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Hydrogel menisci: Shape, interaction, and instability
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Abstract – The interface of a soft hydrogel is easily deformed when it is in contact with particles,
droplets or cells. Here we compute the intricate shapes of hydrogel menisci due to the indentation
of point particles. The analysis is based on a free energy formulation, by which we also assess the
interaction laws between neighbouring particles on hydrogel interfaces, similar to the “Cheerios
effect”. It is shown how the meniscus formed around the particles results from a competition
between surface tension, elasticity and hydrostatic pressure inside the gel. We provide a detailed
overview of the various scaling laws, which are governed by a characteristic shear modulus G∗ =√

γρg that is based on surface tension γ and gravity ρg. Stiffer materials exhibit a solid-like
response while softer materials are more liquid-like. The importance of G∗ is further illustrated
by examining the Rayleigh-Taylor instability of soft hydrogels.

Copyright c© EPLA, 2018

Introduction. – Hydrogels, a mixture of polymer net-
work and water, constitute the extracellular matrix of
animal bodies and are found in mucus, cartilage, and
cornea [1]. Even though soft, these materials are tough,
and perform remarkable functions such as sensing [2], self-
healing [3], lubricating joints [4], and selective filtering [5].
In recent years synthetic hydrogels with tailored polymer
structures have been developed to serve as stimuli respon-
sive valves in microfluidics [6], scaffolds in tissue engineer-
ing [7], and vehicles for drug delivery [8]. In a number of
these applications liquid drops, solid particles or biologi-
cal cells reside on a hydrogel interface and deform it by
applying traction. This deformation induces an interac-
tion that leads to biomechanosensing in living cells [9–11],
and self-assembly of particles [12,13]. Understanding the
mechanics of hydrogel interfaces is thus key in a broad
variety of contexts.

The challenge is that hydrogels have attributes of both
solids and liquids. While the polymer network gives rise
to an elastic (shear) modulus G, the interface also pos-
sesses a surface free energy γ that plays a crucial role
in the deformation and stability of these solids [14–16].

(a)E-mail: a.pandey@utwente.nl

As such, a soft elastic solid forms a “meniscus” whenever
brought into contact with a rigid object [17–20]. For solid
particles on extremely soft hydrogels, with shear moduli
down to 10 Pa, these menisci indeed give rise to parti-
cle interactions [12,13] that resemble the “Cheerios effect”
—the clumping of floating paperclips and cereals induced
by liquid menisci [21–25]. Similar interactions are found
for droplets on elastomeric interfaces [26,27]. In this con-
text it is of particular importance to know the detailed
shape of the meniscus, since ultimately this determines
the nature of the interaction. Pushing the analogy with
liquid interfaces, it was argued that the deformations are
exponentially screened by hydrostatic pressure inside the
gel [12,13]. However, even though hydrostatic effects were
demonstrated in the context of the Rayleigh-Taylor insta-
bility of hydrogels [28], its effect on the meniscus shapes
remains to be analysed in detail.

In this paper, we analyse hydrogel menisci based on a
free energy formulation. As such, we are able to inves-
tigate the combined effects of surface tension, bulk elas-
ticity and hydrostatic pressure inside the gel. We reveal
the emergence of intricate meniscus shapes and quantify
the particle-particle interactions that result from these.
We provide a detailed overview of the regimes and scaling
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Fig. 1: (Colour online) A schematic of rigid particles on a soft
elastic substrate. Each particle is associated with a deforma-
tion field around it, leading to mutual interactions.

laws, which are governed by a characteristic shear mod-
ulus G∗ =

√
γρg based on surface tension γ and gravity

ρg. Stiffer materials exhibit a solid-like response while
softer materials are more liquid-like. Finally, we discuss
the gravity-driven instability of the hydrogel meniscus,
showing how G∗ governs the transition from liquid to solid
response.

