower computational costs than using
HiRes images. Although some information in the HiRes images
will be lost in the down-sampling process, it has been reported by
some researchers that this approach has similar recognition
performance as SupRes methods for LoRes face recognition. For
instance, Hu et al. [20] conducted experiments using a video
database of moving faces and people. Their experimental results
show that applying SupRes methods and then comparing with
HiRes galleries have similar performance as LoRes to LoRes
comparison at a far range (5-10 pixel eye-to-eye distance). Xu et
al. [21] showed that when image resolution is low enough, LoRes
to LoRes comparison is superior to using SupRes methods. In their
experiments conducted on Yale B and acceptance rate (AR)
databases with ds images, SupRes methods perform much poorer
than LoRes to LoRes comparison when the image size is 8 X 8
pixels. These results suggest that down-sampling gallery images
and comparing with LoRes probes has at least as good face
recognition performance as applying SupRes on LoRes probes and
comparing with galleries in the HiRes domain.

2.3 LoRes versus HiRes comparison

Direct comparison of LoRes probes and HiRes galleries is a new
area that has drawn researchers’ attention in recent years. Most
methods of this approach find transformations for both LoRes and
HiRes images and compare their features in a common space. This
approach avoids losing information as a result of down-sampling
HiRes or adding artefacts by SupRes. The mappings between
HiRes gallery and LoRes probe data can also be learnt in such a
way that different variations are modelled.

Li et al. [13] proposed a method that projects both HiRes
galleries and LoRes probes to a unified feature space for
classification using coupled mappings. The mappings are learnt by
optimising the objective function that minimises the difference
between corresponding HiRes and LoRes images. Huang and He
[12] proposed a method that uses canonical correlation analysis to
project the PCA features of HiRes and LoRes image pairs to a
coherent feature space. Radial-based functions are then applied to
find the mapping between the HiRes and LoRes pairs. A
multidimensional scaling-based method is proposed by Biswas et
al. [3]. Both HiRes and LoRes images are transformed to a
common space where the distance between them approximates the
distance when they are both HiRes. The transformations are learnt
using an iterative majorisation algorithm. Ren ef al. [5] proposed a
method called coupled kernel embedding. It projects the original
HiRes and LoRes images onto reproducible kernel space using
coupled non-linear functions. The dissimilarities captured by their
kernel Gram matrices are minimised in this space. Lei et al. [4]
proposed a coupled discriminant analysis (DA) method. They find
coupled transformations to project HiRes and LoRes images to a
common space in which the low-dimensional embedding is well
classified. The locality information in kernel space is also used as a
constraint for the DA process. This method is also suitable for
images of different modalities, for example, visible and infrared
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faces. Moutafis and Kakadiaris [17] proposed a method that learns
semi-coupled mappings for HiRes and LoRes images for optimised
representations. The mappings aim at increasing class-separation
for HiRes images and projecting LoRes images to their
corresponding class-separated HiRes data.

3 Evaluation using ds or real LoRes images
3.1 Problem statement

As we stated in the previous section, most papers test the
recognition performance of their proposed methods on ds probe
images. Some researchers conducted experiments on real LoRes
databases as well as on ds probe images. However, we observe that
face recognition methods perform much worst on real LoRes
images than ds images. In [6] for instance, the proposed method
achieves 78% rank-1 recognition rate on images ds to 7 X 6 pixels
from the Face Recognition Grand Challenge (FRGC) v2.0
database, whereas the result is only 22% on distl images (about
30 x 30 pixels) from the SCface database. Also in [5], the rank-1
recognition rate on ds images of 6 X 6 pixels from the multi-PIE
databases is 88%; however, it is only 6% on dist] images from the
SCface database. In [4], the rank-1 recognition rate of the proposed
method is 97% on images ds to 16 X 16 pixels from the multi-PIE
database, whereas it is only 52% on a self-collected database,
where the image size is 35 X 35 pixels.

3.2 Analysis experiment

Our hypothesis is that there are differences between ds images and
real LoRes images that result in poorer face recognition results for
the latter. To investigate this and exclude other influences, we set
up a face recognition experiment where the ds images and the real
LoRes images are from the same source and pose, and there are no
pose and illumination variations. Since there is no database
available that meets this requirement, we collected a database
ourselves.

