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Abstract—This paper studies state synchronization of homo-
geneous discrete-time multi-agent systems (MAS) with partial-
state coupling (i.e., agents are coupled through part of their
states) via static protocol in presence of input delay. Both
uniform input delay and nonuniform input delay are considered.
We identify one class of agents for which static linear protocol
can be designed, which is named squared-down passifiable via
input feedforward. A parameterized static protocol is proposed
for each agent such that state synchronization is achieved among
agents with uniform or nonuniform input delay. Moreover, we
derive upper bounds for uniform and nonuniform input delay
that can be tolerated.

I. Introduction
The problem of synchronization among agents in a multi-

agent system has received substantial attention in recent
years, because of its potential applications in cooperative
control of autonomous vehicles, distributed sensor network,
swarming and flocking and others. The objective of synchro-
nization is to secure an asymptotic agreement on a common
state or output trajectory through decentralized control pro-
tocols (see [1], [14], [19], [26], [35] and references therein).

So far a lot of work in state synchronization for MAS has
focused on state synchronization based on diffusive full-state
coupling, i.e, agents are coupled through their states. In this
case, universally static protocols are considered.

For partial-state coupling (i.e., agents are coupled through
their output which consists of part of their states), state
synchronization can be achieved via a dynamic protocol or
a static protocol. The standard approach leads to dynamic,
observer-based protocols. In [10] a purely decentralized
solution was presented which did not rely on this extra
communication.

Moreover, in several papers the protocol is introspective
where the protocol does not make use of only relative
information between the output of the agent and the output
of other agents but also uses absolute information about the
state of their agent.
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State synchronization via a static protocol with partial-state
coupling imposes restrictions on the agent dynamics. For
state synchronization via a static protocol, agents are usually
required to be passive or passifiable via output feedback.
For example, [36] considers linear agents which are either
passive or passifiable via output feedback. In [8], agents are
strictly G-passifiable via output feedback while [9] deals
with linear agents which are either passive or passifiable
via output feedback. Nonlinear input-affine passive agents
are considered in [5], [28], [41], [43], [44] while general
nonlinear passive agents are studied in [11], [20], [42].

Most references assume an idealized network model. But,
in practical applications, the network model is always imper-
fect. In particular, time-delay effects are ubiquitous in any
communication scheme. As clarified in [4], we can identify
two kinds of time delay: input delay and communication
delay. Input delay results from processing time to generate
an input for each agent while communication delay refers
to the time consumed during the transfer of information
between agents. Most effort has been put into input delay
problems (see [2], [13], [15], [16], [17], [23], [30], [31], [39]
for example). These references, although including results
on linear and non-linear agents, are mostly restricted to
simple agent models such as first/second-order dynamics.
Recently, in [18], [33] and [34], the synchronization problem
under unknown uniform constant or time-varying input delay
is solved for both discrete- and continuous-time high-order
linear agents that are critically unstable. For discrete-time
homogeneous MAS, we refer to [7], [12], [24], [29], [40] for
example. When a static protocol is required, a restriction is
always imposed on the agents. For communication delay, see
[5], [6], [16], [21], [22], [30], [38].

In this paper, we will study state synchronization of
discrete-time homogeneous MAS in the presence of input
delay via static protocols. We focus on the class of squared
down passifiable via input feedforward agents. Both uniform
input delay and nonuniform input delay are considered. The
communication network is assumed to contain a directed
spanning tree in the uniform case, and assumed to be
undirected in the nonuniform case. The parameterized static
protocols are designed for this class of agents based on
discrete-time passivity. These designed static protocols will
be able to tolerate both uniform and nonuniform input delay.