Formulation. – We start out by setting up a formal-
ism for particles on a soft interface, from which we com-
pute the deformations and particle interactions (fig. 1).
Particles are treated as being point-like so that the the-
ory describes the far-field behaviour, at distances larger
than the typical particle size. Particle i is at a position
xi = (xi, yi) and has a weight wi = mig. Each particle
resides at the interface of shape h(x), so the corresponding
gravitational energy is wih(xi). However, there is also an
energetic cost associated to deforming the interface, de-
scribed by a functional Eint[h]. Combined, this gives the
total energy

E[h;xi] = Eint[h] +
∑

i

wih(xi). (1)

This is in the form of a simple field theory for particles of
“charge” wi, coupled to the field h(x) [29]. The degrees
of freedom are therefore the discrete particle positions xi

and the continuous field h(x). The field equation that
describes the shape of the interface is obtained by the
functional derivative of E with respect to h(x),

δEint

δh(x)
+

∑
i

wiδ (x − xi) = 0, (2)

or in compact form

σ(x) = −�(x), (3)

where we define the normal stress σ = δEint
δh(x) and the weight

distribution �(x) =
∑

i wiδ(x − xi). The force Fi on par-
ticle i follows as

Fi = − ∂E

∂xi
= −wi∇h, (4)

where the gradient is evaluated at x = xi. Here the
interface shape h(x) plays a role similar to the electro-
static or gravitational potential, since its gradient gives

the force. Once the interface functional Eint[h] is speci-
fied, (3) and (4) fully define the problem.

Interface functionals. When deforming a hydrogel in-
terface, there is an energy cost due its bulk elasticity, its
bulk gravitational energy, as well as its surface free en-
ergy. We first briefly recap the well-known case of a liquid
interface, which will provide expressions for the capillary
and gravitational energies. Then we turn to the hydrogel
menisci by incorporating the elastic energy.

The liquid interface. A liquid interface is governed
by capillarity and gravity, which can be described by the
interface functional

Eliq[h] =
∫

dx
(

1
2
γ|∇h|2 +

1
2
ρgh2

)
. (5)

The first term is the excess surface energy due to the defor-
mation, in the approximation where |∇h| remains small.
This is a natural approximation in the present context
based on point particles, which implicitly implies a far-
field description where deformations are small. The sec-
ond term is the gravitational energy of an incompressible
medium integrated over the vertical direction. Taking the
functional derivative with respect to h(x) we find the field
equation

− γ∇2h + ρgh = −�. (6)

In the absence of particles (� = 0), we recover the clas-
sical Young-Laplace equation for a meniscus, where the
Laplace pressure balances with the hydrostatic pressure.
The typical scale of a liquid meniscus is set by the ratio
�c = (γ/ρg)1/2, where we defined the capillary length �c.

When particles are present (� �= 0), the meniscus will
be perturbed with respect to its flat state and induce a
nontrivial field h(x). In fact, if we ignore the hydrostatic
term in (6), the equation is strictly identical to Gauss’s
law of electrostatics (or Newtonian gravity), where � is
the distribution of charge (or mass). These analogies have
indeed been successfully exploited for particles at liquid
interfaces [21,30]. However, the present formulation based
on (1) has the merit that it can be extended to more gen-
eral Eint[h], as is necessary for hydrogels.

The hydrogel interface. Along with capillary and grav-
itational energy, any deformation of a hydrogel surface
leads to strain energy inside the bulk. The poroelastic na-
ture of hydrogels gives rise to an intricate time-dependent
evolution when it is indented [31,32]. However, here we fo-
cus on the equilibrium response of the gel, which is purely
elastic and can be captured by a free energy. Here we
assume that the hydrogel layer is infinitely thick, and the
material is incompressible (Poisson ratio ν = 1/2). In gen-
eral, the shape of the deformed elastic interface is obtained
by combining the tangential and normal displacements.
However heavy point particles apply a purely normal trac-
tion on the interface, which for an incompressible half-
space lead to purely normal displacements [33]. A closely
related problem is provided by surface adsorbed atoms at
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a compressible elastic interface, for which the deformation
results from a coupling between tangential and normal
displacements [34]. For the case studied here, the energy
based on linear elasticity can be written in explicit form
(see appendix A)

Eel =
G

2π

∫
dx

∫
dx′ ∇h(x)∇h(x′)

|x − x′| . (7)

The corresponding functional derivative gives the elastic
stress σel(x) = δEel

δh(x) , which after integrating by parts
takes the form

σel(x) = −G

π

∫
dx′ ∇2h(x′)

|x − x′|

= −G

π
(K ◦ ∇2h)(x). (8)

Here we have introduced the convolution with a Green’s
function K(x) = 1/|x|.