We used a commercial camera CASIO EX-FC100. The images
were recorded in the following way: the subject sat still and faced
the camera. The first photograph of each subject was taken at a
distance of 2 m, and then we moved the camera 1 m away and took
a photograph each time until we had nine photographs of this
subject. Thus, the face images (probes) were taken at nine
distances in total from 2 to 10 m. Two weeks later, gallery images
of each person were captured at a distance of 1 m with the same
setup. The faces were always frontal and with the same
illumination. About 25 subjects are included in our database. The
original images are around 1 MB and of resolution 1600 x 1200.
The image file format is JPEG. During pre-processing, all images
were aligned using manually annotated eye-coordinates. The size
of cropped face regions is 243 x 243 pixels for the galleries, and
131 x 131, 87 x 87, 64 x 64, 51 x 51, 44 x 44, 36 X 36, 33 x 33,
28 x 28 and 23 x 23 pixels for distance 2—-10 m, respectively. An
elliptic mask is applied to select the region of interest. Histogram
equalisation is used to normalise the illumination. Unfortunately,
we are not able to make this database available, but we are willing
to evaluate algorithms on request. Sample images are shown in
Fig. 1.

To test face recognition performance on our database, we use
three different probe sets: the first one contains images taken at
distances from 2 to 10 m (Real); the second one contains images
taken at 2 m ds to the same resolution as the first probe set and then
aligned using the eye-coordinates annotated at the highest
resolution (Downsample); the third one also contains ds images,
but they are aligned using eye-coordinates annotated after the
down-sampling process (Align after ds). The type of images in the
second set, which are pre-aligned before down-sampling, is
commonly used for evaluation of LoRes face recognition methods.
From now on, we shall refer to pre-aligned ds images when we
mention ds images. The gallery images are ds to the same
resolution as the probe images for comparison. To train the face
classifiers, 4471 high-quality images of 275 subjects from the
FRGC database [22] are used. We use four face recognition
methods. One of them is the state-of-the-art LoRes face recognition
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Fig. 1 Sample images from our own database
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Fig. 2 VR at FAR 10% on images from various distances using different classifiers

(@) PCA, (b) LDALLR, (¢) LBP, (d) CLPM

method CLPM [13] (detailed explanation of CLPM is in Section
5). The other three methods are classical face classifiers, namely
PCA [23], linear DA LLR (LDALLR) [24] and local binary
patterns (LBPs) [25]. The LDALLR is based on the LDA classifier
[26], but computes LR similarity scores instead of distance
measurements. Distance measures employed for PCA and LBP are
Ll-norm and chi square, respectively. To obtain overall good
performance, 80 PCA and 50 LDA vectors are chosen. The images
are divided into 6 X 6 regions for LBP. The feature dimension
selected for the CLPM method is 170 (Li et al. [13] chose 80, but
170 gives better performance).

We present verification results because, as argued in Section 1,
they allow better comparison and address a more realistic biometric
question than rank-1 recognition rates. It must be remarked in
advance that the verification performance for low-resolution
images is poorer than for high-resolution images. This is also
illustrated in [7], where the performance of the state-of-the-art low-
resolution face recognition is presented. Besides, LoRes face
recognition is commonly used for surveillance, by which good
verification performance is more important than limiting false AR
(FAR). For the above reasons, verification rates (VRs) (also known
as genuine AR) are presented at FAR 10% rather than the more
common FAR equals to 1 or 0.1% (see Fig. 2).

As we can see in this figure, the performance of all the four
classifiers has a similar trend. When the images are pre-aligned and
then ds, the face recognition performance remains stable for every
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resolution. The performance on both the real LoRes images and the
post-aligned ds images become worst when the distances increase
from 2 to 10 m. Although the post-aligned ds images generally
have better results than the real LoRes images, the differences are
much smaller than when compared with the results from the pre-
aligned images. This trend demonstrates that face recognition
performance on the pre-aligned ds images is different from the
performance on real LoRes images and alignment plays a very
important role.

There is also different behaviour of different face recognition
methods on images from different distances. The CLPM method,
as it was designed to operate optimally for LoRes images, could
not handle images from 3 and 4 m and it performs stably for the
rest of the resolutions. We have a memory problem for the 2 m
images from the available code from the authors of this method,
but it does not affect the trend. The other three methods all perform
worst on lower-resolution images than higher-resolution ones,
while LBP is more sensitive to resolution changes than PCA and
LDALLR. In addition, LDALLR has the best performance among
the four face recognition methods.

3.3 Conclusion

In this section, we have demonstrated that ds images are not fully
representative of realistic low-resolution images and hence should
not be used as probes when testing the effectiveness of LoRes face
recognition methods. Face recognition methods perform much
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better on ds images than on real LoRes images. The fact that ds
images are usually pre-aligned at HiRes while real LoRes images
are aligned at LoRes plays an important role. Other factors such as
viewing angle, Bayer mask, noise level and compression artefacts
may influence the recognition performance as well. We identify
alignment as one of the most important factors. Besides, in real
LoRes face recognition applications, pose, illumination and facial
expression may differ significantly between gallery and probe,
though we do not deal with them in this paper. Thus, real LoRes
data should be used for the evaluation of LoRes face recognition
methods to ensure their feasibility in reality.

