IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 4, 2018, accepted August 17, 2018, date of publication August 30, 2018, date of current version September 21, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2868036

Squash: Approximate Square-Accumulate

With Self-Healing

G. A. GILLANI"”1, MUHAMMAD ABDULLAH HANIF2, M. KRONE!, S. H. GEREZ',
MUHAMMAD SHAFIQUE “2, (Senior Member, IEEE), AND A. B. J. KOKKELER'

lFaculty of EEMCS, University of Twente, Enschede 7500 AE, The Netherlands

2Faculty of Informatics, Vienna University of Technology (TU Wien), 1040 Vienna, Austria

Corresponding author: G. A. Gillani (s.ghayoor.gillani @utwente.nl)

This work was supported in part by the ASTRON and IBM Joint Project, DOME, through the Netherlands Organization for Scientific
Research, in part by the Dutch Ministry of EL&I, and in part by the Province of Drenthe.

ABSTRACT Approximate computing strives to achieve the highest performance-, area-, and power-
efficiency for a given quality constraint and vice versa. Conventional approximate design methodology
restricts the introduction of errors to avoid a high loss in quality. However, this limits the computing efficiency
and the number of pareto-optimal design alternatives for a quality-efficiency tradeoff. This paper presents a
novel self-healing (SH) methodology for an approximate square-accumulate (SAC) architecture. SAC refers
to a hardware architecture that computes the inner product of a vector with itself. SH exploits the algorithmic
error resilience of the SAC structure to ensure an effective quality-efficiency tradeoff, wherein the squarer
is regarded as an approximation stage, and the accumulator as a healing stage. We propose to deploy an
approximate squarer mirror pair, such that the error introduced by one approximate squarer mirrors the error
introduced by the other, i.e., the errors generated by the approximate squarers are approximately the additive
inverse of each other. This helps the healing stage (accumulator) to automatically average out the error
originated in the approximation stage, and thereby to minimize the quality loss. For random input vectors,
SH demonstrates up to 25% and 18.6% better area and power efficiency, respectively, with a better quality
output than the conventional approximate computing methodology. As a case study, SH is applied to one of
the computationally expensive components (SAC) of the radio astronomy calibration application, where it
shows up to 46.7% better quality for equivalent computing efficiency as that of conventional methodology.

INDEX TERMS Approximate computing, approximate multiplier, approximate squarer, multiply-
accumulate, radio astronomy, self-healing, square-accumulate.

I. INTRODUCTION

Approximate Computing has attained remarkable attention
for its potential to increase computing efficiency in terms
of power, area and performance [1]. It has shown signifi-
cant benefits for error resilient applications like multimedia
processing and machine learning, by leveraging a controlled
in-accuracy in the overall output [2], [3]. In approximate com-
puting the relaxed accuracy requirements are used in order
to trade-off computational quality with efficiency [1]-[5].
The design target in approximate computing is to achieve
the highest computing efficiency for a given quality con-
straint or to achieve the highest quality for a given efficiency
requirement.

The state-of-the-art approximate design methodologies
suggest to utilize fail-rare, fail-small, and fail-moderate
approaches, where the approximations are restricted in terms
of introducing errors and thereby limiting the computing

efficiency. The fail-rare strategy suggests that the approxi-
mation technique should result in a low error rate but may
exhibit high error magnitudes [6]. On the other hand, fail-
small refers to introducing low error magnitudes with high
error rates [6]. Fail-moderate suggests to utilize an additional
design space of approximations, wherein the errors intro-
duced may also exhibit moderate error rates and moderate
error magnitudes [7]. It is important to note that the afore-
said strategies limit the design space as they do not allow
approximations that introduce high error rates with high error
magnitudes. The reason being obvious that this threatens
the quality loss hugely in case of general algorithms, and if
employed naively.

However, we argue that there are several algorithms like
square-accumulate (SAC), multiply-accumulate (MAC) and
Least Squares (LS), for which the approximations intro-
ducing simultaneous high error magnitudes and high error
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rates can also be utilized provided that the errors originated
in various sub-components are potentially canceled out to
minimize the overall quality loss (a fail-balanced approach)
while achieving a higher efficiency. This increases the design
space by introducing a higher number of pareto-optimal
approximate design alternatives to help effectively exploit the
quality-efficiency trade-off.

This paper presents a Self-Healing (SH) methodology
that exploits the fail-balanced approach for an approximate
square-accumulate (SAC) architecture. Specifically, the anal-
ysis and design of an approximate SAC is discussed. SAC
refers to a hardware architecture that computes the inner
product of a vector with itself. Therefore, it is a special
case of a multiply-accumulate (MAC), where both inputs
of the multiplier are equal. It is one of the computationally
expensive components of Least Squares (LS) algorithm in
general and radio astronomy calibration [8], [9] in particular.
LS is also employed in other Digital Signal Processing (DSP)
applications like medical [10], synthetic aperture radar [11]
and radioastronomical [12] image-reconstruction.

A. STATE-OF-THE-ART DESIGNS AND THEIR LIMITATIONS
Approximate designs for adders [13]-[20] and multipli-
ers [21]-[33] have been researched for their indispensable
role in DSP. Kulkarni et al. [22] presented a low power under-
designed 2 x 2 multiplier and showed its efficacy in construct-
ing higher order (n x n) multipliers, which can trade a bearable
quality loss with improved computing efficiency. In order to
achieve pareto-optimality, design space exploration of n x n
approximate multipliers is performed in [25], which consid-
ers various 2 X 2 approximate multipliers to search for an
optimized design.

Deploying truncated multiplication in a MAC architecture
attracted researchers in the last decade, where the objec-
tive was to limit the bit-width of multipliers and lower the
error introduced due to truncations [32], [33]. Recent design
approaches for approximate MAC present the introduction of
an offset to compensate the inaccuracies of the approximate
multiplier stage [34] and the utilization of hybrid redundant
adders [35]. The aforesaid works presented techniques to
approximate the MAC architecture. However, no exploitation
of the self-healing approach has been studied to the best of
our knowledge. Moreover, despite the importance of the SAC
architecture in DSP, approximate SAC designs have not been
researched yet.

Radio astronomy studies celestial objects at radio frequen-
cies. The Science Data Processing (SDP) pipeline takes sky
visibilities as input and processes (calibration and imaging)
them to compute sky images [36]. For modern and future
radio telescopes like the Square Kilometer Array (SKA),
power consumption—7.2MW when using double-precision
fused multiply-add operations (medium frequency antenna
array)—and throughput (up to 1.8 EOps/s) are key chal-
lenges [36]. Radio astronomy has potentially redundant real
life data with low signal to noise ratio and iterative/healing
algorithms of approximate nature (e.g. least squares), which
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motivate to study the quality-efficiency trade-off and employ
approximate computing. In order to overcome the power
and throughput challenges related to the radio astronomy
SDP, FPGA based hardware accelerators [37] and graphics
processor based designs [38] have been proposed. Despite
the potential of error resilience, no quality-efficiency trade-
off has been studied to the best of our knowledge.

The key limitation of conventional approximate computing
techniques deals with its restricted design space, which does
not allow employing approximate design alternatives (circuit-
, architectural-, algorithm-level) that produce high error rates
and high error magnitudes simultaneously. This restriction on
design alternatives limits the achievable computing efficiency
gains, hindering the exploitation of the quality-efficiency
trade-off effectively.

