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Abstract

Purpose. For individualized follow-up, accurate prediction of locoregional recurrence (LRR) and second primary
(SP) breast cancer risk is required. Current prediction models employ regression, but with large data sets, machine-
learning techniques such as Bayesian Networks (BNs) may be better alternatives. In this study, logistic regression
was compared with different BNs, built with network classifiers and constraint- and score-based algorithms.
Methods. Women diagnosed with early breast cancer between 2003 and 2006 were selected from the Netherlands
Cancer Registry (NCR) (N = 37,320). BN structures were developed using 1) Bayesian network classifiers, 2) corre-
lation coefficients with different cutoffs, 3) constraint-based learning algorithms, and 4) score-based learning algo-
rithms. The different models were compared with logistic regression using the area under the receiver operating
characteristic curve, an external validation set obtained from the NCR from 2007 and 2008 (N = 12,308), and sub-
group analyses for a high- and low-risk group. Results. The BNs with the most links showed the best performance in
both LRR and SP prediction (c-statistic of 0.76 for LRR and 0.69 for SP). In the external validation, logistic regres-
sion generally outperformed the BNs in both SP and LRR (c-statistic of 0.71 for LRR and 0.64 for SP). The differ-
ences were nonetheless small. Although logistic regression performed best on most parts of the subgroup analysis,
BNs outperformed regression with respect to average risk for SP prediction in low- and high-risk groups.
Conclusions. Although estimates of regression coefficients depend on other independent variables, there is no
assumed dependence relationship between coefficient estimators and the change in value of other variables as in the
case of BNs. Nonetheless, this analysis suggests that regression is still more accurate or at least as accurate as BNs
for risk estimation for both LRRs and SP tumors.
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Risk prediction models can be used to support clinical
decisions for various conditions. Although many predic-
tion models are developed and available, the uptake in
clinical practice is slow. Two important challenges asso-
ciated with conventional yet most popular (regression)
prediction models are the difficulty to incorporate depen-
dencies among all variables and the presence of numer-
ous risk factors with only a small effect.1
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These challenges are addressed by Bayesian networks
(BNs), also known as Bayes nets or probabilistic causal
networks. BNs are flexible probabilistic graphical models
that capture the dependence relationships between
selected variables. The variables are represented with
nodes and can be continuous, as well as discrete. In case
of discrete variables, the nodes are connected with links
to present the dependence relations, and for each discrete
node, a probabilistic table provides the probability of the
possible values, conditional on the nodes that influence
this node. Advantages of using BNs are the ease of inter-
pretation due to the graphical representation, simple
validation, the possibility to include prior information,
their flexibility of including both observational and cau-
sal inference, flexibility in outcome parameter within the
model, and how they handle missing data.2–5

A very high number of BNs can be modeled given a
set of variables, and machine-learning methods have
been successfully employed to learn the structure of BNs
in an automated fashion. As Bouhamed et al.6 state,
‘‘Currently, Bayesian Networks have become one of the
most complete, self-sustained and coherent formalisms
used for knowledge acquisition, representation and
application through computer systems.’’ Machine learn-
ing is a collection of methods for systems that can learn
and automatically improve with experience.7 In the past
decades, there has been increasing interest in the applica-
tion of machine learning, mainly because of the availabil-
ity of the required computational power and the
emergence of big data. Machine learning can be subdi-
vided in supervised learning (for classification), unsuper-
vised learning (for clustering), and reinforcement
learning (for decision making). If the aim is to predict an
outcome measure based on several input variables,
supervised learning is used.2 An example of such super-
vised learning for classification are BNs.

There are a few reasons why BNs may perform better
than standard regression. Ng and Jordan8 made a theo-
retical and empirical comparison between a naive BN
and a logistic regression model. With naive BNs, the
‘‘naive’’ assumption of conditional independence between
variables is made. This assumption is often violated, but
the algorithm can still perform well.9 In comparison with
logistic regression, the BN had a higher asymptotic error,
but the naive BN converged faster to approach its higher
error.8 This means that with an infinite training data set,
logistic regression is expected to outperform naive BNs
as it has a lower error. But with limited data, BNs can
outperform regression as it needs less data to reach its
best performance. And if the naive conditional indepen-
dence assumption does not hold, the error could be lower

than with logistic regression, even with more data.
Although the value of the coefficients included in logistic
regression is conditional on the other variables that are
included, there is no dependence relationship between
the values of the coefficients and the change in value of
one of the influencing variables, as is the case with BNs.
Also, if the number of events is very low, there is a risk
of overfitting when using regression.10

