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Abstract. This paper proposes a covariance matrix adaptation evolu-
tion strategy (CMAES) based algorithm for a robotic flow shop schedul-
ing problem with multiple robots and parallel machines. The algorithm is
compared to three popular scheduling rules as well as existing schedules
at a South African anodising plant. The CMAES algorithm statistically
significantly outperformed all other algorithms for the size of problems
currently scheduled by the anodising plant. A sensitivity analysis was
also conducted on the number of tanks required at critical stages in the
process to determine the effectiveness of the CMAES algorithm in assist-
ing the anodising plant to make business decisions.
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1 Introduction

Anodising is an electrolytic reaction used to produce a layer of aluminium oxide
on an aluminium alloy. Anodising production lines often consist of a series of
chemical processes with material needing to be moved from station to station
by means of overhead cranes - a complex production scheduling problem. Devel-
oping an optimization algorithm to solve a problem of this nature has both
practical and academic significance. Firstly, effective production scheduling has
a major impact on the cost of production, utilization of resources and customer
satisfaction. Secondly, the optimization problem is a discrete-valued optimiza-
tion problem with a number of complicated constraints, which is challenging to
solve by means of an evolutionary algorithm.

In this paper, a scheduling problem at a South African anodising plant is
formulated as a robotic flow shop problem with multiple robots and parallel
machines with no-wait constraints. A covariance matrix adaptation evolution
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strategy (CMAES) [1] based scheduling algorithm is developed to solve the prob-
lem. The CMAES based algorithm is benchmarked against a number of schedul-
ing heuristics on real data from the anodising plant. The results are also com-
pared against the existing schedules generated by the production personnel. The
CMAES algorithm statistically significantly outperformed all the benchmark
algorithms and existing schedules for problems where around 35 jobs needed to
be scheduled on 13 stations. As problem size increased the performance of the
CMAES algorithm worsened. A sensitivity analysis was also conducted on the
number of tanks required at critical stages in the process.

This paper is significant because, to the best of the authors’ knowledge,
it describes the first CMAES based algorithm for solving a robotic flow shop
problem.

The rest of the paper is organized as follows: Sect. 2 describes the actual
scheduling problem in more detail and provides an overview of existing
approaches used in literature for solving similar problems. Section 3 provides
a brief introduction to CMAES and describes the scheduling algorithm in more
detail. The experimental setup and results are described in Sect. 4 before the
CMAES as tool for business decision making is evaluated in Sect. 5. Finally, the
paper is concluded in Sect. 6.

2 Robotic Flow Shop Problems

The robotic flow shop problem with parallel processing stations and multiple
robots requires n jobs to be processed by s stations, one operation on each sta-
tion. All jobs complete processing in the same sequence with standard processing
times [2]. The purpose is to determine the sequence in which the jobs should be
processed to minimize the makespan (total time to complete all required jobs).
The cranes in the anodising process (modelled as robots) have machine avail-
ability constraints, which imply that a crane can only be utilized to move mate-
rial between two stations if it is not already in use for another move. A move
time is calculated for each job to be transported between two stations as the
time required for the crane to move to the pickup location and the actual time
required for the crane to move the job to the next station.

Figure 1 illustrates the specific anodising process and its stations. The brack-
ets indicate parallel stations. The hot etch, anodising and sealing stations are
critical stations or stations with a no-wait scenario, which means the cranes need
to pick up jobs from these stations the moment the processing time has been
completed (no-wait constraints). The remaining stations may wait for the crane
to become available before a pickup is made.

Since the cranes cannot cross over each other, the two cranes are each pre-
allocated stations to service with the first crane servicing the first half of the
stations and the second crane the second half of the stations. A detailed formu-
lation of this problem can be found in [3] and will thus not be repeated here for
the sake of conciseness.

A number of researchers have already solved variations of the robotic flow
shop scheduling problem. The first variations focused largely on solving problems
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Fig. 1. Anodising stations.

where only one robot was available to move products between stations [4,5].
The problems were soon expanded to consider multiple robots [6,7] and parallel
machines [3,8], where a stage has more than one machine which can be used to
process a job.