4 Proposed methods
4.1 Mixed-resolution biometrics comparison

Here, we present a method especially designed for comparing
images captured at different distances, called mixed-resolution
biometric comparison. This method not only works for different
resolutions, but also learns variations in the image quality. It was
first derived in [7], but is repeated here for completeness. A similar
method for homogeneous cases was proposed in [27], but we
consider heterogeneous cases where the gallery and probe are from
different scenarios.

Given two biometric feature vectors x € RY and y e RY
obtained from multi-resolution acquisition devices we look for
support for the hypothesis Hy: the samples originate from the same
individual versus Hy: the samples originate from different
individuals, quantified by the LR

)]

I, ) = —H— (M
o)
Jy

It is well known that an optimal classifier in the Neyman—Pearson
sense is obtained by thresholding the LR, compare for example
[28]. This means the LR will give the highest VR at a given FAR.
Note that x, with dimension M, is a realisation of a feature
vector of a random individual, characterised by its feature mean,
which is therefore also random. Similarly, y is also a realisation of
a feature vector of a random individual, but with dimension N. We
take M > N, i.e. x is of higher resolution than y. Let @ and 6
denote the identities of x and y, we assume that x = y,, +w,, and
y = up+wy, with u, = E{xlw} € RY and uj = E{y10} € R the
subject-specific mean, modelling the between-subject variations,
and with w, and w'y the statistically independent, zero-mean

within-subject variations. Furthermore, we assume normal, zero-
mean probability densities for u,, and pg for unknown @ and 6, and
for w,, and w'y. If x and y are not zero mean, estimated means have
to be subtracted prior to comparison. Such a simple model cannot
be expected to work well for HiRes face recognition, but when
LoRes faces with fewer details are involved it can still be applied
successfully. The covariance matrices of x and y are

. =E{xx") eR"™Y and X, =E{yy") erRV" (2
respectively, and the cross-covariance matrices are
T, =E{xy} eR"" and X,=%, (3)

respectively. Then X, = E{p,u'Tylw = 0}. If » # 0, E,, = 0. For
the probability densities of the pairs of feature vectors we then

have, respectively
DINNEND YN
(x)le ~ /V(O,( ’)) )
y Z). y X

Yy

Ny~ o [F 0
MR ®
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Covariance and cross-covariance matrices need to be estimated in a
training process. The cross-covariance matrix X,, is estimated as

K

S

Xy = EE lﬂiﬂ T; (6)
=

with K as the number of individuals involved in training and z; and
Ji} as the estimated sample means of subject i. It can be shown that
estimating X, in this way is equivalent to estimating X,, from all
the possible combinations of pairs of feature vectors x and y in a
training set. The rank of ﬁlxy can be at most min (N, K — 1). The —1
is included because the sample means are zero mean.

By substituting the normal probability density functions (PDFs)
corresponding to (4) and (5) into (1), taking the log and ignoring
some constants, we arrive at the following similarity score:

s(x, y) = (xTyT)((z“ 0 )l _ (E’“‘ E”)l)(x) @)
’ 0 x, Ty Iyl )y

This score is optimal because it monotonically increases with the
LLR. To simplify (7) and to assure that the estimated covariance
matrices have full rank and can be inverted, we simultanecously
reduce the dimensionality and apply whitening transforms to x and
», resulting in

Xy = Wpxr € R"™ and y, = Wiy e R™ ®)

with dimensionalities My, and Ny, respectively. Usually M,, < M,
Ny, < N and M, > N,,. As a result we have that

N = E{xxg} =1,
= WyZ, W[

I =E{ywye} =1 and X} ©)

with I as an identity matrix of appropriate size. The similarity
score then becomes
X
( W) (10)
Yw

We will further simplify (10). First, we apply a singular value

decomposition to XY, such that

-1

1z
= 1

(X, Yy) = <x3vy$>[(g 2) -

Y, = UDV" (11)
with U e RM>*M  and  orthonormal, Ve R™™*™_  and
orthonormal and D € R™>*™ The first N,, rows of D form a

diagonal matrix consisting of singular values v;, i =1, ..., N, in
decreasing order. The last M,, — N,, rows of D are an all-0 matrix.
In a trained classifier, the rank of D can be at most
D = min (Ny, K — 1), with K as the number of individuals in the
training set. If a smaller feature vector is desired, D can be chosen
to be less than min (N, K —1). We now transform the feature
vectors again, such that

x.=U, .p)'xy€R® and y.=(V, .p) 'y, eR” (12)

where the subscript *, 1:D denotes that only the first D columns of
matrix are taken. The subscript ¢ indicates that these
transformations map the feature vectors to a common subspace. It
can be shown that these transformations, which reduce the feature
dimensionality to D, will result in the same similarity score as
transformations using the full matrices U and V. For the similarity
score we now have

ool O (I DY'\[(xc
S(xw yc)z(xcyc) (0 I) _(D I) ¥ (13)
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e (U*,I:D)T

e (V*,I:D)T

Fig. 3 Block diagram of the mixed-resolution classifier according to (14)

with D € R”?*? redefined as a diagonal matrix with the D largest
singular values 1; of Xj, on the diagonal. After some
manipulations, we obtain