Most models for cancer risk prediction are based on
regression.11,12 With an accurate insight in the risk of
breast cancer recurrence, patients with a high risk can be
identified who might benefit from a more intensive
follow-up after breast cancer and to aid clinical decision
making. Recently, our study group developed a nomo-
gram based on logistic regression to give insight in the
time-dependent risk of locoregional recurrence (LRR) of
breast cancer.13 The model satisfied the employed
assumptions and showed good discriminative ability in
external validation. Besides early detection of LRRs, the
aim of clinical follow-up after curative treatment of
breast cancer is also the detection of asymptomatic sec-
ond primary (SP) breast cancer.14 SP breast cancer is
defined as a new manifestation of breast cancer in the
contralateral breast.15 As SPs are a separate entity from
the primary tumor,16 they are hard to predict using clini-
cal data that contain mostly information about the pri-
mary tumor. Since BNs also take into account the
dependence relationships between the influencing fac-
tors, it may result in better estimates of the risk.
Furthermore, as it is of interest to predict the risk for a
new patient, given what we know of previous patients, it
may be more appropriate to formulate the problem
within the Bayesian paradigm. In this study, we devel-
oped different BNs and assessed whether they outper-
formed logistic regression with regard to the prediction
of LRR or SP breast cancer at the patient level using a
large population-based data set with clinical risk factors.

Methods

Study Population

Patients were selected from the Netherlands Cancer
Registry (NCR), a nationwide population-based registry,
which has registered almost all newly diagnosed tumors
since 1989. The information on patient, tumor, and treat-
ment characteristics, as well as data concerning recur-
rences within the first 5 years following primary breast
cancer, was recorded directly from the patient files by
specially trained registration clerks.

Women who had primary invasive breast cancer with-
out distant metastasis (DM) or previous or synchronous
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tumors (diagnosed within 3 months after the first
tumor17), were diagnosed between 2003 and 2006, and
were treated with curative intent were selected from the
registry as the training or index cohort (N = 37,230).
Curative intent was defined as surgical removal of the
primary tumor without macroscopic residual disease.
Adjuvant treatment should have been received in case of
microscopic residue. Of the included patients, 205 (0.6%)
had incomplete 5-year follow-up; they were censored in
the logistic regression models and treated as event free in
the BNs. In the first 5 years following primary breast
cancer treatment, 926 of the selected patients developed
a LRR (2.5%) and 896 a SP tumor (2.4%) as a first
event. Patient, tumor, and treatment characteristics can
be found in Supplemental Table S1. For external valida-
tion, data from a selection of Dutch hospitals from 2007
to 2008 were used as validation cohort (43 of 91 hospi-
tals, N = 12,308). Recurrence rates were slightly lower in
the validation cohort: 2.2% developed a LRR and 2.3%
a SP tumor.

Logistic Regression Model

The details of our logistic regression model for LRR have
been reported elsewhere13 but are summarized here for
the convenience of the reader. Variables with an expected
influence on LRR and SP risk were selected using the lit-
erature and availability in the NCR. Because of the non-
linear effect of age on risk, age was discretized into 4
groups. The other factors were already categorical. As
missing values were believed to be random, they were
imputed using chained equations.18,19 A first logistic
regression model was made including all the variables of
interest. A second model only included variables with an
effect of at least 10% (based on the odds ratios [ORs]).

Bayesian Networks

A network structure was defined for the BNs with all the
variables represented as nodes. The structures were deter-
mined in 2 ways. The first method was with a specific
focus on the outcome of interest (Bayesian network
classifiers, correlation coefficients), while the second
(constraint- and score-based learning algorithms) was
data driven, without a focus on the outcome. For the
Bayesian network classifiers, a naive network, assuming
all variables are only connected to the variable of interest,
was created, as well as a tree-augmented naive (TAN)
network, which built on the naive network using minimal
description length scoring.20 The structures, based on
Spearman’s rank correlation, also started with a naive
network, and with the cutoffs 0.3 (moderate to high) and
0.1 (low to high)21 for the rank correlation coefficients,
links were added to gain more insight into the difference
in performance of different levels of correlation.