Three types of part pickup criteria have been considered, namely no-wait [9,
10], interval [11,12], and free pickup. Additional complexities such as reentrance
[13], fixed robot routes [14] and sequence-dependent setup-times [4] can also be
found.

With regard to solution strategies, formulating problems as mixed inte-
ger linear programmes which are solved exactly by software packages such as
CPLEX [3,6,11,13], is common for small sized problems. Larger problems are
solved by heuristics [8,14] and meta-heuristics such as genetic algorithms [5], ant
colony optimization [16] and cuckoo search [4].

Two main conclusions can be reached from analyzing the existing robotic
flow shop literature. Firstly, there is no evidence of previous use of CMAES for
solving a robotic flow shop scheduling problem. Secondly, the number of jobs
typically considered in literature are significantly less than the number of jobs
which need to be considered for the anodising plant described in this paper. Zhou
et al. [11], for example, focused on scheduling 3 jobs on 24 stages (resulting in 72
operations) and Li et al. [3] focused on scheduling 3 jobs on 20 stages (resulting in
60 operations). The problems considered in this paper ranges from 455 operations
to 1300 operations. The next section will discuss the CMAES based algorithm
developed to solve these problems in more detail.

3 CMAES for Robotic Flow Shop Scheduling

Lei and Wang [15] proved that robotic flow shop problems with time window
constraints, such as no-wait constraints, are np-complete. The more complicated
problem addressed in this paper can thus not be solved to optimality in poly-
nomial time. Approximation algorithms such as heuristic rules or evolutionary
algorithms are thus logical options. CMAES was selected as basis for the schedul-
ing algorithm due to its excellent performance versus more well known evolu-
tionary algorithms such as genetic algorithms (GAs) and differential evolution
algorithms on continuous optimization problems [1]. Furthermore, CMAES has
only one parameter to tune and requires significantly fewer individuals per iter-
ation compared with, for example a GA, to obtain satisfactory performance.
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3.1 Background on CMAES

CMAES is a stochastic, non-linear optimization algorithm. The CMAES algo-
rithm consists of four main phases, namely solution generation, selection and
recombination, covariance matrix update, and step size update. During the first
generation phase, a population of solutions is generated at each iteration accord-
ing to a multivariate normal distribution such that

xxxi(t + 1) ∼ N(mmm(t), σ2
CMA(t))CCC(t), (1)

where xxxi(t + 1) is the ith candidate solution at iteration t + 1, N(mmm(t), σ2
CMA(t))

denotes a normal distribution with mean mmm(t) and standard deviation σCMA(t).
The mean of the CMAES population at time t is denoted by mmm(t), σCMA denotes
the step size of the algorithm at time t, and CCC(t) is the covariance matrix at
time t. After the solutions are evaluated and sorted, selection and recombination
takes place by adjusting the mean of the population as follows:

mmm(t + 1) =
ns∑

k=1

wkxxxk, (2)

where ns is the population size and wk is the kth recombination weight in the
CMAES algorithm.

The covariance matrix, CCC(t), is then updated as:

CCC(t + 1) = (1 − ccov)CCC(t) +
ccov

μcov
pcCMA

pT
cCMA

+ ccov

(
1 − 1

μcov

)

×
ns∑

k=1

wk

(
xk(t + 1) − mmm(t)

σCMA(t)

)(
xk(t + 1) − mmm(t)

σCMA(t)

)T

, (3)

where

μcov ≥ 1, (4)
μcov = μeff , and (5)

ccov ≈ min(μcov, μeff , n2
x)/n2

x. (6)

The symbol ccov denotes the learning rate for the covariance matrix update, μeff

denotes the variance effective selection mass and μcov denotes the parameter
which weighs between the rank-one update and rank-μ update. The rank-one
update uses only the previous iteration to estimate the covariance matrix where
the rank-μ update uses all previous iterations. nx is the number of problem
dimensions.
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The CMAES algorithm makes use of cumulative step-size adaptation. A
cumulative path is used which is a combination of all the steps an algorithm
has made with the importance of a step decreasing exponentially with time [17].
Two evolution paths are used in the CMAES algorithm, the anisotropic evolution
path, pcCMA