D
v
s(xe, yo) = — z ITIU(XC, = Ye. )
= i

D, (14
1 2
+ i; m(xc, ity

In (14) a factor of 1/2 has been left out. A full expression for the
LLR that includes all the constants that have been ignored is

D
logU(¥e, y) = = 3 2 log(1 = 1) + gs(xe 30 (15)
i=1

Since the v; depends on training data, the use of this full expression
is recommended in n-fold cross-validation experiments, since then
the first term may differ slightly per validation step. Fig. 3 shows a
block diagram of the classifier according to (14). The blocks
perform matrix multiplications, except the rightmost ones, which
compute a squared vector norm. The vectors ¥ and y are the
average HiRes and LoRes facial images, respectively. The matrices
Apr and Agym are diagonal matrices, defined by

Apri=yvil(l—v), i=1,...,D and Agum i = U/ (1 + 1),
i=1, ..., D, respectively.

In a similar way, a likelihood-ratio-based classifier can be
derived for other types of heterogeneous features, e.g. for visual
light and near infrared facial images, and for the case that feature
sets of possibly different numbers if multiple captures must be
compared. In the following part of this paper, we use the term
MixRes for this method. The MixRes method has been
implemented in MATLAB. The code is available on request.

4.2 Matching-score-based registration

In the LoRes face recognition field, manually marked eye-
coordinates are often still used, because landmarks cannot reliably
be detected automatically. However, even the manual landmarks
are usually not accurate enough because the eyes are not clear
when the images are too small [29]. On the other hand, the
variations between the true eye-coordinates and the manually
marked ones are small in pixels, for example, the variations are
within [—2, 2] pixels if the distance between the eyes is 10 pixels.
Thus, we propose to use matching-score-based registration to
benefit LoRes face recognition. This method was proposed for
inaccurately aligned faces in [30], and its effectiveness on HiRes
images has already been demonstrated in [31, 32].

In a normal face recognition system, the probe and reference
images are registered using facial landmarks, and then the aligned
images are compared. For a probe image x, and a reference image
X, given the eye-coordinates of the probe image p (reference
images are assumed to be pre-aligned), the similarity score is
written as s(x,(p), x;). For matching-score-based registration, the
alignment of the probe image is varied resulting in several aligned
images. All those images are compared with each gallery image
using the chosen classifier. The best result for each gallery image is
stored as the genuine or imposter score which is used for the
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subsequent verification or identification process. Matching-score-
based registration tries to find the eye-coordinates p* that
maximises the similarity between x,(p) and x; (16)

p* = argmax s(x,(p), %) (16)
p

The output similarity score is then s'(x,(p"), x). We call this
method MSBR for short.

4.3 Extended training

An alternative way to compensate for misalignment is to include
misaligned images in the training set [33]. Unlike in MSBR,
different aligned images are generated in the training set instead of
on the probe images. The training set contains HiRes and LoRes
image pairs. HiRes images are assumed to be perfectly aligned.
However, for each LoRes image, the eye-coordinates are varied to
generate a set of (mis-)aligned images. The possible misalignment
in the probe is thus modelled using this extended training set. The
given eye-coordinates are noted as p which can be obtained by
manual marking. We vary p to obtain m different coordinates
[p1s Pos ---» pp). Thus, for one LoRes training image x;, m images
are generated with different alignment [x;.(p,), XL(py), .-, XL(P)]-

This extended LoRes set together with the original HiRes set will
form the new training set. This method will be denoted as ET.

5 Experiments

In this section, we demonstrate the effectiveness of our proposed
methods using real LoRes data. The SCface database is chosen in
our experiments because it contains surveillance quality face
images. We did not choose other commonly used databases such as
The Facial Recognition Technology (FERET) database, FRGC or
Labeled Faces in the Wild (LFW) because their image resolutions
are much higher.