A subtle point is that (7) is derived for an elastic
medium without any bulk force, i.e., without the gel’s
gravitional energy. For incompressible media however,
the addition of a bulk force that derives from a potential
can be absorbed into the hydrostatic pressure. As a con-
sequence, the resulting bulk strains —and therefore the
resulting elastic energies— are totally unaffected by the
presence of a bulk force. Therefore, the total functional
for a hydrogel interface is obtained by a simple addition

Eint[h] = Eliq[h] + Eel[h]. (9)

The validity of this approach will be demonstrated explic-
itly at the end of the paper. Now, we immediately obtain
σ = σliq + σel, so that (6,8) gives the field equation

− γ∇2h + ρgh − G

π
(K ◦ ∇2h) = −�. (10)

For a given distribution of particles �(x), this equation
can be solved analytically using integral transformation
methods.

Hydrogel meniscus. – Here we first determine the
shape of the hydrogel interface indented by a single par-
ticle of weight mg. Owing to the linearity of the prob-
lem, the deformation due to a distribution of particles
as in fig. 1 is simply obtained by superposition. For the
single particle, we introduce cylindrical coordinates with
the particle located at the origin, so that r = |x|. We
find the resulting axisymmetric deformation h(x) = h(r)
by solving (10) using the Hankel transform, defined as
ĥ(s) =

∫ ∞
0

h(r)rJ0(sr)dr. Here J0 is the zeroth-order
Bessel function. Transformation of (10) gives

γs2ĥ(s) + ρgĥ(s) +
G

π
2πs2K̂(s)ĥ(s) = −�̂(s), (11)

where we used properties of the Hankel transform that re-
semble those of the Fourier transform. Namely, the Hankel

transform of the Laplacian reads −s2ĥ(s), while the con-
volution K ◦∇2h transforms to −2πs2K̂(s)ĥ(s). Further-
more, the Green’s function K̂(s) = 1/s, while for a single
point particle the weight distribution �̂(s) = mg/2π [35].
With this, (11) gives a closed form solution

ĥ(s) =
−mg/2π

γs2 + ρg + 2Gs
. (12)

The backward transform gives the deformation in real
space, h(r), which in general is done numerically. We note
that these deformations exhibit a finite volume, despite
the medium’s incompressibility. This is not in contradic-
tion, since the finite volume is effectively adsorbed in the
infinite volume of the half-space.

Shape. Before presenting the actual shapes of hydro-
gel menisci, it is instructive to discuss the length scales
for r that are implied by the terms in the denominator
of (12). We remind that s is an inverse length, so that the
ratios of the terms give rise to two length scales:

�ec = γ/G, �eg = G/ρg. (13)

These are the elastocapillary length �ec and the elastograv-
ity length �eg, respectively. The former describes the cross-
over from capillary to elastic behaviour, while the latter
indicates when gravity dominates over elasticity. One re-
covers the usual capillary length of liquid menisci as the
geometric mean �c =

√
�ec�eg. Interestingly, the problem

gives rise to characteristic stiffness G∗ at which all length
scales coincide. Setting �ec = �eg, one finds

G∗ =
√

γρg. (14)

Typical hydrogels such as agar and polyacrylamide have
γ ∼ 10−2 N/m and ρg ∼ 104 N/m3 which give a character-
istic stiffness G∗ ∼ 10Pa. Coincidentally, this stiffness is
comparable to the softest hydrogels that can be obtained
—and thus a highly relevant magnitude from an experi-
mental perspective. In fact, the type of meniscus shape is
completely determined by the ratio G/G∗, which is equiv-
alent to

√
�eg/�ec.