Constraint-based algorithms test the conditional inde-
pendence to find the direct connections of a node and
their direct connections (Markov blanket). With score-
based algorithms, goodness-of-fit scores are used for
optimization.22 The constraint- and score-based algo-
rithms we used and their corresponding tests and scores
can be found in Table 1. For more information on the
specific algorithms, tests, and scores, the reader is
referred to the study by Scutari.23 For all methods, we
represented the joint probability distributions for both
LRR and SP tumor as outcome variables using condi-
tional probability tables (CPTs), which were learned via
maximum likelihood estimation by assuming uniform
Dirichlet prior distributions over all variables. Cases
with missing values were not excluded but included with
the information of the variables that were not missing.

Table 1 Overview of Constraint- and Score-Based Algorithms That Were Used, with Their Corresponding Tests and Scores

Constraint-based algorithms Tests

Grow-shrink (GS) Mutual information Shrinkage estimator
for the mutual
information

Pearson’s x2

Incremental association (IA)
Fast incremental association (fIA)
Interleaved incremental association (iIA)

Score-based algorithms Scores

Hill climbing (HC) Bayesian
information
criterion (BIC)

Log-likelihood Akaike
information
criterion (AIC)

Bayesian
Dirichlet
equivalent

Modified
Bayesian
Dirichlet
equivalent

K2
Tabu search (TS)

Witteveen et al. 3



Comparison of the Models

We assessed several aspects of the validity and perfor-
mance of the models: 1) the ability to distinguish between
high- and low-risk patients (discrimination), 2) the agree-
ment between observed and predicted risks (calibration),
and 3) the performance in an external data set (generaliz-
ability). Besides the overall performance, we also assessed
the performance of BNs and logistic regression to esti-
mate recurrence risk in much smaller subgroups (an
example high- and low-risk group) as we are interested in
making more individualized risk predictions. The groups
were based on age, primary tumor grade, and treatment
with endocrine therapy, as they are established risk fac-
tors for LRR,13 and age and endocrine treatment also for
SP.24,25 For low risk, we used patients aged 50 to 60 years
with grade I primary tumors who received endocrine
therapy, and for high risk, we used patients aged \50
years with grade II primary tumors without endocrine
therapy (Table 2).

The discrimination of the different models was com-
pared by using the Harrell c-statistic for area under
the receiver operating characteristic (ROC) curve. A
c-statistic of 1.0 indicates a perfect predictive ability,
whereas 0.5 represents no predictive discrimination. As
an example, we chose a high-risk profile for a patient
aged \50 years, with a primary tumor size 2 to 5 cm,
.3 positive nodes, grade III, ductal morphology, posi-
tive hormone status, no multifocality, mastectomy, with
axillary lymph node dissection without radiation ther-
apy, and with chemotherapy and endocrine therapy.
Information on risk factors was added in this order, and
the risks were plotted against the actual events from
matching patients in the data set. The differences in
observed and predicted probabilities were quantified
with the Brier score, which captures both calibration and
discrimination.26

For calibration, the error rate was determined by com-
paring the actual events with the predicted events. As a
permutation test to look at the performance in a random
data set, 10 data sets with randomly assigned labels for
the outcome variable were made and the results were
pooled. The estimates from the models were compared
with the percentage of events in the patients with the

corresponding characteristics. To make ranges around
the estimates, the risk for patients with the best and worst
possible characteristics in the risk groups was deter-
mined. For the performance in the subgroups, the c-
statistic was estimated. To see if the patients who had the
corresponding characteristics from the risk groups and
were diagnosed with an event were in fact assigned as
high risk, the average assigned risks by the models were
compared. For checking the generalizability, an external
validation using the validation cohort was performed.
The regression analyses were performed using STATA
14.0 (StataCorp, College Station, TX), and the Netica
software package from Norsys (Vancouver, BC, Canada)
was used for the BNs.