As shown in Tables 1 and 2, many publications use different
experimental settings and there is no straightforward way to select
the best method. We chose to compare our method with three state-
of-the-art LoRes face recognition methods CBD [17], CLPM [13]
and DSR [2] and the state-of-the-art HiRes face recognition
method FaceVACS [34]. The CBD method is proposed in a recent
publication and we are able to duplicate their protocol of
evaluation using surveillance quality images from the SCface
database. The CLPM method was not evaluated using real LoRes
data in [13], but the source code is available so we can test it in our
experiments. The correctness of the CLPM code was evaluated
using the same setting on FERET database as in [13]. The rank-1
recognition rate with 80 features is 90%, which is the same as
reported in [13]. For the DSR method, we used our own
implementation of the method described in [2]. We repeated the
experiment described in [2] on SCface data to verify our
implementation and found that our implementation had a 24%
rank-1 recognition rate, which was slightly better than the result in
[2]. FaceVACS is a commercial face recognition software
developed by Cognitec Systems GmbH. We use FaceVACS for
comparison because commercial systems are also used in real
surveillance cases. Note that FaceVACS was not designed for very
LoRes facial images and thus is used here outside its normal
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Table 3 Parameters of MixRes and its combination with MSBR and ET. M,, and N,, are the number of feature vectors of HiRes

and LoRes training after the first dimensionality reduction

Method M, Ny, D
MixRes, +ET 70 60 40
+MSBR, +both 100 100 60

D is the number of feature vectors after the second dimensionality reduction.

30(
oo

101

£)3 -2 -1 0 1 2 3

Fig. 4 Histograms illustrating the normal distribution for facial features for MixRes. Top row: histograms of HiRes feature elements and bottom row:

histograms of LoRes feature elements

Table 4 Resolutions (pixels) of gallery and probe images in each section

Section HiRes gallery LoRes probe

Original Actual Original Actual
5.1 68 X 55 30 x 24 47 x 38 15x12
5.2 800 x 800 80 x 80 32x32 32x32
5.3 243 x 243 80 x 80 33 x33 32x32

specifications. For HiRes images, it outperforms our method by a
large margin.

In our experiments, the parameters of each method are chosen
to ensure a good performance. The feature dimension selected for
CLPM is 170. The DSR method is employed with the LDALLR
classifier, for which 50 PCA and 40 LDA feature vectors are
chosen. The LR of the MixRes method in all experiments is
calculated using (15). The parameters of the MixRes method are
shown in Table 3. Larger numbers are chosen when MixRes is used
in combination with MSBR. The experiments using FaceVACS are
conducted with the eye-coordinates provided. Otherwise, eight
images from dist3, 30 images from dist2 and 151 images from
dist1 could not be processed successfully because FaceVACS could
not detect the eyes in those images.

In Section 4.1, we assume a normal distribution for the facial
features. We illustrate the appropriateness of this assumption using
images from the FRGC database which were also used for training
in Section 3. We choose two resolutions: 131 X 131 and 23 X 23 as
HiRes and LoRes, respectively. We use 3464 images of the first
185 subjects to train the MixRes classifier. Then, we use the
remaining 1007 images of 90 subjects for testing. We apply the
transformation matrices Wy and U, .p on the HiRes testing
images, and Wi, and V, ,.p on the LoRes testing images. This
results in a feature vector of dimensionality 40 for each image. We
randomly select two HiRes feature elements x.; and x.; and
corresponding LoRes feature elements y. ; and y. ; and plot the
histograms h, ;, h, j, h, ; and h, ; in Fig. 4. As we can see, all of
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the four seem to follow a normal distribution, which illustrates that
our assumption for MixRes is reasonable.

In Section 5.1, we compare our methods with the four methods
described above, following the protocol that was used to evaluate
the CBD method in [17]. Thanks to the authors, who had provided
us with the necessary details, we were able to duplicate their
protocol, which will be used in this section. The images of the
second longest distances from the SCface database are ds and used
as probe in these experiments.

In Section 5.2, we further demonstrate the effectiveness of our
methods on real LoRes data following a more realistic protocol.
The experiments are more challenging because images from the
SCface database captured at the greatest distance are used as probe
and single mug-shot images are used as gallery. The CLPM method
and FaceVACS are used for comparison.

In Section 5.3, we show results obtained on our own database to
demonstrate that our methods are not optimised only for the
SCface database.

In Table 4, we list the original resolutions of probe and gallery
images and the resolutions actually used in each sections. In
Section 5.1, the testing protocol defined in [17] describes that the
input images are rescaled to a lower resolution. In Sections 5.2 and
5.3, we also ds the HiRes gallery images, but the LoRes probe
images preserve their original resolution.