B. NOVEL CONTRIBUTIONS AND OUTLINE

Consider an example of a parallel computing architecture,
Fig. 1a, where the input stream is processed by L homoge-
neous hardware blocks to generate the output stream. Each
hardware block consists of two processing elements, P1 and
P2. The processing elements can be considered as arithmetic
elements like multipliers and adders. The conventional way of
approximating such an architecture is to employ approximate
circuits for P1 and P2 in such a way that the error magnitudes
and error rates are restricted to avoid an unacceptable loss in
quality, Fig. 1b.

The primary contribution of this paper is a novel Self-
Healing (SH) methodology that aims to utilize a fail-balanced
approach wherein an architecture is divided into two types of
stages, namely an approximation stage and a healing stage.
Approximations are employed at the approximation stage
in such a way that the resulting errors have a potential to
be healed up at the healing stage. Therefore, we propose
to approximate P1 elements in pairs, such that each P1 in
a pair generates an error that is the mirror (approximately
additive or multiplicative inverse) of the other, Fig. 1c. This
minimizes the output error €y to zero in some cases and to
a lower value (as compared to the conventional methodol-
ogy) in the other, and provides an effective quality-efficiency
trade-off. The hardware cost of a pair is considered to be
twice as that of a single P1 element, but overall hardware
cost of a parallel architecture remains the same as we require
L/2 hardware blocks instead of L for the same throughput.
To elaborate on the SH concept, this paper presents the
following:

« Related terminology and application of SH for approx-
imate square-accumulate (SAC) architecture design
(Section II).

o Analysis of an approximate SAC utilizing a truncated
squarer that establishes the foundation for the SH
methodology (Section IIT).

e« An n x n approximate-squarer (AxSq) mirror pair,
wherein the error introduced by one AxSq (e€51) is an
additive inverse of the error introduced by the other (¢57),
i.e., €51 = —€g (Section IV).
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(c) Proposed approximate computing methodology.

FIGURE 1. An overview of the conventional and the proposed
approximate computing methodologies for parallel architectures. The
proposed Self-Healing (SH) methodology does not restrict the
approximations based on an error profile but provides the opportunity
for error cancellation to achieve an effective quality-efficiency
trade-off.

o Design of 2 x 2 approximate multiplier mirror pair and
2 x 2 AxSq mirror pair that constitute the n x n AxSq
mirror pair (Section IV).
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« Statistical error analysis of an AxSq mirror pair and
design space exploration for pareto-optimal approxi-
mate SAC alternatives (Section V).

o Quality-efficiency trade-off comparison of the proposed
self-healing and conventional methodologies for random
input data and for radio astronomy calibration process-
ing (Section V and VI).

Il. SELF-HEALING METHODOLOGY FOR APPROXIMATE
SQUARE-ACCUMULATE (SAC)

This section elaborates the Self-Healing (SH) concept by dis-
cussing its utilization for an approximate SAC architecture.
Wherein the squarer stage is regarded as approximation stage,
and the accumulator as healing stage. First we define the
terminology related to SH that will be used in the rest of the

paper.

A. TERMINOLOGY

We define the Mirror Error Effect (MEE) as an introduction
of errors (€1, €) in a pair of approximate components that
has the potential of cancellation (completely or partially) at a
subsequent healing stage. For instance, €1 and €, have oppo-
site signs (healing stage: adder) or a common factor (healing
stage: divider). Such a pair of components is (proposed to
be) called absolute approximate mirror pair provided that
€] = —e€p or €1/€p = 1, otherwise approximate mirror
pair where the errors are canceled out partially. It is to be
noted that the word ““absolute” is used in the term absolute
approximate mirror pair, where it provides a notion that the
errors are canceled out completely instead of partially.

In case of the SAC architecture where an accumulator is
regarded as a healing stage, a pair of approximate multipliers
complying to the MEE is referred to as an Absolute Approx-
imate Multiplier Mirror Pair (AAMMP) if it exhibits €; =
—e3, otherwise it is called an approximate multiplier mirror
pair. Similarly, a pair of approximate squarers complying to
the MEE is referred to as an Absolute Approximate Squarer
Mirror Pair (AASMP) if it exhibits €; = —ep, otherwise it is
called an approximate squarer mirror pair.

B. EMPLOYING SELF-HEALING FOR APPROXIMATE

SAC ARCHITECTURE

With reference to Fig. 1a, consider a parallel architecture that
computes a Square-Accumulate (SAC) operation where each
hardware block is referred to as a SAC architecture. Now
P1 can be regarded as a squarer and P2 as an accumulator,
illustrated in Fig. 2a. A SAC computes:

N
Z(Ai *Al') (1)
i=1

where A is an input vector of length N. We consider an even
number of elements in the input vector to ease the discussion,
ie., N € 2Z-¢. To design an approximate SAC in a self-
healing fashion, we propose to approximate the squarer by
deploying a pair of approximate squarers (e.g., AASMP) that
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FIGURE 2. Square-accumulate (SAC) architectures; (a) accurate; (b) proposed approximate SAC utilizing an Absolute Approximate Squarer Mirror
Pair (AASMP). Given the same input distribution for Sq1 and Sq2, the errors (+3§ and —§) originated at the approximation stage are canceled out at

the healing stage.

introduce errors, +6 and —§ at Sql and Sq2 respectively,
and utilize an accurate accumulator to cancel out the errors
introduced in squarer stage (Fig. 2b).
Equation (1) can be re-written as,

N—1

D A xA) + A1 % A1)} i€2Z0+1 ()

i=1
where i is an odd positive integer. Equation (2) shows a
pair of squarers that can be regarded as Sql and Sq2 as
illustrated in Fig. 2b. Given the same input distribution for
Sql and Sq2 (ideal case), the error at the approximate SAC
output will approach zero for an infinite number of inputs.
However, for non-ideal (real-world) cases, the error is min-
imized due to partial cancellation. It can be noted that the
proposed approximate SAC hardware block (Fig. 2b) doubles
the circuit area as compared to a reference SAC (Fig. 2a)
hardware block, however, the overall circuit area of a parallel
architecture remains the same for the proposed architecture
as we require L/2 SAC hardware blocks instead of L for the
same throughput.

IIl. ANALYSIS OF APPROXIMATE SAC UTILIZING
TRUNCATED SQUARER

This section presents the mathematical analysis, and simu-
lation of various truncated square-accumulate (SAC) alter-
natives that establish the basis for Self-Healing (SH). For a
pair of approximate squarers, this paper presents two ways
by which the MEE can be achieved. In this section we discuss
truncated squaring and in Section IV we discuss logic pruning
(reducing number of logic gates) as a mean of approximation.

A. MATHEMATICAL ANALYSIS OF TRUNCATED SQUARING
We consider the SAC operation executed on n bit words and
the ¢ Least Significant Bits (LSBs) are truncated. Here we
consider the signed numbers represented in 2’s complement.
Let A be defined as a random number,

Y W Y W/

For the input pairs (A, A), we can describe all (but one)
numbers in the n bit range by either having (+a, 4+-a) for
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a positive input and (—a, —a) for a negative input, where
a = |A|. We have two possible cases for the SAC input pairs,

(A,A) = (+a, +a)
(_a7 _a)

Let «; represent the input number with the # LSBs truncated,
as:

a=A-m 0<m<?2 , meZ

For the input pair (+a, +a) the product of the truncated
factors is given by:

oo =(@—m)a—m;) 0<m <2', meZ

= aa — 2amy + mymy 3)

In (3) the product aa is the accurate result of the squaring.
The terms 2am; and mijm; are errors introduced by the
truncation. Let’s assume: m; < a, i.e., the truncation error
is much smaller than the original value of the number that
was truncated. This is plausible looking at the ranges of a in
comparison to m1. The product can now be approximated by:

o - o X aa — 2am; “4)
For the input pair (—a, —a),

= (—a—m)—a—m) 0<m <2, meZ
= aa + 2amy + momy
~ aa + 2amy )

Equations (4) and (5) show that one case introduces a negative
error (approximately —2am;) and the second case introduces
a positive error (approximately +2amy). Assuming that these
two cases have equal probability and m; =~ mj, we can
conclude that the error of the first case approximately cancels
the error of the second case at the accumulation stage.

