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Abstract: This paper studies state synchronization of homogeneous multi-agent systems (MAS) with partial-state
coupling (i.e., agents are coupled through part of states). We identify three classes of agents, for which static linear
protocols can be designed. They are agent which are squared-down passive, squared-down passifiable via output
feedback, or G-minimum-phase with relative degree 1. We find that, for squared-down passive agents, the static protocol
does not need any network information, as long as the network graph contains a directed spanning tree, while for the other
two classes of agents, the static protocol needs rough information on the network graph, in particular, a lower bound of
the non-zero eigenvalues of the Laplacian matrix associated with the network graph. However, when adaptive nonlinear
dynamic protocols are utilized, even this rough information about the network is no longer needed for the other two classes
of agents.
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1 Introduction

The problem of synchronization among agents in a multi-
agent system has received substantial attention in recent
years, because of its potential applications in cooperative
control of autonomous vehicles, distributed sensor network,
swarming and flocking and others. The objective of syn-
chronization is to secure an asymptotic agreement on a
common state or output trajectory through decentralized
control protocols (see [1, 9, 16, 25] and references therein).
State synchronization inherently requires homogeneous
MAS (i.e. agents have identical dynamics). Therefore,
in this paper we focus on homogeneous MAS. So far
most work has focused on state synchronization based
on diffusive full-state coupling, where the agent dynam-
ics progress from single- and double-integrator dynamics
(e.g. [11, 12, 13, 14, 15]) to more general dynamics (e.g.
[18, 22, 24, 27]). State synchronization based on diffu-
sive partial-state coupling has also been considered (e.g.
[7, 8, 18, 19, 20, 21, 23]).
For partial-state coupling, a linear dynamic protocol is gen-
erally designed for agents to achieve state synchronization.
When a static protocol is required, a restriction is always
imposed on the agentn. We require agents to be passive,
passifiable via state feedback, or passifiable via output feed-
back (it is called output feedback passive in [26]). For
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example, [4] and [26] deal with linear passive and pas-
sifiable via state/output feedback agent, [2, 28, 30] deal
with input-affine nonlinear passive agents, and [6, 10, 29]
deal with general nonlinear passive agents. Their objec-
tives are mainly to derive synchronization conditions for
network graphs with different kind of communication such
as undirected graph, balanced graph, directed graph, and
time-varying graph. On the other hand, in [26], where
agents are square, a synchronization region is identified.
That is, given output feedback passive agents, a certain set
of graphs is identified such that state synchronization can
be achieved. The passivity assumption in the agent dynam-
ics is replaced in [3] by assuming that the agent system is
weakly minimum-phase and with relative degree one.
In this paper, we will study state synchronization of ho-
mogeneous MAS with partial-state coupling, where agents
are general, linear, and non-square. We assume that the
network graph always has a directed spanning tree. The
contribution of this paper is threefold:

1. We identify three classes of agents, for which static
linear protocols can be designed. They are agents
which are squared-down passive, squared-down pas-
sifiable via output feedback, and G-minimum-phase
with relative degree 1.

2. We develop static protocols for these three classes of
agents. We find that, for square-down passive agents,
the static protocol does not need any network infor-
mation, as long as the network graph contains a di-
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rected spanning tree, while for the other two classes of
agents, the static protocol needs rough information of
the network graph, i.e., a lower bound of the non-zero
eigenvalues of the Laplacian matrix associated with
the network graph.

3. For squared-down passifiable via output feedback
agents and G-minimum-phase agents with relative de-
gree 1, we develop adaptive nonlinear dynamic proto-
cols such that the protocol is independent of the com-
munication networks. In other words, the adaptive
nonlinear dynamic protocol can work for any commu-
nication network with any number of agents, as long
as the graph is undirected.