Results

The patients in the index and validation cohort had small
differences for the included variables of age, grade, size,
lymph node status, hormone status, and treatments (all
\3%). The variables included as influencing factors in
the original regression models were age, primary tumor
size, involved lymph nodes, grade of differentiation, hor-
mone status, multifocality, and whether or not patients
were treated with radiation, chemotherapy, or endocrine
therapy. When only selecting variables with an OR of at
least 1.1, no variables were omitted in the LRR model
and 3 in the SP model (hormone status, axillary lymph
node dissection, and grade of differentiation). Healthy
convergence was achieved with the multiple imputations.
From the correlation (Suppl. Table S2), 14 links were
identified with a coefficient .|0.3| and 41 with a coeffi-
cient .|0.1|, which were added to the naive BNs. The
number of links to LRR or SP and the total number of
links for each network can be found in Table 3.

Comparison of the Models

The performance of the best-performing score- and
constraint-based algorithms is summarized in Table 3.
There was a clear association between the number of
links and discriminative performance for the constraint-
and score-based algorithms in the index cohort; more

Table 2 Example Risk Groups Based on 3 Risk Factors

Age, y Grade Endocrine Therapy No. (%) of Patients

Low risk 50-60 I Yes 864 (1.7)
High risk \50 II No 2098 (4.2)

4 Medical Decision Making 00(0)
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links resulted in a higher c-statistic and therefore higher
prognostic validity (Figure 1A). As a consequence, the
constraint-based BNs were outperformed by all score-
based algorithms, as they consisted of more links. The
Tabu search (TS) and Hill-climbing (HC) algorithms
with log-likelihood score contained all possible links and
had a c-statistic of 0.76 for LRR and 0.69 for SP.
Logistic regression scored lower with 0.71 and 0.65 for
LRR and SP, respectively.

In contrast to the performance of the BNs in the
index cohort, the number of links in the BNs was not
related to the performance in the validation cohort
(Figure 1B). Logistic regression outperformed the BNs,
with c-statistics of 0.71 and 0.64 for LRR and SP, respec-
tively, compared to 0.69 for LRR (TS/HC with AIC

score) and 0.62 for SP (TS/HC with Bayesian informa-
tion criterion [BIC], Bayesian Dirichlet equivalent [BDE],
or K2 score). A notable exception was the naive network
for SP, for which the c-statistic was equal to logistic
regression (c-statistic of 0.64). Error rates did not differ
much between the models (all 2.5%–3.0%). Despite the
overall improved performance of logistic regression, note
the small differences with BNs.

Subgroup Analysis

The predictions of the risks for the high- and low-risk
groups can be found in Table 4. For LRR risk, estimates
from BNs (TAN for low risk and TS for high risk) were
closer to the actual percentage of LRRs in the data. Note
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Figure 1 Performance of the models for LRR in (A) the index cohort (2003–2006) and (B) the validation cohort (2007–2008).
LRR, locoregional recurrence; ROC, receiver operating characteristic.
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the very wide ranges for BN risk intervals. The discrimi-
nation was poor (c-statistic 0.49 for interleaved incremen-
tal association [iIA] BN) to moderate (0.62 with logistic
regression and TAN BN). For the prediction of SP, logis-
tic regression performed very well in the risk subgroups,
with spot-on estimates and a c-statistic of 0.94 in the low-
risk group, whereas the BNs all overestimated the risk in
the low-risk group and again showed wide ranges in esti-
mates. When comparing the risks that were assigned to
LRR cases (women actually diagnosed with recurrence),
logistic regression assigned on average the highest risk
for LRR in both the low- and high-risk groups (Table 4).
For SP cases, the HC/TS BN assigned higher risk. In the
validation cohort, the BNs still provided higher risk in
cases than the logistic regression model, but the differ-
ences were much smaller (4.1% in the low-risk group and
2.8% in the high-risk group). If a threshold of 5% was
used to define high risk, 100% of the low-risk cases and
57% of the high-risk cases of LRR would have been
identified with logistic regression compared to 33% and
55% for the HC/TS BN.

The change in predicted risk for an example risk pro-
file was assessed for logistic regression and the BNs by
adding risk factors one by one and comparing with the
events in the data set. For most parts, the predictions
from logistic regression followed the true values more

closely, as can also be seen from the lower Brier score
(Figure 2).