Notations and definitions: Given a matrix A ∈ Rm×n, AT

and A∗ denote the transpose and conjugate transpose of A,
respectively while ‖A‖ denotes the induced 2-norm of A. A
square matrix A is said to be Schur stable if all its eigenvalues
are in the open unit disc.
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A weighted directed graph G is defined by a triple
(V, E,A) where V = {1, . . . , N} is a node set, E is a set
of pairs of nodes indicating connections among nodes, and
A = [ai j] ∈ RN×N is the weighting matrix, and ai j > 0 iff
(i, j) ∈ E. Each pair in E is called an edge. A path from
node i1 to ik is a sequence of nodes {i1, . . . , ik} such that
(ij, ij+1) ∈ E for j = 1, . . . , k−1. A directed tree is a subgraph
(subset of nodes and edges) in which every node has exactly
one parent node except for one node, called the root, which
has no parent node. In this case, the root has a directed path
to every other node in the tree. A directed spanning tree is
a subgraph which is a directed tree containing all the nodes
of the original graph. An agent is called a root agent if it
is the root of some directed spanning tree of the associated
graph. Let ΠG denote the set of all root agents for a graph.
For a weighted graph G, a matrix L = [`i j] with

`i j =

{ ∑N
k=1 aik, i = j,
−ai j, i , j,

is called the Laplacian matrix associated with the graph G.
In the case where G has non-negative weights, L has all its
eigenvalues in the closed right half plane and at least one
eigenvalue at zero associated with right eigenvector 1, the
vector with all elements equal to 1.

II. Passivity and squared down passifiability via input
feedforward for discrete-time MAS

Consider a general discrete-time system Σ:

Σ :
{

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k), (1)

where x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rp .
Definition 1 ([3]): The discrete-time system (1) is called

passive if the system is square and for initial condition x(0) =
0, for any input u and for any k > 0 we have:

k∑
i=0

yT(i)u(i) > 0.

The positive real lemma (see e.g. [3] and [37]) gives an
easy characterization whether systems are passive or not.

Lemma 1: Assume that (A, B) is controllable and (A,C)
is observable. The system (1) is passive if and only if there
exists a matrix P > 0 such that:(

ATPA − P ATPB − CT

BTPA − C −D − DT + BTPB

)
6 0. (2)

G1 Σ G2

R

⊗
û(k) u(k) y(k) ŷ(k) z(k)

Fig. 1. A squared-down passive system via input feedforward

For non-square systems, we use the idea of squaring down
in [27]. A system (1) is called squared-down passive with

respect to a pre-compensator G1 and a post-compensator G2
if the interconnection with input û and output ŷ is passive.

Since strictly proper systems are never passive, we need a
different concept. A system (1) with D = 0 is called squared-
down passifiable via input feedforward with respect to a pre-
compensator G1 ∈ R

m×q and a post-compensator G2 ∈ R
q×p

if there exists an input feedforward

z(k) = Rû(k) + ŷ(k) (3)

which makes the system (1) with D = 0 squared-down
passive with respect to input û and the new output z(k),
as shown in Figure 1. For this class of systems, we find:

Lemma 2: Consider a system (1) with D = 0 such that
(A, BG1) is controllable and (G2C, A) observable. The system
is squared-down passifiable via input feedforward with pre-
compensator G1 ∈ R

m×q and post-compensator G2 ∈ R
q×p

if and only if there exist matrices R and P > 0 such that

G(P) =
(

ATPA − P ATPBG1 − CTGT
2

GT
1BTPA − G2C −R − RT + GT

1BTPBG1

)
6 0. (4)

III. Problem description
We will study a MAS consisting of N identical agents:

xi(k + 1) = Axi(k) + Bui(k),
yi(k) = Cxi(k),

(5)

where xi(k) ∈ Rn, ui(k) ∈ Rm and yi(k) ∈ Rp are state, input
and output of agent i (i = 1, . . . , N), respectively.