Notations and definitions: Given a matrix A ∈ Rm×n, AT

denotes the conjugate transpose of A, while ‖A‖ denotes
the induced 2-norm of A. A square matrix A is said to
be Hurwitz stable if all its eigenvalues are in the open left
half complex plane. A ⊗ B depicts the Kronecker product
between A and B. In denotes the n-dimensional identity
matrix and 0n denotes n × n zero matrix; we will use I or 0
if the dimension is clear from the context.
Aweighted directed graphG is defined by a triple (V, E,A)
where V = {1, . . . , N} is a node set, E is a set of pairs
of nodes indicating connections among nodes, and A =
[ai j] ∈ RN×N is the weighting matrix, and ai j > 0 iff
(i, j) ∈ E. Each pair in E is called an edge. A path

from node i1 to ik is a sequence of nodes {i1, . . . , ik} such
that (ij, ij+1) ∈ E for j = 1, . . . , k − 1. A directed tree

is a subgraph (subset of nodes and edges) in which every
node has exactly one parent node except for one node. A
directed spanning tree is a subgraph which is a directed
tree containing all the nodes of the original graph. For a
weighted graph G, a matrix L = [�i j] with

�i j =

{ ∑N
k=1 aik, i = j,
−ai j, i � j,

is called the Laplacian matrix associated with the graph G.
In the case where G has non-negative weights, L has all its
eigenvalues in the closed right half plane and at least one
eigenvalue at zero associated with right eigenvector 1.

2 Passivity and passifiability via output feedback

Consider a general system Σ(A, B,C):

�x(t) = Ax(t) + Bu(t),
y(t) = Cx(t), (1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp . Assume Σ(A, B,C)
is a system with minimal realization where B and C have
full row and column rank respectively. In that case, a square
system (1) is called passive if there exists a positive definite
matrix P such that

PA + ATP � 0, PB = CT, (2)

The square system (1) with m = p is called passifiable via

output feedback if there exists an output feedback

u(t) = −Hy(t) + v(t), (3)

which makes the square system (1) passive with respect to
the new input v(t) (see [26]), i.e., the system with minimal
realization (A− BHC, B,C) is passive where B and C have
full column and row rank respectively.
For a non-square system (1) withm � p, Fradkov definesG-
passivity and G-passifiability in [5]. Given a prespecified
m × p-matrix G, a system (1) is called G-passive, if there
exist a positive definite matrix P, such that

PA + ATP � 0, PB = CTGT. (4)

Similarly, a non-square system (1) with m � p is called
G-passifiable if there exists an output feedback (3) which
makes the non-square system (1) G-passive with respect to
the new input v.
In this paper, we define squared-down passive and squared-

down passifiable via output feedback for a non-square sys-
tem (1) based on the idea of squared down in [17]. Suppose
there exist a static pre-compensator G1 ∈ R

m×q and a static
post-compensator G2 ∈ R

q×p , where q is the relative de-
gree of the system (1). A non-square system (1) with m � p
is called squared-down passive with a pre-compensator G1
and a post-compensator G2, if there exist a positive definite
matrix P, such that

PA + ATP � 0, PBG1 = CTGT
2. (5)

Similarly, a non-square system (1) with m � p is called
squared-down passifiable via output feedback if there exists
an output feedback (3), which makes the non-square system
(1) squared-down passive with respect to the new input v.

Remark 1 Note that when G1 = I, our squared-down pas-

sivity is the G-passivity in [5]. Moreover, for a square

system, G1 = G2 = I, squared-down passivity becomes

conventional passivity.

Next, we will define a class of agents, which is called G-

minimum-phase agents with relative degree 1. For a matrix
G ∈ Rm×p , a non-square system (1) is called G-minimum-
phase agent with relative degree 1 if the square system
(A, B,GC) is minimum-phase with relative degree 1. Note
that for such a system (A, B,GC), there exist non-singular
state transformation matrices Tx and Tu such that

x̃(t) =
(
x̃1(t)
x̃2(t)

)
= Tx x(t), ũ(t) = Tuu(t)

and the dynamics of x̄ is represented as

�̃x1(t) = A11 x̃1(t) + A12 x̃2(t),
�̃x2(t) = A21 x̃1(t) + A22 x̃2(t) + ũ(t),
ŷ(t) = x̃2(t),

(6)

where x̃1(t) ∈ Rn−m and x̃2(t) ∈ Rm. Moreover, A11 is
Hurwitz stable.