Discussion

In this study, logistic regression estimates were compared
with estimates obtained from BNs for the prediction of
both LRR and SP breast cancer risk. BN structures were
developed using constraint- and score-based learning
algorithms and Bayesian network classifiers. Although
the score-based algorithms showed the highest perfor-
mance with the index cohort data, in the external valida-
tion, logistic regression outperformed the BNs for both
LRR and SP risk prediction.

As the c-statistic is an average performance measure
across all possible cutoffs and may not accurately repre-
sent the predictions at the individual level, it is hard to
draw firm conclusions based on the improvement in the
c-statistic alone.27 Consequently, we also reviewed the
error rate and change in risk by adding information on
risk factors and a subgroup analysis in an example high-
and low-risk group. Error rates were slightly lower for
the external validation, most likely because the event
rates were even lower in the validation cohort: with a
lower number of events, less patients are incorrectly spec-
ified as not getting a recurrence. With the exception of

Table 4 Performance for the Low- and High-Risk Groups in the Index Cohorta

Risk
Group

Logistic
Regression:

Imputed Data

BN

% in
Data

Network
Classifier:

TAN

Correlation:

Cutoff 0.1

Constraint-
Based:

iIA (x2
)

Score-Based:
TS (Log

Likelihood)

Risk estimate (range), %
LRR Low 0.70 (0.1–12.0) 0.90 (0.4–96.3) 1.60 (0.1–99.1) 3.30 (1.3–49.1) 2.80 (0.1–47.8) 1.00

High 4.40 (0.7–49.7) 4.70 (0.7–95.9) 5.40 (0.2–84.4) 3.60 (1.2–49.7) 5.90 (0.2–65.1) 6.00
SP Low 1.50 (0.6–4.1) 2.10 (1.2–22.9) 2.40 (0.3–93.0) 2.60 (1.1–22.6) 9.50 (0.1–57.1) 1.50

High 4.20 (1.5–10.2) 3.80 (1.9–16.9) 4.00 (0.9–79.6) 3.30 (1.5–19.3) 6.90 (0.7–52.6) 4.20
C-statistic
LRR Low 0.59 0.62 0.59 0.52 0.59

High 0.62 0.61 0.57 0.49 0.61
SP Low 0.94 0.57 0.57 0.59 0.55

High 0.59 0.58 0.5 0.45 0.5
Average risk in cases (�5%), %
LRR Low 23.3 (100) 1.4 (0) 4.1 (33) 10.6 (33) 11.3 (33)

High 13.6 (57) 5.7 (41) 7.7 (64) 3.5 (9) 9.0 (55)
SP Low 10.8 (70) 3.2 (0) 16.8 (70) 3.7 (20) 70.8 (100)

High 4.9 (21) 5.3 (69) 4.2 (19) 2.6 (0) 14.6 (50)

BN, Bayesian network; iIA, interleaved incremental association; LRR, locoregional recurrence; SP, second primary; TAN, tree-augmented naive;

TS, Tabu search.

a. Bold indicates the best estimate.
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the performance in the risk groups, the overall perfor-
mance of the predictions for SP was slightly worse than
for LRR, as there are less influencing factors to take into
account.

While we are interested in more individual risk esti-
mates and BNs were shown to perform well in smaller
data sets in the literature, we assessed the performance
of the models in a subgroup analysis with 2 risk groups.
Even though the number of patients in the subgroups
was relatively low compared to the index cohort, BNs
just take into account the data that are available per
patient and require no minimum sample size.28 However,
these results need to be interpreted with caution, since
the risk groups were chosen as an example and results
for different subgroups might differ. The subgroup anal-
ysis showed good performance for logistic regression in
SP risk prediction. The performance of the logistic
regression model was not as good for the LRR predic-
tion. Nonetheless, the results show an overall better per-
formance than the prediction with the best-performing
BNs algorithms, which also showed huge ranges. In the
low-risk group, significantly higher risk was assigned to
cases of SP by the score-based HC/TS algorithm.
However, the difference was smaller in the validation
data. Moreover, as the c-statistic of this BN showed no
discriminatory accuracy, it means that noncases were
also (needlessly) assigned with high risks. Not all the

cases have a high risk, as there are more people who
have a low risk. This is described as the prevention para-
dox of Rose29: ‘‘A large number of people at a small risk
may give rise to more cases of disease than the small
number who are at a high risk.’’ Another seemingly con-
tradicting result is the low risk for SP for women with a
high risk of LRR. This is caused by the competing risks:
if a woman experiences a LRR or a DM, she cannot be
diagnosed with a SP as a first event anymore. But as
follow-up decisions should be made by taking into
account both SP and LRR risk, the low risk assigned for
SP will not result in undertreatment. Further research
needs to point out relevant risk thresholds for follow-up
decisions. Then it only matters whether the risk meets
this threshold in actual cases, not exactly how high it is
(e.g., there is no difference in decision if the assigned risk
is 11% or 90% if a threshold is set at 10%).