The key result of this study is shown in fig. 2(a),
showing the nontrivial meniscus shapes for different stiff-
nesses which we obtain by numerically integrating (12)
using Mathematica. To keep an experimental perspec-
tive, we will present the results in dimensional form, with
γ = 10−2 N/m and ρg = 104 N/m3, so that G∗ = 10Pa.
The results in fig. 2(a) correspond to varying stiffness from
the nearly liquid case (G ≈ 0) to values up to G = 103 Pa.
The upper curves correspond to stiff gels. These exhibit
three asymptotic regimes, separated by r ∼ �ec (filled cir-
cles) and r ∼ �eg (open circles). For r < �ec, the surface re-
sembles a capillary interface where h ∼ log r. At distances
beyond �ec the meniscus follows the classical Boussinesq
solution from linear elasticity where h ∼ 1/r [33]. These
asymptotes are in fact the near- and far-field expansion
of an elastocapillary meniscus, obtained by the analytical
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Fig. 2: (Colour online) (a) Hydrogel shapes h(r) due to indentation by the weight of a particle. Different curves correspond to
G in the range of 0.25 Pa–1 kPa, while γ and ρg are fixed at typical values 10−2 N/m and 104 N/m3, respectively. For readability
of the figure, the vertical axis is scaled in arbitrary manner to avoid overlapping curves. The filled and hollow circles indicate
r = �ec = γ/G and r = �eg = G/ρg respectively, and separate different scaling regimes. At G = G∗ = 10 Pa (thick green line),
these length scales coincide and merge with the capillary length �ec = �eg = 10−3 m (black dashed line). The hollow squares
represent the transition from capillary to elastogravity meniscus. (b) Phase diagram showing different asymptotic meniscus
shapes for varying shear modulus. The dimensionless scales are shown at the right and on top. �ec, �eg, and �c define the
boundaries of different regimes (black straight lines). The red dashed curve separates capillary and elastogravity meniscus
shapes, given by eq. (16). The associated black curve traces this boundary numerically.

back transform of (12) in the limit of ρg → 0 [18]. Finally,
as r becomes comparable to �eg, gravity modifies the de-
formation and a new asymptotic shape h ∼ 1/r3 emerges.
This unexpected asymptote reads

h 	 −mgρg

πG2

(
�eg

r

)3

, (15)

which we inferred from the limit γs2 → 0 for which the
inverse of (12) can be found analytically.

When reducing the stiffness, the range over which elastic
scaling ∼1/r is observed gradually diminishes (fig. 2(a)).
The thick line (green) corresponds to G∗ = 10Pa, where
all lengths coincide at r = 1 mm, and the naively expected
elastic regime has completely disappeared. While much
lower G are difficult to realise experimentally, the limit
of vanishing stiffness has an intrinsic interest. Namely,
the limiting case G = 0 corresponds to a liquid meniscus.
In that case the inverse of (12) reduces to the classical
solution −K0(r/�c), which is the zeroth-order modified
Bessel function of second kind. The liquid meniscus de-
cays as e−r/�c at large distance. The introduction of a
small but finite G modifies this shape at r 
 �c. The
hollow squares of fig. 2(a) locate the point where the ex-
ponential decay of the liquid meniscus again gives way to
the elastogravity scaling of 1/r3. We remind that such
G � G∗ are difficult to realise experimentally, but this il-
lustrates how the results for liquid and hydrogel interfaces
are connected mathematically. Most importantly, these
observations provide a strong departure from the previ-
ously assumed exponential screening for hydrogels [12,13].