3 Problem formulation

Consider a MAS consisting of N identical non-square
agents: {

�xi(t) = Axi(t) + Bui(t),
yi(t) = Cxi(t),

(7)
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where xi(t) ∈ Rn, ui(t) ∈ Rm, and yi(t) ∈ Rp .
The communication network provides agent i (i = 1, . . . , N)
with the following information,

ζi(t) =
N∑
j=1

ai j(yi(t) − yj(t)) (8)

where ai j � 0 and aii = 0. This communication topology
of the network can be described by a weighted graph G with
nodes corresponding to the agents in the network and the
weight of edges given by the coefficient ai j . Specifically,
ai j > 0 indicates that there exists an edge from agent j
to agent i with weight ai j in the graph. In terms of the
coefficients of L, ζi can be rewritten as

ζi(t) =
N∑
j=1
�i j yj(t). (9)

As noted in [16, Corollary 2.5], if the graph contains a
directed spanning tree then the Laplacian matrix L has a
simple eigenvalue at the origin with corresponding right
eigenvector 1. Let λ1, . . . , λN denote the eigenvalues of L
such that λ1 = 0 and Re(λi) > 0, i = 2, . . . , N . We can then
define a set of network graphs as follows.

Definition 1 For any β > 0, let GN
β denote the set of di-

rected graphs with N nodes which contains a directed span-

ning tree for which the corresponding Laplacian matrix L
has the property that Re(λi) > β, i = 2, . . . , N . Moreover,

letGN denote the set of directed graphs with N nodes which

contains a directed spanning tree.

Let GN,u denote the set of undirected graphs with N nodes

that is connected.

Our goal in this paper is to achieve state synchronization
among agents in MAS, that is

lim
t→∞

(xi(t) − xj(t)) = 0, (10)

for all i, j ∈ {1, . . . , N}.
We formulate two state synchronization problems as fol-
lows.

Problem 1 Consider a MAS described by agents (7) and

(8). Let G be a given set of graphs such that G ⊆ GN . The

state synchronization problem via static protocol with a set

of network graph G is to find, if possible, a linear static

protocol of the form

ui(t) = Fζi(t), (11)

for i = 1, . . . , N such that, for any graph G ⊆ GN and for

all initial conditions for the agents, state synchronization

among agents is achieved.

Problem 2 Consider a MAS described by agents (7) and

(8). The state synchronization problem via dynamic proto-

col with a set of network graph G is to find, if possible, a

nonlinear dynamic protocol of the form{
�xci(t) = fi(xci(t), ζi(t)),
ui(t) = gi(xci(t), ζi(t)),

(12)

for xci(t) ∈ Rni and i = 1, . . . , N such that, for any N and

any graph G ∈ GN,u and for all initial conditions for the

agents, state synchronization among agents is achieved.

4 Static protocol design

In this section, we will consider a static protocol design for
a MAS with squared down-passive agents, squared down-
passifiable via output feedback agents, or G-minimum-
phase and with relative degree 1 agents.

4.1 Preliminary results

The MAS system described by (7) and (8) after implement-
ing the linear static protocol (11) is written as

⎧⎪⎪⎨⎪⎪⎩
�xi(t) = Axi(t) + BFζi(t),
yi(t) = Cxi(t),
ζi(t) =

∑N
j=1 �i j yj(t),

i = 1, . . . , N (13)

Define x(t) =
(
xT
1(t) xT

2(t) · · · xT
N (t)

)T. Then the over-
all dynamics of the N agents can be written as

�x(t) = (IN ⊗ A + L ⊗ BFC)x(t). (14)

We immediately have the following result.

Lemma 1 The MAS (14) achieves state synchronization if

and only if the following N − 1 subsystems,

�ηi(t) = (A + λiBFC)ηi(t), i = 2, . . . , N (15)

are asymptotically stable, where λi (i = 2, . . . , N) are the

non-zero eigenvalues of L. Moreover, the synchronization

trajectory is given by

�η1(t) = Aη1(t), η1(0) = (w ⊗ In)x(0), (16)

where w is the normalized left eigenvector of L with row

sum equal to 1 and associated with the zero eigenvalue.

4.2 Squared-down passive

For a MAS with squared-down passive agents, we design
the static protocol as,

ui(t) = −G1KG2ζi(t), (17)

where K is any symmetric and positive definite matrix and
G1, G2 are given in (5).

Theorem 1 Consider a MAS described by (7) and (8). Let

a set of network graphs GN be defined.

Assume (A, B,C) is squared-down passive with G1, G2
given in (5), the state synchronization problem stated in

Problem 1 via a static protocol is solvable for any graph

G ∈ GN . In particular, the static protocol (17) solves

the state synchronization problem for any graph G ∈ GN .

Moreover, the synchronized trajectory is given by (16).