5.1 Comparison with the state-of-the-art

The experiments are conducted on the SCface database [35]. The
SCface database contains images of 130 subjects taken by five SCs
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Fig. 6 ROC curves for comparing MixRes to CLPM and FaceVACS (a) MG, (b) SG. Probe: dist2, 1512 pixels. Gallery: dist3, 30%24 pixels

Table 5 Comparison of MixRes to CBD, DSR, CLPM and FaceVACS

Setting Method AUC Verification, % Rank-1, %
MG CBD 0.77 (0.03) — 52.7 (9.9)
DSR 0.69 (0.03) 29.3 (6.1) 31.7 (7.3)
CLPM 0.64 (0.05) 23.9 (8.4) 9.0 (5.4)
MixRes 0.88 (0.03) 64.6 (8.1) 57.3 (9.5)
FaceVACS 0.76 (0.02) 47.0 (3.5) 19.3 (3.2)
SG DSR 0.69 (0.03) 28.9 (6.0) 30.2 (8.8)
CLPM 0.62 (0.05) 19.1 (7.8) 7.0 (5.1)
MixRes 0.84 (0.03) 57.4 (7.5) 47.9 (8.9)
FaceVACS 0.76 (0.02) 46.5 (1.6) 19.1 (1.5)

Values are in the format: average value (standard deviation). The VRs are obtained at FAR = 10%. Probe: dist2, 15 x 12 pixels. Gallery: dist3, 30 X 24 pixels. The bold values are

the best results of MG or SG setting.
The bold values are the best results of MG or SG setting.

at three distances, namely 4.20 (distl), 2.60 (dist2) and 1.00 m
(dist3). There are 5 x 130 = 650 images for each distance. It also
contains one frontal mug-shot image for each subject.

The protocol of [17] is duplicated so that we can compare the
reported results of the CBD method directly. The region of interest
is obtained by cropping the face region of the images based on the
eye-coordinates provided in the database. Images from dist2 are
used as LoRes and images from dist3 are used as (relatively)
HiRes. The sizes of the HiRes and LoRes images after align and
rescaling using bicubic interpolation are 30 X 24 pixels and 15 X 12
pixels, respectively. Histogram equalisation is used to normalise
the illumination. Sample images are shown in Fig. 5. We randomly
select 100 subjects and four images of these subjects for training.
The remaining 30 subjects are used for testing, of which four
images per subject from dist3 are randomly selected for the gallery
and one image per subject from dist2 is used for the probe. The
gallery and probe images of the same subject are taken by different
cameras. Thus, we have 400 training images for both HiRes and
LoRes, 120 gallery images and 30 probe images each time. This is
the same setting as in [17]. In addition, we repeated the
experiments using a single-gallery (SG) image per subject as this is
a more realistic setting. Each experiment is repeated 100 times.

The area under the curve (AUC) and rank-1 identification rates
using the CBD method are reported in [17]. We choose their best
results and compare with the results from our experiments in
Table 5. In addition, we provide VRs at FAR 10%. We also collect
all the genuine and imposter scores from the 100 repetitions of
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each experiment to plot receiver operating characteristic (ROC)
curves (Fig. 6).

As we can see, the MixRes method performs best of the five.
The CBD method, which was also designed for real LoRes face
recognition, performs better than the rest, but still worst than our
MixRes method. DSR performs the second worst. Although CLPM
was demonstrated to perform well on ds images (see Table 1), it
gives the worst results in our real LoRes experiments. FaceVACS
outperforms DSR and CLPM despite the fact that it was designed
for HiRes face recognition. When a SG image per subject is used,
all the methods decrease in performance, but the MixRes method
remains the best.

To further improve the face recognition performance, MSBR
and ET are employed. Rigid transformation and isotropic scaling
are used for alignment in our experiments. The variation of each
eye-coordinate for probe images is [-2, 2] pixels based on the
manually marked eye-coordinates. The training procedure of ET
uses 20 randomly selected (mis-)aligned images for each original
image. The results are shown in Table 6 and Fig. 7.

As we can see, the verification results are significantly
improved in all cases, especially when we combine MSBR and ET
the improvement is more than 10%. The rank-1 recognition rate
only improved slightly using ET and not in the other settings. It is
due to the fact that closed-set recognition only picks the best score,
whereas MSBR optimises all the similarity scores (imposter scores
could benefit more from MSBR than genuine scores in some
cases).
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Fig. 7 ROC curves of MixRes and its combination with MSBR and ET (a) MG, (b) SG. Probe: dist2, 15x12 pixels. Gallery: dist3, 30%24 pixels

Table 6 MixRes combined with MSBR and ET

Settings Verification, % Rank-1, %
MG: MixRes 64.6 (8.1) 57.3 (9.5)
MG: +MSBR 74.5 (6.2) 55.6 (7.2)
MG: +ET 75.4 (6.5) 58.2 (9.4)
MG: + both 81.4 (6.1) 51.8 (7.6)
SG: MixRes 57.4 (7.5) 47.9 (8.9)
SG: +MSBR 65.2 (7.4) 46.7 (8.9)
SG: +ET 66.8 (7.4) 50.3 (8.1)
SG: +both 72.5 (9.4) 475 (9.1)

Values are in the format: average value (standard deviation). The VRs are
obtained at FAR = 10%. MG: multi-gallery, SG: single-gallery. Probe: dist2, 15 x 12
pixels. Gallery: dist3, 30 X 24 pixels. The bold values are the best results of MG or SG
setting.