To summarise these intricate regimes, we present the
various asymptotes in terms of a phase diagram in

fig. 2(b). The vertical axis indicates the gel’s shear modu-
lus G, while the horizontal axis is the distance r. The
relevant dimensionless scales G/G∗ and r/�c are indi-
cated on the right and top axis. For substrates with
shear modulus of 1 kPa or larger the meniscus is effec-
tively governed by elasticity over the full range of scales.
Comparatively softer substrates with G ∼ 100Pa exhibit
an elasticity dominated region bounded by �ec ∼ 100μm
and �eg ∼ 1 cm, which shrinks to a point at G∗ = 10Pa.
As mentioned, the typical shear modulus of extremely
soft hydrogels are also around 10Pa, which makes this
region of the phase diagram of particular experimental in-
terest. At this shear modulus, all three length scales are
equal, �ec = �eg = �c = 1mm, and the predicted 1/r3

elastogravity regimes should be accessible in experiments.
As G � G∗ the interface mostly resembles a capillary
meniscus where �c separates the near-field and far-field
behaviour of log r, and e−r/�c , respectively. For complete-
ness, we determine the boundary between capillary and
elastogravity by equating the corresponding asymptotes,

G

G∗ 	 1
2
(r/�c)3K0(r/�c). (16)

This is shown as the red dashed line in fig. 2(b), in close
agreement with the numerical result (solid black curve).

Interaction. With the meniscus shape in hand, we can
determine the interaction forces between multiple particles
(fig. 1). As per (4), the interaction force on a particle is
directly given by the local slope of h(x) at that location.
We note that the deformation diverges logarithmically at
the location of the particles, which is an artefact of the
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point-particle approach1. This is in direct analogy to (two-
dimensional) electrostatics, where the force on a charge
is computed by omitting the contribution of the infinite
“self-energy” from the electrostatic potential [29]. Hence,
in what follows the force on particle i follows from h(x)
induced by all other particles j �= i.

Here we consider the simple scenario of two identical
particles located at r = 0, and at a distance r = d. The
interaction force then simply follows from the slope

F = −mg
dh

dr

∣∣∣∣∣
r=d

r̂, (17)

where h(r) is the axisymmetric shape derived in the previ-
ous section and r̂ is the radial unit vector. Equation (17)
is equivalent to Nicolson’s formula [36] developed in the
context of interacting bubbles on a liquid interface. In the
present case, for heavy particles on a hydrogel, the slope
always remains positive and gives an attractive interaction
between the particles as observed in the experiments in-
volving millimetric glass spheres on a polyacrylamide gel
of modulus ∼10Pa. Different meniscus shapes give rise
to different interactions laws, and the regimes for the in-
teraction forces are strictly the same as those in fig. 2(b).
The scaling laws for the forces are simply inferred by tak-
ing the derivative of the asymptotes indicated in fig. 2(b).
For the special case of G∗ = 10Pa at distances below
�c (10−3 m), the meniscus shape is given by log r, resulting
in F ∼ 1/d, whereas for d 
 �c the elastogravity meniscus
leads to an interaction force F ∼ 1/d4.

Instability. The current formalism also allows to in-
vestigate the Rayleigh-Taylor instability (RTI) for hydro-
gels. Indeed, when a layer of hydrogel in a petri dish
is turned upside down the free surface exhibits undula-
tions [28] that are reminiscent of the RTI of fluid interfaces
(e.g., thin viscous films turned upside done). Here we ad-
dress the RTI for two reasons. First, it serves as a quanti-
tative validation of the additive energy functional (9) for
hydrogel interfaces. Second, it allows to unify the liquid
and elastic versions of RTI. For fluid layers all wavelengths
larger than λ = 2π�c are unstable [37], independently of
the layer thickness. For elastic media the situation is more
intricate. For an elastic half-space this wavelength reads
λ = 4π�eg [38], but recent experiments on polyacrylamide
hydrogels and theory have identified a threshold sample
thickness below which the instability does not occur [28].
Linear stability analysis showed this sample thickness to
be h0/�eg = 6.223. Our formulation allows to capture all
these features in a single, tractable framework.