The communication network provides each agent with a
linear combination of its own output relative to that of other
neighboring agents. In particular, each agent i ∈ {1, . . . , N}
has access to the quantity,

ζi(k) = 1
1+

∑N
j=1 ai j

N∑
j=1

ai j(yi(k) − yj(k)), (6)

where ai j > 0, aii = 0 for i, j ∈ {1, . . . , N}. The topology
of the network can be described by a graph G with nodes
corresponding to the agents in the network and edges given
by the nonzero coefficients ai j . In particular, ai j > 0 implies
that an edge exists from agent j to i. The weight of the edge
equals the magnitude of ai j . Next we write ζi as

ζi(k) =
N∑
j=1

di j(yi(k) − yj(k)), (7)

where di j > 0, and we choose dii = 1 −
∑N

j=1, j,i di j such
that

∑N
j=1 di j = 1 with i, j ∈ {1, . . . , N}. Note that dii > 0

for any i. The weight matrix D = [di j] is then a, so-called,
row stochastic matrix. Let Din = diag{din(i)} with din(i) =∑N

j=1 ai j . Then the relationship between the row stochastic
matrix D and the Laplacian matrix L is

(I + Din)
−1L = I − D. (8)

As noted in [25, Corollary 3.5], the existence of a directed
spanning tree guarantees that the row stochastic matrix D has
a simple eigenvalue at 1 with corresponding right eigenvector
1 and all other eigenvalues are strictly within the unit disc.
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Let λ1, . . . , λN denote the eigenvalues of D such that λ1 = 1
and |λi | < 1, i = 2, . . . , N . We can then define a set of
network graphs as follows.

Definition 2: For δ ∈ (0, 1), let GN
δ denote the set of

directed graphs with N nodes which contain a directed
spanning tree and for which the corresponding row stochastic
matrix D has the property that |λi | < δ for i = 2, . . . , N .
Definition 3: For δ ∈ (0, 1), let GN,u

δ denote the set of
undirected graphs with N nodes which are strongly con-
nected and for which the corresponding row stochastic matrix
D has the property that |λi | < δ, i = 2, . . . , N .
Our goal in this paper is to achieve state synchronization

among agents in a MAS, that is limk→∞(xi(k) − xj(k)) = 0
for all i, j ∈ {1, . . . , N}. When input delays exist in systems
(5), the discrete time MAS can be expressed as

xi(k + 1) = Axi(k) + Bui(k − κi),
yi(k) = Cxi(k),

(i = 1, . . . , N) (9)

where κ1, . . . , κN are unknown integers satisfying κi ∈ [0, κ̄]
(i = 1, . . . , N) with κ̄ the upper bound of the input delay.
In case of uniform delay, there exists an integer κ satisfying
κ = κ1 = κ2 = · · · = κN and the MAS (9) will be of the form

xi(k + 1) = Axi(k) + Bui(k − κ),
yi(k) = Cxi(k),

(i = 1, . . . , N) (10)

where κ is an unknown integer satisfying κ ∈ [0, κ̄] with κ̄
the upper bound of the input delay.

For the above MAS, we formulate three problems:
Problem 1 (No delays): Consider a MAS described by (5)

and (7). The state synchronization problem via static protocol
with a set of network graphs GN

δ is to find, if possible, a
linear static protocol of the form

ui(k) = Fζi(k), (i = 1, . . . , N) (11)

such that, for any graph G ∈ GN
δ and for all initial conditions

for the agents, state synchronization is achieved.
Problem 2 (Uniform input delay): Consider a MAS de-

scribed by (7) and (10). The state synchronization problem
with a set of network graphs GN

δ is to find, if possible, a
linear protocol in the form of (11), for i = 1, . . . , N such
that, for any graph G ∈ GN

δ , for any κ 6 κ̄, and for all the
initial conditions of agents, state synchronization is achieved.

Problem 3 (Non-uniform input delay): Consider a MAS
described by (7) and (9). The state synchronization problem
with a set of network graphs GN,u

δ is to find, if possible, a
linear protocol in the form of (11), for i = 1, . . . , N such
that, for any graph G ∈ GN,u

δ , for any κ1, . . . , κN 6 κ̄, and
for all the initial conditions of agents, state synchronization
is achieved.