This is an interesting property of the truncated squarer
in a SAC architecture, for squaring signed numbers, where
the errors higher and lower than zero have a potential to be
canceled out at the healing stage (accumulator).
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(25)10 (-25)10
Input (2°s complement) 00011001 (25)10 11100111 (-25)10
1 bit truncation 0001100 (12),, 1110011  (-13)y,

Squaring (12)10* (12)9

14-bit output

00000010010000

(-13)10* -13)10

(144),, | 00000010101001  (169);

Append 00 for
16-bit output

0000001001000000 (576)40

0000001010100100 (676),,

Error

€11 (576)10- (625)10=(-49)1¢

€51 (676)19-(625)10=(51)y9

FIGURE 3. Truncated squaring of a number as a positive integer and as a negative integer
demonstrate the Mirror Error Effect (MEE). The subsequent accumulation can cancel out the errors

partially and improves the overall output quality.

B. QUALITY ANALYSIS OF VARIOUS

TRUNCATION ALTERNATIVES

In case of squaring, the product is always a positive number.
Therefore, we have a choice to invert the signs of inputs
(multiplicands) without affecting the output. The MEE can be
achieved by utilizing an approximate squarer pair (Sql and
Sq2), where Sql squares the truncated input numbers that
are made positive (before truncation) while Sq2 squares the
truncated input numbers that are made negative (before trun-
cation) to form a mirror pair as,

Sql: A — ((A]))?

Sq2: A — ((—|A]D)?

where A is an input, and the subscript ¢ denotes a truncation
operation. The motivation behind this proposal is that on aver-
age the amount of positive number squaring equals negative
number squaring which provides an opportunity to cancel out
the truncation error.

A motivational example of 1-bit truncated squaring of an
8-bit integer (n = 8, t+ = 1) is shown in Fig. 3, where
the errors are shown for squaring the integer as a positive
((+25)10) and a negative ((—25)109) number after truncation.
The truncated squaring produces the output as a 14-bit integer
that is shifted left (2-bit) to achieve a 16-bit output. The errors
(€1 = —49 and € = 51) show the mirror effect that have a
potential to be approximately canceled out at the accumulator.

In the above example, (00), is appended to the least sig-
nificant position after squaring in order to produce the 16-bit
output. However, any 2-bit combination can be hard-wired to
the least significant position targeting the lowest error output.
Below we consider design alternatives for 1-bit truncated
squaring of 8-bit input integers (n = 8, t = 1) and compare
their output quality in a SAC architecture.

Actual_s: A conventional approximate design that squares
the truncated operands as they are originally fed (without
changing sign) and appends 00 to form a 16-bit output.

Pos_xx: A design alternative that makes every input a
positive integer before truncating and computing the square
operation. The example (Fig. 3) illustrates that truncated
squaring of positive integers produces an output smaller than

49116

(orin some cases equal to) the exact result. For appending two
bits to the 14-bit squarer output, five options are considered:
Pos_00, Pos_01, Pos_10, Pos_11, and Pos_LL that append
(00)7, (01)2, (10)2, (11)2 and (LL); respectively to produce
a 16-bit output. Here (LL); is the two times repetition of the
truncated 1-bit.

Neg 00: A design alternative that makes every input a neg-
ative integer before truncating, and appends 00 to produce the
16-bit output. As the example (Fig. 3) shows that truncated
squaring of negative integers produces output larger than (or
in some cases equal to) the exact result, we do not consider
appending 01, 10, 11, and LL because it will increase the
error.

MEEx: Mirror error effect designs (MEE1 and MEE2)
square the truncated operand in the proposed self-healing
fashion, where half of the inputs are made positive integers
and the other half are made negative integers before truncat-
ing and squaring. It is to be noted that Sq1 and Sq2 in MEEx
designs provide errors in opposite signs but not in equal
magnitudes. Therefore, swapping Sql with Sq2 brings dif-
ferent quality for finite-length input vectors. For that reason,
we consider both design alternatives, MEE1: odd-indexed
elements of an input vector are considered as positive and
even-indexed as negative integers, MEE2: odd-indexed ele-
ments of an input vector are considered as negative and even-
indexed as positive integers.

Fig. 4 shows a quality comparison for the above design
choices in a SAC architecture. Inputs are considered as signed
numbers represented in 2’s complement. Two input distri-
butions have been assessed: uniform (Uniform) and normal
(Norm_x). Each distribution has 1000 vectors (v = 1000)
of 10,000 elements each. We have utilized the Mean Square
Error (MSE) metric [32], [33] to compute the error in dB as
in [39],

v
MSE (dB) = 10 % loglo[Z(Ex,- — Ax)*/v] (6)

i=1
where Ex; is the exact SAC output and Ax; is the approximate
counterpart for the i vector; and v is the number of test
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FIGURE 4. Quality analysis for approximate SAC utilizing various
truncated squaring strategies. For every considered input distribution,
MEE designs are outperforming because of error cancellation at the
accumulator stage.

vectors. The normal distribution has been analyzed with
various mean values: 0, 10, 20 and 30. For instance,
Norm_0 refers to a normal distribution with 0 mean and
Norm_30 to a mean of 30 in Fig. 4. It can be noted that self-
healing based designs utilizing the MEE (MEE1 and MEE2)
bring the best quality for all considered input distributions.
In case of a Norm_0 input, MEEx designs have slightly
better quality as compared to Actual_s design. However,
as the mean is shifted away from zero (Norm_10, Norm_20,
Norm_30), the advantage of MEEx designs is quite signif-
icant. This is because, a normal distribution with 0 mean
(ideal case) is more likely to have an equal number of positive
and negative integers which inherently produces the mirror
error effect within a conventional design. However in general
cases, where input distributions of various mean values can
be possible, only self-healing based designs like MEE1 and
MEE?2 ensure efficient error cancellation to provide the best
quality output.

The above analysis provides the foundation of the self-
healing methodology that shows better quality output as com-
pared to the conventional way of applying approximations.
However, it is important to note that for truncated designs,
the MEE is achieved in the sign of errors, i.e., the errors

* A, a5 a5 a4 a3 A, 4, ag

‘33 a a; a* a3 a, a; ao‘/

a7 ag asg 3.4* aj a4, a; 4g | Shiftof4-bits
equal
) as; a, a; ao* ay ag a5 ay Shift of 4-bits
‘8.7 dg as a4* a7 ag aj 34‘ Shift of 8-bits

‘ 16-bit Product

have opposite signs, while the magnitudes are still unequal.
Therefore, an approximate mirror pair can be formed that
partially cancels out the error. Secondly, inverting signs of
input operands may render hardware costs depending upon
the data representation. In the following section, we discuss
how to achieve the MEE for logic-pruned (approximate) n x n
squarers that utilize 2 x 2 squarers and 2 x 2 multipliers in
order to produce absolute approximate mirror pairs, which
cancel out the error originated within the pairs completely.