The onset of instability is studied by plane Fourier waves
of wave number q = 2π/λ. The Fourier transform of (10)

1This paradox of infinite deformation at xi is resolved once the
particles are not treated as point-like, but are given a finite size.
This changes the shape of the meniscus in the near-field, but does
not affect the far-field results.

Fig. 3: (Colour online) Marginal wavelength in the Rayleigh-
Taylor instability of a hydrogel interface as a function of mate-
rial stiffness. In the liquid limit we recover λ = 2π�c, whereas
for an elastic half-space we find λ = 4π�eg. Inset: instabil-
ity threshold for a thin hydrogel layer showing the variation
of critical thickness (black curve) and wavelength (red curve)
with shear modulus. The gray dashed lines represent asymp-
totic relations hc � 6.223�eg and λc � 18.445�eg.

then gives

ĥ(q) =
−�̂(q)

γq2 − ρg + 2G|q| , (18)

which is the plane-wave analogue of (12). Importantly, we
have flipped the sign of gravity g → −g to account for the
fact that the hydrogel interface is held upside down. The
denominator of the above equation can be interpreted as
an effective stiffness of the entire layer, as it relates the
displacement ĥ to a forcing �̂. The onset of instability is
found when this effective stiffness vanishes, as it marks
the point where the layer loses its restoring force. Solving
for q where the denominator of (18) vanishes, we find the
wavelength

λ/�c = 2π

⎛
⎝ G

G∗ +

√
1 +

(
G

G∗

)2
⎞
⎠ . (19)

Figure 3 shows how this wavelength evolves with G/G∗.
It indeed bridges between the liquid and elastic RTI. For
a liquid interface (G/G∗ → 0) we recover λ = 2π�c,
while the elastic half-space (G/G∗ → ∞) is unstable un-
der gravity for perturbations with wavelengths larger than
λ = 4πG/G∗�c = 4π�eg.

The final step is to incorporate the effect of a finite layer
thickness h0, and see why a threshold appears for hydro-
gels but not for liquid layers. For this case, we use a mod-
ified Green’s function such that σ̂e�(q) = Gq2ĥ(q)K̂(q) →
Gĥ(q)k(q̄)/h0. Here we introduced the dimensionless wave
number q̄ = qh0, and the Green’s function for a layer at-
tached to a rigid base in dimensionless form [39]

k(q̄) = 2q̄
[
cosh(2q̄) + 2(q̄)2 + 1

sinh(2q̄) − 2q̄

]
. (20)
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In the limit of q̄ → ∞, one has k(q̄) = 2|q̄| and we recover
the half-space result of (18). For finite thickness, the con-
dition of a vanishing denominator of the modified (18)
reads (

h0

�c

)2

− G

G∗ k(q̄)
(

h0

�c

)
− q̄2 = 0, (21)

which marks the onset of the Rayleigh-Taylor instability.
For any value G/G∗ �= 0, this equation indeed predicts
a minimum layer thickness below which the interface re-
mains stable against perturbations of any wave number,
thus confirming the existence of an instability threshold.
The inset of fig. 3 shows this critical thickness hc and
the corresponding critical wavelength (λc) as a function of
G/G∗. For stiffer hydrogels, the third term in (21) can be
neglected and hc is simply given by the minimum value
of k(q̄c) 	 6.223 as hc = 6.223�eg. Hence, we perfectly
recover the threshold obtained by Mora et al. [28], who
solved the bulk elastic equations including gravity as a
bulk force. It confirms the validity of using an additive
energy functional (9). However, we can now investigate
what happens when the hydrogels become softer and con-
sider (21) over the full range of G/G∗. The result is shown
in the inset of fig. 3. In the limit of G/G∗ → 0, we find
hc/�c ∼ (G/G∗)1/3, so that indeed the threshold vanishes
in the liquid limit.