IV. State synchronization for agents without input
delay that are squared-down passifiable via input

feedforward
The MAS system described by (5) and (7) after imple-

menting the linear static protocol (11) is written as
xi(k + 1) = Axi(k) + BFζi(k),

yi(k) = Cxi(k),
ζi(k) =

∑N
j=1 di j(yi(k) − yj(k)),

(12)

for i = 1, . . . , N . Define x(k) =(
xT

1(k) xT
2(k) · · · xT

N (k)
)T. Then the overall dynamics

of the N agents can be written as

x(k + 1) = (I ⊗ A + (I − D) ⊗ BFC)x(k). (13)

We have the following result.
Lemma 3: The MAS (13) achieves state synchronization

if and only if the following N − 1 subsystems,

ηi(k + 1) = (A + (1 − λi)BFC)ηi(k), i = 2, . . . , N (14)

are asymptotically stable, where λi with |λi | < 1 for i =
2, . . . , N are the eigenvalues of D unequal to 1.
For a MAS with squared-down passifiable agents via input

feedforward, we design a static protocol of the form:

ui(k) = −εG1G2ζi(k), (15)

where ε > 0 is a parameter to be designed. We have
Theorem 1: Consider a MAS described by agents (5) and

(7) where the agents are squared-down passifiable via input
feedforward with respect to G1 and G2 such that (A, BG1) is
controllable and (A,G2C) is observable. Let any δ ∈ (0, 1)
be given.
The state synchronization problem stated in Problem 1 is

solvable for the set of graphs GN
δ . In particular, there exists

an ε∗ such that for any ε < ε∗, protocol (15) solves the state
synchronization problem for any graph G ∈ GN

δ .
Remark 1: It can be shown that the synchronized trajec-

tory is given by xs(k) = η1(k), which is governed by

η1(k + 1) = Aη1(k), η1(0) = (w ⊗ In)x(0), (16)

where w is the normalized (in the sense that
∑
wi = 1)

left eigenvector of the row stochastic matrix D associated
with the eigenvalue 1. This shows that the modes of the
synchronized trajectory are determined by the eigenvalues
of A and the complete dynamics depends on both A and a
weighted average of the initial conditions of agents.

One can further show that η1(0) is only a linear combi-
nation of initial conditions of root agents. As such, the syn-
chronized trajectory given by (16) can be written explicitly
as

η1(k) = Ak
∑
i∈ΠG

wi xi(0), (17)

which is a weighted average of the trajectories of root agents.
Proof of Theorem 1: From Lemma 3, it is clear that we only
need to prove that

η(k + 1) = (A − ε(1 − λ)BG1G2C)η(k) (18)

is asymptotically stable for all λ with |λ | < δ. By choosing
a Lyapunov function V(k) = η∗(k)Pη(k), we obtain

V(k + 1) − V(k)

=

(
η(k)

−ε(1 − λ)G2Cη(k)

)∗
G(P)

(
η(k)

−ε(1 − λ)G2Cη(k)

)
+ ε2 |1 − λ |2η∗(k)CTGT

2(R + RT)G2Cη(k)

− 2ε Re(1 − λ)η∗(k)CTGT
2G2Cη(k)

6η∗(k)CTGT
2
[
ε2 |1 − λ |2(R + RT) − 2ε Re(1 − λ)I

]
G2Cη(k),
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where G(P) is given by (4). Choosing a large enough r > 0
such that R + RT < r I and using |λ | < δ, we find that

ε |1 − λ |2(R + RT) − 2 Re(1 − λ)I 6ε(1 + δ)2r I − 2(1 − δ)I

=
(
ε(1 + δ)2r − 2(1 − δ)

)
I .

For all ε < ε∗ with ε∗ = 2(1−δ)
r(1+δ)2 , we have for some ν > 0

V(k + 1) − V(k) 6 νη∗(k)CTGT
2G2Cη(k),

which proves the required stability since (A,G2C) is de-
tectable.