IV. ABSOLUTE APPROXIMATE SQUARER

MIRROR PAIR (AASMP)

An n x n recursive multiplier can be constructed from 4!
elementary (2 x 2) multipliers, where n = 2™ is the width of
input operands A and B in bits [22], [25]. These 2 x 2 ele-
mentary multipliers form the partial products and summing
the bit-shifted partial products produces the overall product
by utilizing adder trees. Any number out of the 2 x 2 partial
products and/or adders can be approximated to achieve an
approximate n x n multiplier [25].

In case of an n x n squarer, the number of required elemen-
tary (2 x 2) modules is less than 4m=1 (where n = 2) due to
the repetition of a few partial products with the same inputs.
The only exception is a 2 x 2 squarer (n = 2). Without loss
of generality, here we consider an 8 x 8 unsigned squarer
(Sq8x8) to design an approximate mirror pair, wherein
the error introduced by one approximate squarer is additive
inverse (opposite in sign and equal in magnitude) of the other.
Therefore, the pair is called AASMP. In order to achieve an
approximate Sq8x8, we have employed approximations in
2 x 2 partial products constructs only, not for the adder trees.

First we discuss the construction of an accurate
Sq8x8 module based on elementary (2 x 2) modules. Let
Sq8x8 = A*A, where A = ajag asas azap ajap is an
8-bit unsigned number and a7 and ag are the most significant
and least significant bits respectively. Fig. 5 illustrates the
Sq8x 8 computation, which shows that a total of four 4 x 4
partial products are required. Out of the four 4 x 4 partial
products, two compute 4-bit square (Sq4x4) operation and
the other two compute 4-bit multiply (P4x4) operation.

a3 4y 41 9
* a3 az al a.o

a; ap* a, a,
a; a,*a; a 7 Shift of 2-bits

equal
W~ a; a* a; a

|al3 a, * a; a, ‘ Shift of 4-bits

| 8-bit Product ‘

FIGURE 5. Sq8x8 computation utilizing 4 x 4 partial products (left), each 4 x 4 partial product can be computed by deploying 2 x 2 partial

products (right).
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"""""" Most Significant Sq4

asay

tasay : Sq2x2

asay 256

ajag : P2x2 ‘é

azag

ajag : Sq2x2

FIGURE 6. An 8 x 8 Squarer (Sq8x8) construction utilizing ten elementary
(2 x 2) modules, with four squarers (Sq2x2) and six general multipliers
(P2x2).

However, the two P4 x4 operations multiply the same (equal)
inputs, Fig. 5 (left). Therefore, an Sq8x8 hardware requires
a P4x4 and two Sg4 x4 blocks along with an adder tree.

Similarly, each 4 x 4 partial product can be computed by
utilizing four 2 x 2 partial products, Fig. 5 (right). In case of an
Sq4 x4 operation, two out of the four 2 x 2 partial products
compute 2-bit square (Sq2x2) operation and the other two
compute 2-bit multiply (P2x2) operation. However, both
P2 x2 multiply the same (equal) inputs, Fig. 5 (right). There-
fore, an Sq4 x4 hardware block requires a P2x2 and two
Sq2 %2 elementary modules along with an adder tree. On the
other hand, a P4 x4 hardware block requires four P2x2 ele-
mentary modules along with the adder tree. This explains why
we require less number of elementary (2 x 2) modules for an
n x n squarer as compared to a general multiplier that requires
4m=1 elementary modules. Fig. 6 illustrates the construction
of an Sq8 x 8 architecture that requires ten elementary (2 x 2)
modules. Out of the ten elementary modules, four compute
2 x 2 square operation (Sq2x2) and 6 compute 2 x 2 multiply
operation (P2x2), see Appendix A for the details.

In order to achieve an approximate Sq8 x 8, any number out
of the ten elementary modules can be approximated based
upon the error tolerance of an application. To design an
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FIGURE 7. Logic diagrams of 2 x 2 squarers; (a) accurate design;
(b) proposed approximate design S1; (c) proposed absolute approximate
mirror of S1.

8 x 8 AASMP, we propose to utilize approximate P2x2 and
Sq2x2 modules in one Sq8x8 and to utilize the mirror
approximate counterparts in the other Sq8x 8 to form a pair.
Therefore, in order to design an 8 x 8 AASMP, we first discuss
how to design 2 x 2 AASMP and 2 x 2 AAMMP.

A. 2 x 2 AASMP DESIGN

We propose an approximate 2 x 2 squarer: Sq2x2 (S1)
which introduces an error for one out of 4 possible input
combinations: 2*2~0, instead of 4 (¢;; = —4). An absolute
approximate mirror of S1 is S2, which computes 2*2~8
(es2 = +4). The logic diagrams of the accurate Sq2x2,
S1 and S2 are shown in Fig. 7.

B. 2 x 2 AAMMP DESIGN

Consider M1, an approximate 2 x 2 multiplier (P2x2) that
introduces an error for one out of 16 possible input combi-
nations: 3*3~7, instead of 9 [22], for the error: €, = —2.
To design M2, which is an absolute approximate mirror of
M1, we propose 3*3~11, ¢,2 = +2. Therefore, combining
M1 and M2 in a parallel pair produces a 2 x 2 AAMMP. The
logic diagrams of the accurate P2x2, M1 and M2 are shown
in Fig. 8.

C. DESIGN SPACE OF A 2 x 2 ABSOLUTE APPROXIMATE
MIRROR PAIR

Several choices can be made to design an Sq2x2 AASMP or a
P2x2 AAMMP. Keeping in view the truth tables, any output
(except zero) can be approximated with a +§ error within a
pair, i.e., +6 for one approximate 2 x 2 module and —§ for
the other to form an absolute approximate mirror pair. For
instance, a P2x2 AAMMP can utilize more design choices
such as: 2*1~1 and 3 (¢ = =+£1), 3*2=5 and 7 (¢ =
+1), or 4 and 8 (¢ = =£2). Comprehensive design space
exploration to get an optimal 2 x 2 absolute approximate
mirror pair is beyond the scope of this paper, we only intend
to show here how it can be designed.

D. 8 x 8 AASMP DESIGN

As discussed earlier, an Sq8x8 architecture is composed
of six P2x2 and four Sq2x2 elementary modules (Fig. 6).
Approximate elementary modules like M1, M2, S1 and
S2 can be utilized to design an approximate Sq8 x 8. However
for an 8 x 8 AASMP design, we propose to utilize the M1 and
S1 modules for one Sq8x8 (¢; = —4§), and the M2 and
S2 modules for the other Sq8x8 (e2 = +34) to form a pair.
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FIGURE 8. Logic diagrams of 2 x 2 multipliers; (a) accurate design; (b) an approximate design M1 [22]; (c) proposed absolute approximate

mirror of M1.
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FIGURE 9. Design methodology for building an optimal approximate
Square-Accumulate (SAC) architecture.

E. n x n AASMP DESIGN

We have elaborated on the design of an 8 x 8 AASMP so
far. In a similar fashion, an n x n AASMP can be designed by
utilizing the negative error elementary 2 x 2 designs (¢ = —4,
like M1 and S1) for one n x n squarer and the positive error
elementary designs (¢ = +§, like M2 and S2) for the other
n X n squarer to form a pair.