Discussion. – In summary, we have computed how hy-
drogels deform under the influence of particles and how
this leads to mutual interactions similar to the Cheerios
effect. It is shown that both surface tension and gravity
(hydrostatic pressure) can play a role for sufficiently soft
materials. This leads to a variety of regimes, which were
classified in detail (fig. 2(b)). Importantly, we identified a
characteristic shear modulus G∗ =

√
γρg, which for real

materials is typically a few tens of Pascals. A hydrogel’s
mechanical response is solid-like for G 
 G∗, but becomes
more liquid-like when G ∼ G∗. The ratio G/G∗ also gov-
erns the nature of the Rayleigh-Taylor instability for an
inverted layer of hydrogel.

The role of both gravity and surface tension was pre-
viously appreciated for experiments on the “elastic Chee-
rios effect“, where spheres and cylinders on a hydrogel
were indeed found to attract [12,13]. While qualitatively
consistent with our findings, these studies postulated that
the force of interaction decays exponentially. This was in-
spired by the interactions on a purely liquid interface, and
a “modified” capillary length was introduced to account
for elasticity. However, our calculations reveal a different
picture, since elasticity changes the decay from exponen-
tial to algebraic. It would be important to validate these
observations experimentally. An interesting extension of
the present study is to consider very small particles, for
which the adhesion to the gel dominates over the parti-
cle weight. This situation closely resembles that of liq-
uid drops, for which the loading is tensile at the contact
line and compressive in the contact zone. In appendix B
we show that the interaction force on a “sticky“ particle

reads F ∼ −∇∇2h, as opposed to ∼∇h for “heavy”
particles.

From a more general perspective, similar elasto-gravity
problems are encountered in geological contexts such as
vulcano deformations [40]. We therefore expect that the
presented energy approach, and the explicit elasto-gravity
functional, will serve for a variety of problems.
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Appendix A: elastic energy. – In linear elasticity
the strain energy (in absence of shear traction) can be
written as a surface integral

Eel =
1
2

∫
dxσ(x)h(x). (A.1)

To obtain Eel entirely in terms of h(x), we need to replace
the normal stress σ. In linear elasticity, the deformation
of an incompressible half-space can be expressed as a con-
volution of σ with the Green’s function K(x) = 1/|x|:

h(x) =
1

4πG

∫
dx′ σ(x′)

|x − x′| , (A.2)

or

∇h(x) = − 1
4πG

∫
dx′ σ(x′)

(x − x′)
|x − x′|3 . (A.3)

This is in the form of a two-dimensional Hilbert trans-
form [41], which has as its inverse

σ(x) =
G

π

∫
dx′ ∇h(x′) · (x − x′)

|x − x′|3 . (A.4)

So, the energy functional becomes

Eel[h] =
G

2π

∫
dxh(x)

∫
dx′ ∇h(x′) · (x − x′)

|x − x′|3 . (A.5)

Integration by parts then gives (7).

Appendix B: adhesive particles. – Adhesive par-
ticles without weight can be modelled as axisymmetric
distributions of normal traction Ti centered around the
particle position xi. As the particles are weightless and
axisymmetric, the zeroth and first moments vanish, i.e.∫

dxTi(x) = 0, and
∫

dxTi(x)x = 0. The work done by
this traction gives the coupling

Eadh =
∑

i

∫
dxTi(x − xi)h(x) 	

∑
i

qi∇2h(xi). (B.1)

Here qi =
∫

dxTi(x)|x|2 is the quadrupole moment. The
second step in (B.1) is obtained by expanding the field
h(x) around xi as

h(x) = h(xi)+(x−xi)·∇h(xi)+
1
2
(x−xi)T ·H(xi)·(x−xi),

(B.2)
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(where H is the Hessian). Inserted in Eadh, and using the
vanishing zeroth and first moments, indeed gives∫

dxTi(x − xi)h(x) 	 ∇2h(xi)
∫

dxTi(x)|x|2.

(B.3)

The total energy is E = Eint[h]+Eadh, so that for adhesive
particles we find Fi = − ∂E

∂xi
= −qi∇∇2h. The field h(x)

is still found by solving σ + � = 0, but now the loading
becomes �(x) =

∑
i Ti(x − xi).
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