V. State synchronization for agents with input delay
that are squared-down passifiable via input

feedforward
A. Uniform input delay
In this subsection, we will consider the case with uniform

input delay. The MAS system described by (7) and (10).
We still use a static protocol of the form (15). The overall
dynamics of the N agents can be written as

x(k + 1) = (I ⊗ A)x(k) + ((I − D) ⊗ BFC)x(k − κ). (19)

As observed in Section IV, the synchronization for the system
(19) is equivalent to the asymptotic stability of the following
N − 1 subsystems,

η̃i(k + 1) = Aη̃i(k) + (1 − λi)BFCη̃i(k − κ), (20)

for any integer κ ∈ [0, κ̄], where λi , i = 2, . . . , N are those
eigenvalues of D inside the unit disc.
Lemma 4: The MAS (19) achieves state synchronization

if and only if the system (20) is asymptotically stable for
i = 2, . . . , N and for any integer κ ∈ [0, κ̄].

In light of the definition of Problem 2 that synchroniza-
tion is formulated for a set of graphs, we obtain a robust
stabilization problem, i.e. the stabilization of the system

x(k + 1) = Ax(k) + (1 − λ)Bu(k − κ), (21)

via a protocol (11) for any λ which is an eigenvalue inside
the unit disc of a stochastic row matrix D associated with a
graph in the set Ḡδ . Define

ωmax =

{
0, A is Schur stable.
max{ω ∈ [0, π] | det

(
e jω I − A

)
= 0}, otherwise

The main result for agents with uniform input delay can
be stated as follows.

Theorem 2: Consider a MAS described by (7) and (9)
where the agents are squared-down passifiable via input feed-
forward given G1 and G2 such that (A, BG1) is controllable
and (A,G2C) is observable. Let any δ ∈ (0, 1) be given.
The state synchronization problem stated in Problem 2 is

solvable if
κ̄ωmax < arccos(δ). (22)

In particular, for any given κ̄ satisfying (22), there exist a
ε∗ > 0 such that for any ε ∈ (0, ε∗), static protocol (15) solves
the state synchronization problem for any graph G ∈ GN

δ and
any κ ∈ [0, κ̄].

Remark 2: In the case of uniform delay, it is still true
that the synchronized trajectory is given by xs(k) = η1(k)
which is governed by (17) where w is the first row of T−1

and independent of the delays.
In order to prove our main result the following lemma will

be employed.
Lemma 5: Consider a linear time-delay system

x(k + 1) = Ax(k) + A1x(k − κ), (23)

where x(k) ∈ Rn and κ ∈ N. Suppose A+ A1 is Schur stable.
Then, (23) is asymptotically stable if

det[e jω I − A − e−jωκr A1] , 0,

for all ω ∈ [−π, π], and for all κr ∈ R with 0 < κr 6 κ.
Proof: By extending Lemma 1 of [32] to discrete-time and
making a minor modification, we can obtain this lemma.
Proof of Theorem 2: By using the static protocol (15), we
can obtain the closed-loop system as

x(k + 1) = Ax(k) − ε(1 − λ)BG1G2Cx(k − κ), (24)

where |λ | < δ and κ ∈ [0, κ̄].
Since κ̄ satisfies condition (22), there exists a ρ > 0 and

φ > 0 such that

cos(κ̄ω) > δ + 1
ρ for all ω such that |ω | < ωmax + φ.

We will use Lemma 5 to prove the stability of (24). We first
note that in the proof of Theorem 1 it has been shown that
A − ε(1 − λ)BG1G2C is Schur stable. Remains to establish

det
[
e jω I − A + e−jωκr ε(1 − λ)BG1G2C

]
, 0, (25)

for all ω ∈ [−π, π], for all κr ∈ R with 0 < κr 6 κ̄ and for
all λ with |λ | < δ.

We will split the proof into two cases where |ω| < ωmax+φ
and |ω | > ωmax + φ respectively.