The bold values are the best results of MG or SG setting.

Fig. 8 Sample images from the SCface database in the experiments in
Section 5.2. First row: mug-shots, second row: dist3 and third row: dist2,
last row: distl

5.2 Real LoRes experiments

In the experiment of the previous section, the gallery images were
not separately captured mug-shots, but simply higher-resolution
images from the sequence. A more realistic setting is to use
separately captured mug-shots as a gallery.

We follow the guidelines below to make sure the experiments
are representative of realistic applications:

i.  Report verification results.

ii. Only use real LoRes images as probe.

iii. Gallery images should be HiRes, preferably mug-shots.

iv. Neither training on a gallery, nor on users represented in the
gallery.

v. Use only one HiRes gallery image per subject.

vi. For small databases, use cross-validation in order to produce
statistically more significant results. Use as many probe images
as possible to reduce the standard deviation of the results.
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The images are processed in such a way that they preserve their
original resolution. The sizes of the cropped images for dist3, dist2
and dist] are 80 X 80, 56 X 56 and 32 X 32, respectively (note that
the cropping is different than in Section 5.1). The images are
aligned using eye-coordinates provided in the database. An elliptic
mask is applied to select the region of interest. Thus, the selected
regions are smaller than the above resolutions. Histogram
equalisation is used to normalise the illumination. Some samples of
processed images are shown in Fig. 8. The original size of mug-
shot face images is around 800 X 800 pixels. To make the
comparison more efficient, mug-shot images are ds to the same
resolution as dist3 images in our experiments. The probe images
(distl) are always of the same resolution as the original.

Distl (the largest distance) images are used as probes in all the
following experiments. Different combinations of training and
gallery sets are employed to test the performance of our methods in
different situations. In all experiments, 100 subjects are randomly
selected for training and the rest are for testing. The HiRes training
images are of the same size as dist3 (80 x 80 pixels), and the
LoRes training images are of the same size as distl (32X 32
pixels). There are five images per subject from distl, dist2 and
dist3, and one image per subject from mug-shots. Our
implementation of the MixRes method requires that the HiRes and
LoRes training sets have the same number of images. Therefore,
we replicate the mug-shot images so that each subject has five
identical mug-shots.

Three different training settings are used. The first one is to
have mug-shot images as HiRes training and distl images as
LoRes training. Since there is only one mug-shot image per
subject, we add images from dist3 or dist2 to the training set to
obtain better training results in the other two settings. All the three
training settings are used for MixRes and CLPM. Then, we select
the best setting to conduct the combinations of MixRes, MSBR and
ET.

All the mug-shots are used as gallery and all 650 images from
dist1 are used as probe for FaceVACS, because it does not require
training images. Thus, no standard deviation is presented for
FaceVACS because no cross-validation was used. MSBR and ET
are conducted in the same way as in Section 5.1. In addition,
MSBR is also conducted with automatic initialisation (denoted as
MSBRa). That is, instead of manually marked eye-coordinates, the
starting points are determined by the region of interest detected by
the Viola—Jones face detector [36]. The scale factor is set to 1.002
to detect the small face regions in the images. The false positives
are then manually discarded. We compute VRs at FAR =10% and
rank-1 recognition rates, see Table 7.

MixRes significantly outperforms CLPM and FaceVACS in all
three settings. FaceVACS performing the worst shows that this is a
difficult experiment for state-of-the-art algorithms which are
designed for HiRes images. The CLPM method still performs
poorly as in the experiments in the previous section, while it had
very good performance on ds data as shown in Table 1. This further
supports our conclusion made in Section 3 that methods designed
for LoRes face recognition should be evaluated using real LoRes
data instead of images ds from HiRes.