V. DESIGN SPACE EXPLORATION OF AN APPROXIMATE
SAC ARCHITECTURE AND COMPARISON OF
SELF-HEALING WITH CONVENTIONAL METHODOLOGY

In this section, we present a design flow for building an
optimal approximate square-accumulate (SAC) architecture.
Fig. 9 illustrates the proposed design methodology. As can
be seen in the figure, the first step involves a design space
exploration of a conventional approximate n X n squarer
using statistical analysis (Section V-A). The pareto-optimal
design configurations from the first stage are then fed to
the second stage where n x n squarer pairs are formed
by employing absolute approximate mirror modules of the
pareto-optimal configurations. Quantitative analysis of the
pairs is then performed using exhaustive simulations (covered
in section V-B), to quantify the performance of the pairs
in real world scenarios that involve random input vectors
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of finite (limited) length. We present these simulations for
both self-healing and conventional methodologies to com-
pare their overall quality-efficiency trade-off. Based on the
quantitative analysis in Stage 2 and the user-defined quality
constraints, an approximate configuration can be selected
that provides optimal efficiency while satisfying the user-
constraints.

A. DESIGN SPACE EXPLORATION USING ERROR
PROBABILITY MASS FUNCTION (EPMF) OF AN
APPROXIMATE SQUARER

First of all we present the statistical error analysis for the
design space exploration of a single approximate squarer
(composed of elementary 2 x 2 multiplier and squarer mod-
ules) designed in a conventional way (Stagel). By con-
ventional way, we mean that we are only using M1 as
approximate 2 x 2 multiplier and S1 as approximate 2 x 2
squarer, without the mirror approximate designs (M2 and
S2). To evaluate the quality of all the possible configurations
of an approximate squarer, we propose an algorithm that
can be used to compute the probability mass function of
error (EPMF) [19], [28] of an approximate squarer configura-
tion, provided an input distribution. As the computed EPMF
can be used for evaluating most of the error metrics (like
Mean Error (ME), Mean Error Distance (MED), and Mean
Square Error (MSE)), the proposed algorithm can be used for
comparing all the possible configurations of an approximate
squarer for a defined error metric.

Let n be the number of input bits. Based upon the fact that
the elementary modules used in this work are 2 x 2 multipliers
and 2 x 2 squarers, the input can be divided into pairs of bits,
starting from the LSB, as shown in Fig. 10. Each input pair
can attain one of three possible states, which defines whether
the particular state will/can/will not lead to error(s) in the
corresponding 2 x 2 approximate elementary module(s). The
states are defined as follows:

o State O : If in this state, the input pair will not generate
rather kill any possibility of error(s) in the corresponding
elementary module(s).

« State 1 : If in this state, the input pair will generate an
error in the corresponding approximate 2 x 2 squarer
module only.

o State 2 : If in this state, the input pair can only
generate an error in the corresponding approximate
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FIGURE 10. Pairing of bits for an n-bit input. A, A,, ...
by elementary 2 x 2 modules in an n x n squarer.

,Ap/2 are utilized
2 x 2 multiplier module(s), depending on the state of
the other pair(s) of bits being used by the corresponding
elementary module(s).

It can be inferred from the designs of the approximate
elementary modules (M1 and S1), presented in section IV,
that an input pair will be considered in state O if it has either
(00); or (01), value, as in all the designs these values do not
lead to any approximation error. An input pair is considered
in state 1 if it has (10), value, as this will always generate
an error in case of an approximate 2 x 2 squarer (S1) being
used at the corresponding location. Similarly, an input pair
is considered in state 2 if it has (11), value, as this might
generate an error in a 2 x 2 approximate multiplier (M1)
module, depending on the state of the other pair of bits being
input to the module.

Given an input probability distribution, the probabilities of
each state can be computed as follows:

o State 0:
P(s(Ai) = 0) = P(A; == (00)2 || A; == (O1)2) (1)

o State | :
P(s(A) = 1) = P(A; == (10)2) ®)

o State 2:
P(s(Aj) = 2) = P(A; == (11)2) ©))

Here s(A;) € {0, 1,2} defines the state of i input pair of
bits (A;), where i € {1,2,...,n/2}.

Using the probabilities of individual states of the input
pairs, assuming that they are independent, the probability of
a combination of input pairs can be computed as:

P({S(Al)9 S(Az)s ce S(An/z)} = {sls S2a .
= P(s(A1) = 51, 5(A2) = 52, .
n/2

= [[Pe@n =) (10)

i=1

* sn/Z})
- S(Any2) = sny2)

To compute the probability of a combination of input pairs
more precisely, a modified version of the equation presented
in [19] can be used. The equation for the given scenario can
be reformulated as:

P({s(A1), s(A2), ..., s(Ans2)} = {s1, 52, ..
= P(s(A1) = 51, 5(A2) = 52, ..

= 2

{an—1,....a0|s(Anj2)=sn/2N...As(A1)=51}

< Sny2})
2 8(Apy2) = Sns2)
P((ap—1...a0)2) (11)
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Note that as (11) allows us to consider the interdepen-
dency between pairs, therefore, the results generated using
(11) are more accurate than the results generated using (10).
Although at first it seems that (11) will result in significant
computational overheads, this is not the case for design space
exploration. This is because of the fact that the probability of
the combinations of input pairs remain the same for all the
configurations of the approximate squarer for a given input
probability distribution, and is required to be computed only
once. Therefore, the overhead when distributed over all the
configurations results in insignificant overhead.

The error corresponding to the combination of input pairs
can be computed by identifying the elementary module(s)
that will generate error(s) and then adding the errors from all
the modules together. Note that here by the error of an ele-
mentary module we mean the approximation error multiplied
by the significance (shift factor) of the module. Algorithm 1
presents the pseudo-code for computing the error value (v.)
for a given combination of input pairs.

Algorithm 1 Pseudo-Code for Computing v,

Input:

c : State combination that defines the state of each pair
of input bits

Config : Configuration of the approximate squarer
Initialize:

ve=0

1: fori={1,...,length(c)} do

2: if c(i) == 1 & corresponding 2 x 2 sq. iS approx.
then

3: Ve = V¢ + approximation error x significance of
the corresponding module

4: else if c¢(i) == 2 then

5: forj={i+1,i+2,...,length(c)} do

6: if ¢(j) == 2 then

7: Ve = V¢ + approximation error x signifi-
cance of the corresponding module

8: end if

9: end for

10: end if

11: end for

12: RETURN v,

The EPMF for a given configuration can be computed
by iterating over all the possible combinations of the input
pairs. Algorithm 2 presents the pseudo-code for computing
the EPMF of a given configuration of a squarer, provided
an input distribution. The arrays V and P,, returned by the
algorithm, represent the EPMF where V stores the error val-
ues and P, stores the corresponding error probabilities. Note
that, although the computational complexity of the proposed
algorithm is exponential, this results in significant reduction
in the design space exploration time because it reduces the
number of states per input pair from 4 (total number of input
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Algorithm 2 Pseudo-Code for Computing EPMF
Input:
n : Number of input bits
Config : Configuration of the approximate multiplier
P(a;) : Probabilities of individual bits of the input
Initialize:
V : Array for storing error magnitudes
P, : Array for storing error probabilties

1:  Compute P(s(A;)) = s;)) VA; € {1,2,...,n/2} and
si € {0, 1,2} using Eq. 7, 8, and 9.

2:  Find C, i.e., All possible combinations of states of the
pairs of input bits

3: for ¢ = {1, ..., number of combinations in C} do

: Compute v, (error value of the combination) using

Algo. 1

5: Compute p. (probability of the combination) using
Eq. (10) or (11)

6: if v. € V then

7 Py(ve) = Py(ve) + pc;

8: else

9: Append v, to V and place p,, in P,(v,)

10: end if

11: end for

12: RETURN V and P,

combinations, i.e., 22) to 3 (because of 3 states) which thereby
reduces the computational time significantly specifically for
larger approximate squarers.