If |ω | > ωmax + φ, there exists a µ > 0 such that

σmin(e jω I − A) > µ, for all ω such that |ω| > ωmax + φ,

where σmin(·) denote the smallest singular value. We have:��e−jωκr (1 − λ)�� < 2

and hence


e−jωκr ε(1 − λ)BG1G2C



 < 2ε ‖BG1G2C‖ and
therefore there exists ε1 such that

e−jωκr ε(1 − λ)BG1G2C



 < µ
2

for all ε ∈ (0, ε1). In that case,

σmin(e jω I − A + e−jωκr ε(1 − λ)BG1G2C) >
µ

2
for all ωmax + φ 6 |ω | 6 π and hence, condition (25) holds
for |ω | > ωmax + φ. If |ω | < ωmax + φ, we find that

Re
[
(1 − λ)e−jωκr

]
> Re

[
(1 − λ)e−jωmax κ̄

]
> 1

ρ,

and |(1 − λ)e−jωκr | < 1 + δ. With the same arguments as
in Theorem 1, we can show that for ε ∈ [0, ε2) with ε2 =

2
rρ(1+δ)2 such that

A − ε(1 − λ)e−jωκr BG1G2C

is Schur stable for all |ω | < ωmax + φ. Choosing ε∗ =
min{ε1, ε2}, the result follows.
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B. Non-uniform input delays
In this subsection we will show that the protocol design for

uniform delay also works for non-uniform delay. However,
unlike the directed graph in the previous subsection, the
graphs considered in this subsection are undirected.

The main result can be stated as follows.
Theorem 3: Consider a MAS described by agents (7) and

(9) where the agents are squared-down passifiable via input
feedforward with respect to G1 and G2 such that (A, BG1) is
controllable and (A,G2C) is observable. Let any δ ∈ (0, 1) be
given. The state synchronization problem stated in Problem
3 is solvable if

κ̄ωmax <
π

2
. (26)

In particular, for any given κ̄ satisfying (26), there exist a
ε∗ > 0 such that for any ε ∈ (0, ε∗), static protocol (15) solves
the state synchronization problem for any graph G ∈ GN,u

δ
and any κ1, . . . , κN ∈ [0, κ̄].
Remark 3: In the case of uniform delay, it is still true that

the synchronized trajectory is given by xs(k) = η1(k) where

η1(k + 1) = Aη1(k), η1(0) = (w̃ ⊗ In)x(0), (27)

however the weights w̃ are no longer equal to the first row of
T−1. The specific weights are dependent on the actual values
of the delays κ1, . . . , κN .

The following lemma is used in the proof.
Lemma 6: Consider a linear time-delay system

x(k + 1) = Ax(k) +
m∑
i=1

Ai x(k − κi), (28)

where x(k) ∈ Rn and κi ∈ N. Suppose A +
∑m

i=1 Ai is Schur
stable. Then, (28) is asymptotically stable if

det[e jω I − A −
m∑
i=1

e−jωκ
r
i Ai] , 0,

for all ω ∈ [−π, π] and for all κri ∈ R with 0 < κri 6 κi
(i = 1, . . . , N).
Proof: By extending Lemma 5 to nonuniform delays, we can
obtain this lemma.
Proof of Theorem 3: To clarify the protocol design, we
introduce here a delay operator Si for the agent i such that
(Si xi)(k) = xi(k − κi). In the frequency domain,

S̃i(ω) = z−κi = e−jωκi .

We define T1 ∈ R
(N−1)×N and T2 ∈ R

N×(N−1)

T1 =
(
I −1

)
, T2 =

(
I 0

)T
. (29)

Since D1 = 1 we get that

(I − D) = (I − D)T2T1. (30)

We define x̄i := xi − xN as the state synchronization error
for agent i = 1, . . . , N − 1, and x̄ =

(
x̄T

1 x̄T
2 · · · x̄T

N−1
)T.