Proof: According to Lemma 1, we only need to prove that
A − λBG1KG2C is asymptotically stable for all λ with
Re(λ) > 0.
Because we assume the system has a minimal realization,
we know that (A, G2C) is detectable. Moreover, we have

P(A − λBG1KG2C) + (A − λBG1KG2C)TP

= PA + ATP − 2Re(λ)PBG1KG2C

� −2Re(λ)CTGT
2KG2C.
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This implies that A− λBG1KG2C is Hurwitz stable for any
λ ∈ C+. In particular, we have stability for any non-zero
eigenvalue of the Laplacian matrix associated with a graph
in the set GN . This proves the result.

Remark 2 When the agents are square, G1 = G2 = I, the

above result is presented in [26].

4.3 Squared-down passifiable via output feedback

A system (1) is squared-down passifiable via an output feed-
back (3) if and only if there exist a matrix H and positive-
definite matrix P such that

P(A − BG1HG2C)+(A − BG1HG2C)TP � 0,
PBG1 = CTGT

2.
(18)

Next we will show that the static protocol in the form of
(17) still works in this case, but part of the knowledge of
network graphs (that is parameter β) is required. In other
words, the problem can be solvable for a set of graphs GN

β
via the static protocol (11).
We design the static protocol of the form (11) as

ui(t) = −ρG1KG2ζi(t), (19)

where ρ > 0 is a parameter dependent on β and K is any
symmetric and positive definite matrix. Note that β is the
lower bound of the real part of nonzero eigenvalues of all
Laplacian matrices associated with the graphs

Theorem 2 Consider a MAS described by agents (7) and

(8). Let any β > 0 be given, and hence a set of network

graphs GN
β be defined.

Assume (A, B,C) is squared down-passifiable via output

feedback with G1, G2 given in (5), then the state synchro-

nization problem stated in Problem 1 is solvable. In par-

ticular, there exists a ρ∗ such that for any ρ > ρ∗, protocol

(19) solves the state synchronization problem for any graph

G ∈ GN
β . Moreover, the synchronized trajectory is given by

(16).

Proof: Similar to Theorem 1, we only need to prove
A − λρBG1KG2C is Hurwitz stable for any λ that satis-
fies Re(λ) > β. Since K is symmetric and positive definite,
GT
2KG2 is also symmetric and positive definite for any in-

jective matrix G2. Since the system is squared-down pas-
sifiable there exists a matrix H and positive-definite matrix
P such that (18) is satisfied. Moreover, for a fixed K , there
exists a real number b > 0 such that

H + HT � 2bK . (20)

Then, we find that

P(A − λρBG1KG2C) + (A − λρBG1KG2C)TP

� PBG1HG2C + CTGT
2HTGT

1BTP

− Re(λ)ρ(PBG1KG2C + CTGT
2HTGT

1BTP)

� 2bCTGT
2KG2C − 2Re(λ)ρCTGT

2KG2C

= −2(Re(λ)ρ − b)CTGT
2KG2C.

Choosing ρ∗ = b/β immediately ensures that A −

λρBG1KG2C is Hurwitz stable for ρ > ρ∗, which proves
the result.

4.4 G-minimum-phase agents with relative degree 1

For a MAS with G-minimum-phase agents with relative
degree 1, we design the static protocol as

ui(t) = −ρT−1
u Gζi(t) (21)

where ρ > 0 is a real number.
The main result in this subsection can be stated as follows.

Theorem 3 Consider a MAS described by agents (7) and

(8). Let any β > 0 be given, and hence a set of network

graphs GN
β be defined.

Assume (A, B,C) is G-minimum-phase with injective G ,

then the state synchronization problem stated in Problem

1 is solvable. In particular, there exists a ρ∗ > 0 such

that for any ρ > ρ∗, protocol (21) solves the state synchro-

nization problem for any graph G ∈ GN
β . Moreover, the

synchronized trajectory is given by (16).