Bayesian networks are graphical tools to explore the
dependence structure of the data. The variables are
assumed to be independent, conditionally independent,
or dependent. The Pearson correlation coefficient is one
of the most well-known dependency measures. However,
it is only able to capture linear associations between 2
variables.30,31 An alternative is to consider Spearman
rank correlation, which accounts for monotone associa-
tion between 2 variables. Spearman rank correlation can
be used to specify the structure of a BN. Alternatively,
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constraint-based algorithms employ conditional indepen-
dence tests, whereas score-based algorithms find struc-
ture with best networks scores, either in terms of AIC or
log likelihood. These approaches led to different network
structures, which were evaluated from a fitting and,
more important, from a predictive point of view, with the
c-statistic, as well as the error rate. BNs consistently pro-
vided a higher c-statistic in the training data, suggesting a
better fitting model than logistic regression. Nevertheless,
the lower c-statistic in the validation cohort suggests a
lower predictive performance. It should be emphasized,
however, that the difference was overall negligible. In
general, we noticed that the more links BNs had, the
smaller the c-statistic for the test set compared to the
training set. This might suggest that the performance of
the BNs in the test set was relatively sensitive to the struc-
ture of the network. In this respect, it is also worth men-
tioning that the structure obtained using a score-based
algorithm based on AIC (for LRR) and BIC (for SP)
resulted in a higher c-statistic for the validation cohort
compared to the index cohort. As expected, the c-statistic
of all models on the pooled permutation data sets with
randomly assigned labels was around 0.5. Finally, it is of
note that the error rate was consistently lower in the vali-
dation set compared to the training set.

The actual performance of a model is unrelated to the
methods used for evaluation and exists objectively. This
real performance can only be estimated using perfor-
mance measures. There is no single measure that is able
to describe all aspects of the performance of a model.
Consequently, it is important to look at several and make
a comparison, also keeping in mind the aim of the model.
Different aims could lead to a different importance of the
performance of the measures used and subsequently also
different conclusions on which model to use for a specific
application. This is exemplified in our study with the
good performance of the TS BN in the subgroup analysis
for SP risk prediction (Table 4). Although this model was
best in subscribing a high risk to actual cases, from the
c-statistic of 0.5, it could be seen that the model had no
discriminative ability, which means that in this applica-
tion, also noncases would needlessly be assigned with
high risks. In addition, the use of a validation data set for
assessing the performance of models was also shown to
be of great importance, as there was a decline in the per-
formance found for all the models.

Several approaches can be taken to extend the metho-
dology used in this study. One option could have been to
explore a combination of the logistic regression model
and BNs, for example, by using the Markov blanket
from a BN as input selection for the regression model or

estimating the conditional probabilities with logistic
regression as input for a BN. Rijmen32 used an approach
where all conditional probability tables were restricted
according to a regression model but found worse perfor-
mance compared to an unrestricted BN. However, the
differences became smaller for larger sample sizes and
more missing values. Rijmen32 proposes to develop a BN
starting with an unrestricted model and use a learning
scheme to gradually remove links starting with the high-
est order interaction. Although we did not use this spe-
cific approach, we did use several different structure
learning approaches, ending up comparing 28 different
BNs for each of the events of interest with logistic regres-
sion models. Alternatively, a targeted maximum likeli-
hood estimation (MLE) approach might be considered
in an attempt to improve the performance of logistic
regression or BNs. Targeted MLE has appealing theore-
tical properties and has been compared to logistic regres-
sion on several occasions.33,34 A comparison between
target MLE and BNs would be interesting to explore if
targeted MLE would improve the performance of logis-
tic regression and BNs. This is, however, beyond the
scope of our study. Also, it would be rather difficult to
incorporate into a decision aid.