Using
(I − D)T2 x̄ = (I − D)x, (31)

we can write the full closed-loop system as

x̄(k + 1) = (I ⊗ A)x̄(k) − ε[T1Sκ(I − D)T2] ⊗ (BG1G2C)x̄(k),
(32)

where Sκ represents the delays,

Sκ = diag{Si} where (Sizi)(k) = zi(k − κi). (33)

We first need to show that the system is stable without the
delays, i.e. when Sκ = I, which yields the system:

x̄(k + 1) = (I ⊗ A)x̄ − ε(T1(I − D)T2 ⊗ BG1G2C)x̄(k),

Note that from (31) it is easy to see that the eigenvalues of
T1(I−D)T2 are exactly the nonzero eigenvalue of I−D. This
system is Schur stable if the N − 1 systems:

ηi(k + 1) = (A − ε(1 − λi)BG1G2C)ηi(k),

are Schur stable where λ2, . . . , λN are the eigenvalues un-
equal to 1 of D which satisfy |λi | < δ. This follows from an
argument similar to the proof of Theorem 1.
Next, we consider the system with delay. From Lemma 5

it follows that system (32) is Schur stable if

det
[
e jω I − I ⊗ A + εT1S̃κ(ω)(I − D)T2 ⊗ BG1G2C

]
, 0,
(34)

for all ω ∈ [−π, π], for all κr1, . . . , κ
r
N ∈ R with 0 < κri 6 κ̄

(i = 1, . . . , N) and all possible D associated to a network
graph in GN,u

δ . Choose γ > 0 and φ > 0 such that

(1 − δ) cos(κ̄(ωmax + φ)) > γ.

Next, we split the proof of (34) into two cases where |ω | <
ωmax + φ and |ω | > ωmax + φ respectively

If |ω | > ωmax + φ, there exists a µ > 0 such that

σmin(e jω I − A) > µ, ∀ω such that |ω | > ωmax + φ.

The boundedness of D implies that there exists a ε∗ > 0 such
that

‖εT1S̃κ(ω)(I − D)T2 ⊗ BG1G2C‖ 6 µ
2 ,

for any ε < ε∗. Therefore, (34) holds for |ω | > ωmax + φ.
Next, for |ω | < ωmax + φ, we use a Lyapunov argument.

Define
PD = T T

2 (I − D)T2 ⊗ P, (35)

where P satisfies (4). Since T1(I − D)T2 is invertible, it is
easily verified that PD > 0. We need to prove Aω is stable
where

Aω = (I ⊗ A) − ε[T1S̃κ(ω)(I − D)T2] ⊗ (BG1G2C).

We get,

PD − A∗ωPD Aω

= −

(
I
−w

)∗
[(T T

2 (I − D)T2) ⊗ G(P)]
(

I
−w

)
+ ε[T T

2 (I − D)(S̃κ(ω) + S̃κ(ω)∗)(I − D)T2] ⊗ CTGT
2G2C

− ε2[T T
2 (I − D)S̃κ(ω)∗(I − D)S̃κ(ω)(I − D)T2]

⊗ CTGT
2(R + RT)G2C

> ε[T T
2 (I − D)(S̃κ(ω) + S̃κ(ω)∗)(I − D)T2] ⊗ CTGT

2G2C

− ε2[T T
2 (I − D)S̃κ(ω)∗(I − D)S̃κ(ω)(I − D)T2]

⊗ CTGT
2(R + RT)G2C.
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where w = ε(T1S̃κ(ω)(I − D)T2 ⊗ G2C). We have:

(I − D)[S̃κ(ω) + S̃κ(ω)∗](I − D) > 2γ(I − D)

and we choose ε small enough such that:

ε[(I − D)S̃κ(ω)∗(I − D)S̃κ(ω)(I − D)] ⊗ (R + RT)

6 γ(I − D) ⊗ I

which yields

PD − A∗ωPD Aω > εγT T
2 (I − D)T2 ⊗ CTGT

2G2C

which results in the required asymptotic stability of Aω .
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