Note that, as mentioned earlier, Algorithm 2 pro-
vides the EPMF of a configuration which can be used
to compute almost all the commonly used error met-
rics. Therefore, a complete design space, covering all the
possible configurations of approximate squarer, can be gen-
erated for a given input distribution to identify the pareto-
optimal configurations which provides an optimal trade-
off between a defined error metric and an efficiency target
(area/power/performance). We employed the algorithm to
perform the design space exploration of an approximate 8 x 8
squarer (Sq8x8). Fig. 11 illustrates the design space of an
Sq8x 8 plotted against area and Mean Error (ME) for uniform
and normal input distributions. Here we assume the efficiency
target is area which is computed by adding the areas of
individual 2 x 2 multiplier/squarer modules, synthesized at
1.43GHz for TSMC 40nm Low Power (TCBN40LP) tech-
nology as shown in Table 1. It is to be noted that the ME is
an important error metric for the output-quality analysis of
an approximate squarer in a SAC architecture, because the
subsequent accumulator produces a small overall error for a
low ME input by canceling out most of the errors. Therefore,
we have utilized ME metric and is computed as follows,

ME[normalized] = ME/(2*" — 1) (12)

where 2n is the number of output bits. Based on the available
design space, the pareto-optimal configurations (that provide
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TABLE 1. Area of elementary 2 x 2 multipliers (P2x2) and squarers
(Sq2x2).

Multiplier/Squarer Area (um?)
Accurate P2x2 9.65
Conventional Approx P2x2 (M1) 7.05
Accurate Sq2x2 3.53
Conventional Approx Sq2x2 (S1) 2.12

an optimal trade-off between area and the quality metric as
shown in Fig. 11) are selected for later stages (Stage2 and
Stage3) of the design process. Note that, to have more accu-
rate analysis for both of the cases, we used (11) for computing
the probability in Algorithm 2.

Although, the aforementioned analysis provides us with
the configurations that offer optimal quality-efficiency trade-
off, it is to be noted that a significant quality degradation
will occur if we employ higher error rate and higher error
magnitude approximations in the elementary 2 x 2 mod-
ules (aiming at higher efficiency). However, if we introduce
approximations in the proposed self-healing manner such that
the mean error of two modules forming a mirror pair are
additive inverse of each other, then we have:

P(MEo1a1) = P(ME) + P(ME2) = 0 (13)

where P(ME1) and P(ME,) are the expected ME values of
the two squarers in a mirror pair, and P(ME,yy,;) is the
overall expected ME value of the approximate mirror pair.
Equation (13) shows that the expected ME value of a squarer
mirror pair is zero, which will result in an overall zero error
after the accumulation stage in a SAC architecture. This will
also hold true for high error rate and high error magnitude
approximate elementary 2 x 2 designs in a mirror pair.
However, P(ME; ;) is not necessarily zero in case of random
finite-length input distributions for the self-healing case as
in (13). This brings the importance of finite-length random
input analysis for quality-efficiency trade-off evaluation and
comparison of the self-healing methodology with the con-
ventional methodology, and is presented in the following
subsection.

B. QUALITY-EFFICIENCY TRADE-OFF OF SQUARER PAIRS
FOR RANDOM FINITE-LENGTH INPUT VECTORS AND
COMPARISON OF SELF-HEALING WITH CONVENTIONAL
METHODOLOGY

Here we evaluate SAC architectures utilizing approximate
Sq8x8 pairs with random finite-length input vectors and
compare the quality-efficiency trade-off of the proposed self-
healing methodology with the conventional methodology.
We consider an exhaustive simulation method (Stage 2)
where inputs are fed to the selected pareto-optimal designs
(from Stage 1) and a quantitative analysis is done. We have
utilized uniform and normal (u = 128 and o = 22.5)
distributions, where each distribution has two finite-lengths:
a small data size with 100 vectors of 124 elements each and
a large data size with 1000 vectors of 10000 elements each.

49121



IEEE Access

G. A. Gillani et al.: Squash: Approximate SAC With SH

100k + Sub-optimal Points
— Pareto Front
* Pareto-optimal Points

ME [normalized]

50 55 60 65 70 75
Area [i1 m2]

(a) ME vs. Area for uniformly distributed inputs.

ME [normalized]

+ Sub-optimal Points

g [ |~ Pareto Front E
10 * Pareto-optimal Points
50 55 60 65 70 75

Area [/Lmz]

(b) ME vs. Area for normally distributed inputs.

FIGURE 11. Design space of an approximate Sq8x8 module constructed using elementary 2 x 2 modules: accurate P2x2, M1, accurate
Sq2x2 and S1. The normal input distribution has x = 128 and ¢ = 22.5. Pareto-optimal points are chosen that provide best efficiency for a given

quality constraint and vice versa.

TABLE 2. Area of 2 x 2 multiplier (P2x2) and squarer (Sq2 x2) pairs.

Multiplier/Squarer Pair Area (um?)
Accurate P2x2 19.29
Conventional Approx P2x2 (M1 and M1) 14.11
Mirror Approx P2x2 (AAMMP) (M1 and M2) | 15.52
Accurate Sq2x2 7.05
Conventional Approx Sq2x2 (S1 and S1) 4.24

Mirror Approx Sq2x2 (AASMP) (S1 and S2) | 2.82

Area is considered as efficiency target as in Section V-A.
However, here we consider a pair of 8 x 8 squarers utiliz-
ing 2 x 2 multiplier (P2x2) and 2 x 2 squarer (Sq2x2)
pairs in a conventional and proposed way. In case of the
conventional P2x2 pair, both P2x2 are M1 (3*3~7). But
when we make an absolute approximate multiplier mirror
pair (AAMMP), one of the two P2x2 is M1 (3*3=x7) and
the other is M2 (3*3&11). Likewise, both Sq2x2 of a con-
ventional Sq2x2 pair are S1, while an absolute approximate
squarer mirror pair (AASMP) utilizes S1 and S2 to form a
proposed Sq2x2 pair. Table 2 shows the area of aforesaid
pairs, synthesized at 1.43GHz for TSMC 40nm Low Power
(TCBN40LP) technology. The area cost of each 8 x 8 squarer
design is estimated by adding the areas of 2 x 2 constructs
only, not the adder trees. This estimation is plausible for
comparison purpose because the adder trees remain accurate
in all designs. However, in Section VI we will present some
synthesized designs including the adder trees.

Fig. 12 shows the quality-efficiency trade-off of
approximate Sq8x 8 pairs in a SAC architecture for random
finite-length inputs. We have utilized the pareto-optimal
approximate Sq8x 8 design configurations suggested by sta-
tistical analysis (Stage 1, Fig. 11). Here we show the error
metric (MSE) at the y-axis, which is computed at the output of
the accumulator using (6). As expected, the quality-efficiency
trade-off of the conventional methodology in Fig. 12 fol-
lows the pareto-front of Fig. 11 both for uniform and nor-
mal distribution. However, for normally distributed inputs,
eleven pareto-optimal points (designs) have been shown
in Fig. 12 for conventional methodology while they are
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twelve in Fig. 11. This is because the lowest approximation
level (maximum area) pareto-optimal point in Fig. 11 has
generated zero error for finite-length input due to absence
of the error case, which brings MSE(dB) value of —oo
(log;((0) = —oo). Therefore, this design point is not shown
in Fig. 12.