A sufficient number of training images is required for MixRes
to achieve good results. If we only use the mug-shot images as
HiRes training and dist1 as LoRes training, the verification result at
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Table 7 Results on the SCface database with different
experiment settings

Principle Train Train Verification. Rank-1,
(HiRes)  (LoRes) % %
MixRes mug-shot dist1 47.8 (4.8) 34.9 (5.0)
mug-shot + dist1 + 63.1 (5.8) 43.4 (5.6)
dist3 dist2ds
mug-shot + dist1 + 67.2 (6.0) 48.3 (5.3)
dist2 dist2ds
CLPM mug-shot dist1 10.2 (2.7) 3.4 (1.7)
mug-shot + dist1 + 15.9 (3.5) 5.9 (2.0)
dist3 dist2ds
mug-shot + dist1 + 18.3 (3.6) 7.2 (2.2)
dist2 dist2ds
FaceVACS — — 21.7 2
Mix Res + mug-shot + dist1 + 73.4 (5.8) 48.4 (5.2)
MSBR dist2 dist2ds
Mix Res + mug-shot + dist1 + 61.0 (6.9) 39.0 (6.7)
ET dist2 dist2ds
Mix Res + mug-shot + dist1 + 53.2 (7.2) 25.6 (4.5)
both dist2 dist2ds
Mix Res + mug-shot + dist1 + 72.0 (5.7) 48.0 (6.1)
MSBRa dist2 dist2ds

Gallery: mug-shots, 80 x 80 pixels. Probe: dist1, 32 x 32 pixels. The values are in
the format: average value (standard deviation). The VRs (%) are obtained at FAR =
10%. The abbreviation ds stands for down-sampled images.

Table 8 Results on our own database

MixRes, % +MSBRa, % FaceVACS, %
verification 91 84 43
rank-1 80 64 20

Gallery: 1 m, 80 x 80 pixels. Probe: 8 m, 32 X 32 pixels. The VRs are obtained at
FAR =10%

FAR=10% is <50%. When we enlarge the training sets by
combining two sets of images, the VRs increase significantly up to
67.2%. The rank-1 recognition rates also show an improvement of
around 10%. If we have more realistic data (mug-shot images and
the corresponding LoRes images) to add in the training set, we
would expect even more improvement. With the help of MSBR,
MixRes can reach 73.4% VR. However, ET does not improve the
results as it did in Section 5.1. A possible explanation is that the
added training data may not be fully representative of the testing
data, causing the results to become worst in this experiment. This
could also be the reason that MixRes in combination with both
MSBR and ET has worst performance. It is promising that the
results from MSBR with automatic initialisation (MSBRa) show
only marginal degradation as compared with the results from
MSBR with initialisation based on manual eye-coordinates. This
means that the LoRes face recognition system can be fully
automatic if the detection is correct.

5.3 Evaluation using other data

To demonstrate that our methods are not optimised only for the
SCface database, we conduct another experiment using SCface
images for training, but using our own database, which is described
in Section 3, for testing. The images taken at a distance of 8 m are
selected as probe because their original resolution is similar to that
of images at dist] from the SCface database. The gallery images
are the ones that were taken at a distance of 1 m in a separate
session (same as in Section 3). The training setting that provided
the best results from the previous SCface experiments is selected,
that is, mug-shots and dist2 images are combined for HiRes
training while distl and ds dist2 images are used for LoRes
training. MSBR is conducted with automatic initialisation.
FaceVACS is used with manually marked eye-coordinates. The
results are shown in Table 8. Since this is an easier experiment on a
small database with only 25 subjects and controlled environment,
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MixRes gives very good results. The fully automatic method +
MSBRa performs close to MixRes with manually marked eye-
coordinates. On the other hand, FaceVACS performs much poorer
than MixRes (about a 50% difference in VR at FAR 10%).

6 Conclusion

In a common case of low-resolution face recognition, recognition
of suspects from a long distance, there is usually a resolution
mismatch between low-resolution probe and high-resolution
gallery. Most existing methods, which are designed to match high-
resolution images, cannot handle low-resolution probes well. In
this paper, we present a classifier, mixed-resolution biometric
comparison, specifically designed for heterogeneous cases, which
allows direct comparison of different resolution images. We
identify that proper alignment is one of the major challenges in
low-resolution face recognition. We also show that there is a large
difference in face recognition performance between ds and real
low-resolution images and only the results from real low-resolution
can be trusted. To cope with the alignment problem, we investigate
two methods, matching-score-based registration and extended
training. Extended training is less effective, but it helps when there
is not enough training data. Matching-score-based registration is
useful in combination with our mixed-resolution classifier. It can
also be initialised using a region obtained from face detection,
which results in a fully automatic low-resolution face recognition
method. Our experiments using real low-resolution data show that
our methods outperform the state-of-the-art. In our experiment on
the SCface database, the combination of our mixed-resolution
classifier with matching-score-based registration and extended
training outperform the state-of-the-art by 20% of VR at FAR 10%
in the multi-gallery (MG) setting.
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