Proof: According to Lemma 1, we only need to prove
that A − λρBT−1

u GC is asymptotically stable for all λ with
Re(λ) > β.
Since the agent is G-minimum-phase, the stability of A −
λρBT−1

u GC is equivalent to the stability of the system
�̃x1(t) = A11 x̃1(t) + A12 x̃2(t),
�̃x2(t) = A21 x̃1(t) + A22 x̃2(t) + λũ(t),
ŷ(t) = GCT−1

x x̃(t) = [0 I]x̃(t) = x̃2(t),
(22)

via a controller
ũ(t) = −ρŷ(t) (23)

for all λ with Re(λ) > β. The closed-loop system of (22)
and (23) is written as

�̃x1(t) = A11 x̃1(t) + A12 x̃2(t),
�̃x2(t) = A21 x̃1(t) + (A22 − λρI)x̃2(t),

(24)

Since A11 is Hurwitz stable, there exists a P1 > 0 such that

P1A11 + AT
11P1 = −I .

Now choose ρ∗ > 0 such that for any ρ � ρ∗, A22 − λρI is
Hurwitz stable. Therefore, there exists P2 > 0 such that

P2(A22 − λρ∗I) + (A22 − λρ∗I)TP2 = −I

Then for any ρ > ρ∗, we have

P2(A22 − λρI) + (A22 − λρI)∗P2 � −κI

for all λ with Re(λ) > β where κ is such that:

κ = 1 + 2β(ρ − ρ∗)‖P−12 ‖−1

Note that κ is an increasing function of ρ. Define a Lya-
punov function

V(t) = x̃T
1(t)P1 x̃1(t) + x̃T

2(t)P2 x̃2(t).

Then, the derivative of V is obtained as
�V(t) = − ‖ x̃1(t)‖2 − κ‖ x̃2(t)‖2 + 2Re(x̃T

2(t)A
T
12P1 x̃1(t))

+ 2Re(x̃T
1(t)A

T
21P2 x̃2(t))

� − ‖ x̃1(t)‖2 − κ‖ x̃2(t)‖2 + 2r1‖ x̃1(t)‖‖ x̃2(t)‖

+ 2r2‖ x̃1(t)‖‖ x̃2(t)‖

=
(
‖ x̃1(t)‖ ‖ x̃2(t)‖

) ( −1 r1 + r2
r1 + r2 −κ

) (
‖ x̃1(t)‖
‖ x̃2(t)‖

)
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where r1 � ‖AT
12P1‖ and r2 � ‖AT

21P2‖. It is clear that
by choosing ρ sufficiently large will guarantee that κ >
(r1 + r2)2, the closed-loop system (24) is asymptotically
stable. This proves the result.

5 Nonlinear dynamic protocol design

For agents that are squared-downpassifiable via output feed-
back orG-minimum-phase with relative degree 1, when lin-
ear static (or dynamic) protocols are used, it has been shown
in the above section (or in the literature) that some knowl-
edge about the network is required. That is the lower bound
of the real part of the nonzero eigenvalues of any Laplacian
matrices associated with the graph in the graph set. In this
section, we will investigate nonlinear dynamic protocols
that do not use any knowledge about the network graph.
Not even the number of agents needs to be known. We
only assume the network graph is undirected and strongly
connected. In particular, nonlinear dynamic protocols are
designed based on the adaptation of parameter ρ(t) in the
protocol (19) using network information ζi(t).

5.1 Squared-down passifiable via output feedback

Let the protocol of agent i ∈ {1, . . . , N} be{
�ρi(t) = ζ Ti (t)G

T
2KG2ζi(t),

ui(t) = −ρi(t)G1KG2ζi(t),
(25)

where ρi(t) is a time-varying function with ρi(0) > 0, and
K is any positive definite symmetric matrix.
The main result for a MAS with squared-down passifiable
via output feedback agents via adaptive nonlinear dynamic
protocols is stated in the following theorem.

Theorem 4 Consider a MAS described by agents (7) and

(9) where (A, B,C) is squared-down passifiable via output

feedback with G1 and G2 while (A, BG1) is controllable

and (A,G2C) is observable. Let a set of undirected network

graphs GN,u be defined.

The state synchronization problem stated in Problem 2 is

solvable for for the set of graphs G ∈ GN,u . In particular,

the adaptive dynamic protocol (25) solves the state synchro-

nization problem for any N with measurements given by (8)
for any underlying undirected graph G ∈ GN,u .