It is to be noted that a low MSE value and a small area
are desired. Therefore, a pareto front that is near to the
origin of the graph is a better option. It follows from the
quality-efficiency trade-off illustrated in Fig. 12 that self-
healing improves the pareto front (the optimal designs) for
almost all considered input cases. For large data sizes (large
vector inputs), the pareto front of the proposed self-healing
methodology completely outperforms the conventional coun-
terpart, because the large random vectors have more tendency
towards an ideal input distribution (uniform or normal in this
case). However, in case of smaller data sizes (small vector
inputs), randomly generated vectors have a relatively higher
deviation from ideal distribution, which results in less error
cancellation in case of the proposed self-healing methodol-
ogy. Nevertheless, self-healing still improves the trade-off
for smaller data sizes by introducing several better pareto-
optimal designs as shown in Fig. 12. It should be noted that
the smallest area (highest approximation level) of the pro-
posed self-healing methodology is greater than the smallest
area of the conventional methodology. This is due to the fact
that an absolute approximate mirror pair of a 2x2 multiplier
has a larger area as compared to an approximate conven-
tional pair as shown in Table 2. Specifically, in case of a
conventional approximate multiplier pair, we have two M1,
while in case of an AAMMP, we have M1 and M2. As the
area of M2 is larger than M1, we have more area cost for
a 2x2 AAMMP. Moreover, because of a lower probability
of error at a 2x2 multiplier, the pareto-optimal designs sug-
gested by statistical analysis tend to utilize more approximate
2x2 AAMMPs as compared to that of 2x2 AASMPs, there-
fore the higher order (nxn) approximate squarer pairs also
have a higher area cost for self-healing methodology as com-
pared to conventional methodology. However, as we see the
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FIGURE 12. Exhaustive simulation of pareto-optimal designs obtained from Stage1 for various finite-length randomly distributed inputs. The
proposed self-healing methodology improves the quality-efficiency trade-off for all considered input distributions, which is quite significant in

case of larger vector inputs.

complete trade-off, the proposed self-healing methodology
increases the design space (i.e., offers additional pareto-
optimal designs), and provides overall more effective quality-
efficiency trade-off.

It is to be noted that other efficiency targets can also be
considered, e.g., power, performance, or energy to find the
pareto-optimal designs from Stage 1 and Stage 2 (Fig. 9),
where the relevant cost functions can be utilized like power
consumption, delay, or power-delay-product respectively.
Subsequently, while having a clear quality-efficiency trade-
off (as in Fig. 12), an optimal design can be chosen based on
user-defined quality constraints for the given input distribu-
tion, which accomplishes Stage 3 of the design process.

VI. EXPERIMENTAL SETUP AND RESULTS
In order to compare the conventional and the proposed self-
healing designs, a quality-efficiency trade-off study based
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on estimated area has been discussed in Section V-B. In this
section, we consider some selected designs to show the syn-
thesis results to accurately quantify the efficiency benefits of
self-healing over the conventional methodology. We present
results of quality analysis and hardware synthesis of the
proposed and conventional approximate Sq8x8 designs
deployed in square-accumulate architectures for random
finite-length input vectors. Moreover, for the radio astronomy
calibration processing case study, we analyze the quality
impact of self-healing and compare it with an equivalent
efficiency design utilizing the conventional methodology.

A. EXPERIMENTAL SETUP FOR QUALITY-EFFICIENCY
TRADE-OFF STUDY

Fig. 13 shows our experimental setup to study the quality-
efficiency trade-off. Quality analysis has been performed
in Matlab utilizing behavioral models of approximate
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FIGURE 13. Our experimental setup for quality-efficiency trade-off study.

multiplier/squarer designs. We used Synopsys tools: Design
Compiler and Power Compiler to assess hardware costs
i.e., area and power, for the TSMC 40nm Low Power
(TCBN40LP) technology library. Questasim has been uti-
lized to verify the functionality of the synthesized designs
(gate-level netlists) and to generate the related SAIF (Switch-
ing Activity Interchange Format) files based on the respective
standard delay file (.sdf) and test data. The aforesaid SAIF
files and gate-level-netlists are utilized by Synopsys Power
Compiler for power estimation. For efficiency comparison,
we assume a higher efficiency for a lower computational cost
(chip-area and power consumption) and vice versa.

B. QUALITY-EFFICIENCY TRADE-OFF OF 5q8x8 PAIRS IN
A SAC ARCHITECTURE

Here we present the comparison of some design alternatives
of Sq8x8 pairs in a SAC architecture to quantify the effi-
ciency benefits. The following designs are considered,

a: ACCU
An accurate Sq8x8 pair, where both Sq8x8 in a pair are

composed of accurate 2 x 2 elementary modules (P2x2 and
Sq2x2).

b: CONVENT

An Sq8x8 pair designed utilizing conventional approxima-
tion approach where a least significant P2 x2 (shown in green
in Fig. 6) is approximated as M1 (3*3=x7) [22] for both
Sq8x8s in a pair.

c: SHI

An Sq8x8 pair designed utilizing the proposed self-healing
approximation approach where one least significant P2x2 is
approximated as M1 (3*3~7) [22] in one Sq8x 8§, and one
least significant P2x2 is approximated as M2 (3*3=11) in
the other Sq8x 8. This forms an AASMP.

d: SH3

In addition to SH1 approximations, two least significant
Sq2x2 (shown in green in Fig. 6) are approximated as S1
(2*#2%0) for one Sq8x8, and approximated as S2 (2*2~8)
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TABLE 3. Computational cost comparison of accurate and approximate
$q8x 8 pairs. Convent and Convent3 are based on conventional
approximation methodology; while SH1, SH3 and SH7 are self-healing
based approximate designs.

Parameters Accu | Convent | SH1 | SH3 | Convent3 | SH7
Area_l (um?) | 642 617 626 | 599 | 582 436
Power_1 (uW) | 460 437 445 | 423 | 426 399
Area_2 (um?) | 1000 | 925 935 | 897 | 855 729
Power_2 (uW) | 1079 | 1051 1048 | 979 | 977 795

Area_1l and Power_1 at 1GHz, and Area_2 and Power_2 at 1.43GHz.

for the other Sq8x 8 to form an AASMP. Therefore, approx-
imating the three least significant 2 x 2 elementary modules
in a self-healing fashion.

e: CONVENT3

This is a conventional counterpart of SH3, where one least
significant P2 x2 is approximated as M1 and two least signif-
icant Sq2x2 are approximated as S1 for both Sq8x8s in an
approximate pair.

f: SH7

In addition to SH1 and SH3 approximations, all four elemen-
tary modules (P2x2) of P4 x4 (see Fig. 6) are approximated
as M1 for one Sq8x 8 and as M2 for the other Sq8x 8 to form
an AASMP. Therefore, approximating seven least significant
2 x 2 elementary modules in self-healing fashion.

We compare the computational costs in terms of chip-area
and power consumption of the above Sq8 x 8 pairs at the oper-
ating frequencies: 1 GHz (Area_1, Power_1) and 1.43GHz
(Area_2, Power_2). Normally distributed input vectors have
been utilized to estimate power consumption. Table 3 shows
an increase in computational efficiency (E) as the approxi-
mations are increased, i.e., a higher number of elementary
2 x 2 modules are approximated. For instance, we can see a
minimum area for SH7 and a maximum for Accu. Table 3 can
be summarized as,

Esy7 > Econvent3 = Esu3 > Ecowent > Esp1 (14)

For a quality comparison, Mean Square Error (MSE)
is computed at the SAC output as in (6). The result is
shown in Fig. 14. We analyzed Uniform (Unif_x) and nor-
mal (Norm_x) 8-bit unsigned input distributions, namely:

VOLUME 6, 2018



G. A. Gillani et al.: Squash: Approximate SAC With SH

IEEE Access

120
100
_ ——Unif S
2 80
[
i e Norm_S
s 60 Unif L
40 " Norm_L
20 : ' : ' —
o 3 > > 4
£ &L RS
& &
C ®

FIGURE 14. Quality comparison for various SAC designs utilizing
Sq8x 8 pairs. SH3 provides better quality as compared to conventional
equivalent efficiency design (Convent3), while SH7 outperforms
Convent3 both in quality (mostly) and efficiency.