In our study, we had the advantage of using the large
cohort from the nationwide population-based NCR,
including almost all early staged breast cancer patients
diagnosed in the Netherlands between 2003 and 2006.
We were, however, limited in the amount of variables
from the patients. For example, regular testing and
registration of HER2-neu status started after 2005.
Furthermore, the number of patients who are diagnosed
with a recurrence is very low. For a higher ratio of events
v. nonevents, results with BNs can become better. Kim
et al.35 found a c-statistic of 0.81 for predicting DM after
breast cancer with a training set of only 458 patients.
When looking at patients with DM as a first event in our
data (9%), we found higher performance (c-statistics
0.73–0.76), but logistic regression still outperformed the
BNs (data not shown). The data set was quite complete,
with only 0.6% of the patients having an incomplete 5-
year follow-up. With this low number, combined with
the fact that light censoring (\20%) does not influence
the development of the BNs,36 it is not expected that the
overall results were influenced by the missing follow-up.

As we had a relatively large data set, the overall better
performance of logistic regression could have been
expected. However, although the literature is not consis-
tent, in the subgroups and for prediction of SP, BNs
might have had an advantage. Several studies showed
good performance of BNs in prediction.5,37–46 However,
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there the model relied (partly) on expert opinion by lack
of other data5,44; the comparison was made between BNs
and clinician performance,37,38,40,42 as well as between
BNs and another machine-learning technique41; or there
was no comparison made.39,43,45 In 2 studies, BNs were
outperformed by logistic regression as well, but they only
contained small data samples (\190 patients).47,48 As
more and more information on individual patients will
become available in clinical practice, models that are able
to incorporate numerous variables are expected to out-
perform conventional models. This can be seen, for
example, in the study by Gevaert et al.,46 in which clini-
cal and microarray data were combined in a BN. When
data are high dimensional and there are not many train-
ing data, logistic regression will lead to overfitting.9 So if
there is an abundance of variables or a lack of data
(which could instigate the need for implementation of
expert opinion), BNs could be a better option. And in
contrast with other machine-learning techniques such as
artificial neural networks, BNs do allow for easy inter-
pretation. BNs can enable risk estimates rapidly via
conditionalization, whereas for logistic regression, fur-
ther steps are necessary. Another advantage of using a
BN is the flexible handling of missing data, as BNs use
all available information, without excluding entries
with missing data, like with logistic regression. For
logistic regression, it is possible to use imputed data
sets, but this requires an extra step in the analysis. An
alternative for using Netica is the bnlearn package in R.
However, this package is not compatible with data sets
that have missing values. A downside of using the
Netica program is that discretization is needed.49

However, in our case, all the variables except age were
categorical. It is difficult to quantify when which tech-
nique is best because it is not just dependent on size of
the data set but also on event rate and number of
included explaining variables. A simulation study to
find thresholds by which BNs would outperform logis-
tic regression as a function of the number of patients in
the training set or the number of explaining variables
for our specific case falls outside the scope of this
study.

Current prediction models are largely based on conven-
tional clinical factors. The maximum predictive value
that can be attained with those is limited. A growing
effort is put into prediction using multigene prognostic
tests.50 Examples include Mammaprint,51 PAM50,52 and
Oncotype DX.53 However, comparative studies found that
individual risk predictions were often discordant.54–56 As
such, we aimed to improve the risk prediction using an
alternative modeling strategy. Still, LRRs and SP tumors

proved difficult to predict. In the absence of new clinically
available (genetic) risk factors, another option might be to
make optimal use of all the available data. Going from an
aggregate level (e.g., chemotherapy yes/no) to the individ-
ual level (e.g., timing of chemotherapy, which regimens,
and how long) could result in improved estimates.

Summarizing, an accurate breast cancer recurrence
risk prediction is required to identify higher or lower risk
patients and develop individualized follow-up schemes.
Although there is no dependence relationship between
the values of the coefficients and the change in value of
one of the influencing variables in logistic regression, this
analysis suggests that it is still more accurate for risk esti-
mation for both LRRs and SP tumors using clinical risk
factors than BNs. Despite the modest performance
results in terms of prediction, differences were not very
large and BNs remain an attractive graphical alternative
that can clearly depict existing influences.
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