Proof: Since the system is squared-down passifiable via
output feedback withG1, G2 while (A, BG1) is controllable
and (A,G2C) is observable, there exists a matrix H and
positive-definite matrix P such that (18) is satisfied. There
exists a real number b > 0 such that

L ⊗ (H + HT) � 2b(L2 ⊗ K). (26)

Define x(t) =
(
xT
1(t) · · · xT

N (t)
)T and ρ(t) =

diag(ρ1(t), · · · , ρN (t)). Then, the overall dynamics of the
network is written as

�x(t) = (I ⊗ A)x(t) − (ρL ⊗ BG1KG2C)x(t), (27)

Moreover, x(t)T(LρL ⊗CTGT
2KG2C)x(t) =

∑N
i=1 �ρi(t)ρi(t).

Consider the following candidate Lyapunov function

V(x(t)) = xT(t)(L ⊗ P)x(t) with L symmetric. We ob-
tain using (18) that �V(x(t)) � −2

∑N
i=1(ρi(t) − b) �ρi(t). This

implies that

N∑
i=1
(ρi(t) − b)2 � V(x(0)) +

N∑
i=1
(ρi(0) − b)2

which guarantees that all ρi(t) for i = 1, . . . , N are bounded.
This implies in particular that

ζ̂(t) = (I ⊗ G2)ζ(t) = (L ⊗ G2C)x(t) ∈ L2

Choose W such that A − WG2C is asymptotically stable
which is possible since (A,G2C) is detectable. Then p =
(L ⊗ I)x(t) satisfies:

�p = [I ⊗ (A −WG2C)] p + [(I ⊗ W) − (ρL ⊗ BG1K)] ζ̂(t)

This yields p ∈ L2 since I ⊗ (A−WG2C) is asymptotically
stable, ζ̂(t) ∈ L2 and (I ⊗ W) − (ρL ⊗ BG1K) is bounded
since ρ is bounded. Clearly p ∈ L2 guarantees that state
synchronization is achieved since L is connected and hence
the kernel of the matrix L is equal to 1.

5.2 G-minimum-phase with relative degree 1

For the MAS with G-minimum-phase with relative degree
1 agents and unknown communication graph, we design a
dynamic protocol of agent i ∈ {1, . . . , N} as{

�ρi(t) = ζ Ti (t)G
TGζi(t),

ui(t) = −ρi(t)T−1
u Gζi(t),

(28)

where ρi(t) (i = 1, . . . , N) is a time-varying function with
ρi(0) > 0. The main result for a MAS with G-minimum-
phase with relative degree 1 agents is stated as follows.

Theorem 5 Consider a MAS described by agents (7) and

(9) where the agents are G-minimum-phase with relative

degree 1while (A,GC) is observable. Let a set of undirected

network graphs GN,u be defined.

The state synchronization problem stated in Problem 2 is

solvable for for the set of graphs G ∈ GN,u . In particular,

the adaptive dynamic protocol (28) solves the state synchro-

nization problem for any N and for any undirected graph

G ∈ GN,u .

Proof: Based on (6), the system can be written as:

�̃x(t) = (I ⊗ Ã)x̃(t) − (ρL ⊗ E)x̃(t)

where Ã =
(
A11 A12
A21 A22

)
and E =

(
0 0
0 I

)
. Moreover,

xT(t)(LρL ⊗ E)x(t) =
∑N

i=1 �ρi(t)ρi(t). Since A11 is Hur-
witz stable, there exists b > 0 such that Ã − bE is Hurwitz
stable. Choose P > 0 such that

(Ã − bE)TP + P(Ã − bE) � 0.

It is easily seen that for sufficiently large b we can choose
P = diag(P1, aI). Note that in that case we have EP =
PE = EPE = aE . Finally choose c > 0 such that L �
cL2. Consider the following candidate Lyapunov function
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V(x(t)) = x̃T(t)(L ⊗ P)x̃(t) with L symmetric. We obtain
�V(x(t)) � −2a

∑N
i=1(ρi(t) − bc) �ρi(t). This implies that

N∑
i=1
(ρi(t) − bc)2 � V(x(0)) +

N∑
i=1
(ρi(0) − bc)2

which guarantees that all ρi for i = 1, . . . , N are bounded.
Similarly to the proof of Theorem 4, we can then establish
that we achieve state synchronization.

Remark 3 Note that the adaptive nonlinear dynamic proto-

cols (25) and (28) are universal. They work for any commu-

nication network with any number of agents as long as the

associated network graph is undirected and strongly con-

nected. Moreover, for square agents which are passifiable

via output feedback (i.e., when G1 = G2 = I), no additional

knowledge about the model for the agents is needed. The

same remark applies to square passive agents.
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