Unif_S, Unif L, Norm_S, Norm_L, where S stands for a
small data size (100 vectors of 124 elements each) and L
stands for a larger data size (1000 vectors of 10,000 elements
each). We consider Norm_x distributions with & = 128
and 0 = 22.5. In case of small data sizes (Unif_S and
Norm_S), SHI1 provides better quality as compared to the
conventional approach (Convent). Even though the compu-
tational efficiency (E) of SH1 is lower than that of Convent
design, this introduces an additional design alternative in the
trade-off. Moreover, SH3 brings higher E at lower quality as
compared to Convent, and also contributes to an additional
design alternative. Interestingly, SH3 and SH7 provide better
quality output (mostly) as compared to Convent3 with almost
equivalent and higher computing efficiencies respectively,
this is due to the error cancellation opportunity brought by
the self-healing approximation methodology.

For large data sizes with uniform (Unif_L) and nor-
mal (Norm_L) distributions, self-healing designs SH1 and
SH3 show better quality than the conventional design Con-
vent. Interestingly, SH3 deploys higher area- and power-
efficiency as compared to Convent and still provides better
quality due to error cancellation. Similar to small data sizes,
self-healing designs SH3 and SH7 provide better quality
as compared to the Convent3 design for large data sizes.
SH7 shows better efficiency (up to 25% better area efficiency
and up to 18.6% better power efficiency, see Table 3) as
compared to the conventional design (Convent3) with a better
quality output.

Therefore, we can conclude that in comparison to the
conventional design approach, the self-healing approach
increases the design space in some cases and brings better
(higher efficiency and higher output quality) designs in the
other cases to provide an effective quality-efficiency trade-
off.

C. RADIO ASTRONOMY CALIBRATION

PROCESSING - A CASE STUDY

Radio astronomy calibration processing, known as
StEFCal [8], employs a Least Squares (LS) algorithm that
takes sky Visibilities (V) as input and utilizes the Model
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FIGURE 15. Least squares algorithm for radio astronomy calibration,
where one of the computationally expensive components is
square-accumulate (SAC).

TABLE 4. Quality analysis of radio astronomy calibration for employing
various approximate SAC alternatives. SH3 and Convent3 are almost
equal efficiency designs, however SH3 brings 46.7% better quality.

Design Alternatives SAC Error (MSE)
Accu 0

Convent 7.8341e-07

SH1 7.7470e-07
Convent3 2.25e-02

SH3 1.20 e-02

Econvents = Esus > Econvent > EsHi

visibilities (M) to estimate sensor gains (G) for a given
radio telescope configuration. It has three computationally
expensive components: square-accumulate (SAC), multiply-
accumulate (MAC) and element-wise product (EP), where M,
V,Z, G € C (Fig. 15). Here we only present the simulation
results for SAC architecture that computes,

N
Z{(er % Zr)) + (Zi; * Zij)) (15)
j=1

where Zr is the real part and Zi is the imaginary part of a com-
plex vector Z. Each multiplication in (15) can be rewritten as
a multiplier pair to employ self-healing,

N-1
> @Zr * Zr) + Zrigr * Zrig)]
k=1

+ [(Zix * Zix) + (Zigs1 * Zik+1)]} k€2Zso+1 (16)
Table 4 shows the quality analysis of various design
choices as discussed in Section VI-B (Accu, Convent, SH1,
SH3, Convent3). For the MSE (SAC error), both self-
healing designs (SH1 and SH3) provide better quality as
compared to their conventional counterparts (Convent and
Convent3 respectively). It is important to note that the con-
ventional designs produce higher error because of lack of
error cancellation. However, the self-healing based designs
can cancel out the error partially or fully (based on the input
distribution). For that matter, we can see that SH3 produces
46.7% better quality as compared to the conventional coun-
terpart (Convent3) while providing approximately the same
computing efficiency as discussed in Section VI-B.
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VII. CONCLUSION

A novel Self-Healing (SH) methodology to enable effi-
cient and systematic approximate computing has been pre-
sented. Our analysis has shown that exploiting healing stages
of an algorithm in general, and of the square-accumulate
(SAC) architecture in particular, provides an effective quality-
efficiency trade-off. We have shown how SH can be employed
to truncation and logic pruning approximate computing tech-
niques. We discussed the statistical error analysis, randomly
distributed finite-length input analysis and a case study of
radio astronomy calibration processing for an approximate
SAC architecture that showed a more effective quality-
efficiency trade-off utilizing SH as compared to conventional
approximation methodology. Nevertheless, comprehensive
design space exploration—based on input distribution and
quantified error resilience—is required to ensure the highest
efficiency for a given quality constraint within radio astron-
omy calibration processing. We have shown how absolute
approximate mirror pairs are designed for unsigned logic-
pruned multipliers and squarers, and their utilization in SAC
architectures for an effective quality-efficiency trade-off.
However, the utilization of SH for the signed multiplier case
and Multiply-Accumulate (MAC) architectures for attaining
an effective quality-efficiency trade-off are indicated as future
directions of research.

APPENDIX

8 x 8 SQUARER CONSTRUCTION

As discussed in Section IV, an 8 x 8 squarer (Sq8x8) com-
putes A*A operation, where A is an 8-bit unsigned number.
Let A = ajag asaq azap ajap, where ajag are the most sig-
nificant two bits, and ajag are the least significant two bits.
Therefore,

Sq8x8 = ayag asasq azap ajap * ajag asas azap ajag
= azap ajap * azaz ajag + 16(azaz ajag
* ajag asas) + 16(ajag asas * azay ajag)
+ 256(ayag asay * ajag asay) (17
Equation (17) shows that the total of four 4 x4 partial products
compute the Sq8x 8 operation as illustrated in Fig. 5 (left).
However, two of the 4 x 4 partial products multiply the same
(equal) inputs. Therefore, (17) can be re-written as,
= azap 2139 * azap ajap + 32(aza ajap * ajae asas)
+256(aza6 asaq * ajag asaq)  (18)
which means that three 4 x 4 partial products can com-
pute the Sq8x 8 operation, where the factors 32 and 256 are
implemented as bit shifts as shown in Fig. 6. Moreover, each
4 x 4 partial product can be further decomposed into basic
2 x 2 partial product constructs as shown in Fig. 5 (right).
Therefore, (18) becomes,
= ajap *ajap + 4(ajap * a3az) + 4(azaz * ajap)
+ 16(azaz * azaz) + 32[ajag * asayq + 4(ajap * ajag)
+4(asag * azap) + 16(azay * ajag)] + 256[asayq * asag
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+4(asay * ajag) + 4(azag * asag) + 16(azas * ayag)]
(19)

By combining the same (equal) 2 x 2 partial product opera-
tions,

= ajap * ajag + 8(ajag * azaz) + 16(azaz * azay)
+ 32[ajag * asag + 4(ajag * ajag + asag * azap)
+ 16(azay * ajag)] 4+ 256[asas * asay
+ 8(asas * ajae) + 16(ayas * a7ae)] (20)

Equation (20) shows total of ten 2 x 2 partial products,
wherein four are Sq2x2 and six are P2x2 (also depicted
in Fig. 6). The adders and shift factors are implemented in
the higher order blocks like P4 x4, Sq4 x4 and Sq8 x 8 shown
in Fig. 6.
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