, associated with the covariance matrix and the isotropic evolution
path, pσ, associated with the step size. pcCMA

is calculated as follows:

pcCMA
= (1 − ccCMA

)pcCMA
+

√
ccCMA

(2 − ccCMA
)μeff

(
mmm(t + 1) − mmm(t)

σCMA(t)

)
,

(7)

where μeff is given by

μeff =

(
ns∑

k=1

w2
k

)−1

(8)

and ccCMA
is the backward time horizon of the anisotropic evolution path.

Finally, the step size, σCMA(t + 1), is updated as follows:

σCMA(t + 1) =σCMA(t) exp
(

cσ

dσ

(‖pσ(t + 1)‖
E‖N(000, III)‖ − 1

))
, (9)

where dσ is the damping parameter in the CMAES algorithm, 1
cσ

is the backward
time horizon of the isotropic evolution path, pσ:

pσ = (1 − cσ)pσ +
√

cσ(2 − cσ)μeffCCC(t)−0.5

(
mmm(t + 1) − mmm(t)

σCMA(t)

)
. (10)

The Covariance Matrix Adaption Evolution Strategy (CMAES) algorithm
has already been used for a number of real world problems such as to optimise
the layout of a three column wind farm [18] and for the optimization of irrigation
scheduling [19].

3.2 The CMAES-Based Robotic Flow Shop Scheduling Algorithm

Since the CMAES algorithm operates in a continuous space, a mapping mech-
anism is required to convert the candidate solutions (xxxi(t + 1)) to valid sched-
ules [20]. Each candidate solution is interpreted as a set of priorities for the
jobs to be scheduled. This prioritized list of jobs is then provided as input to a
scheduling algorithm described in Fig. 2. The algorithm provides the makespan
associated with the schedule of each candidate solution which is then returned
to the CMAES algorithm.
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Fig. 2. Flowchart of the algorithm used to calculate the fitness function of each indi-
vidual.
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4 Empirical Evaluation

The evaluation of the CMAES scheduling algorithm was conducted on 5 datasets
derived from real world data from the South African anodising plant. The
datasets range in size from 34 jobs (corresponding to the current planning hori-
zon) to 100 jobs which needs to be produced on 13 processing stages. These
datasets are available for comparison purposes from the corresponding author.

The parameter settings used for the CMAES algorithm is based on recom-
mendations from literature [1] and is listed in Table 1.

Table 1. The CMAES algorithm parameters.

Parameter Value used

Maximum iterations 1e3(nx+5)2√
ns

Search interval ([LB, UB]) [−100, 100]

Population size (ns) 4 + floor(3 log nx)

Sigma 0.35(UB − LB)

For the first three datasets, the actual production schedule as planned and
executed by the anodising plant could be obtained. These schedules, referred to
as the “as-is” schedules can be used as a baseline to compare the performance of
the CMAES algorithm. Furthermore, another three production scheduling rules
were used for benchmarking purposes. These rules are the current state-of-the-
art algorithms developed specifically for the anodising plant’s problem. The rules
are FIFO (First In, First Out), Priority (where priority orders are completed first
and then the as-is schedule from the plant is followed for the rest of the orders)
and SPT (shortest processing time) (all 10µm orders, followed by 15µm and
then 25µm).

The results of the comparison between the CMAES scheduling algorithm, the
benchmarking algorithms and the as-is schedules are recorded in Table 2. Due to
the stochastic nature of the CMAES algorithm, all CMAES results were recorded
over 30 independent simulation runs. Throughout the rest of this section, μ
and σ respectively denote the mean and standard deviation associated with the
makespan of the algorithm.

A statistical analysis was conducted to validate the results obtained. For
every dataset, a Mann-Whitney U test at 95% significance was performed to
compare the CMAES algorithm results to the benchmarking algorithms. The
results in bold indicate that a statistical significant performance improvement
was obtained. As can be seen, the CMAES algorithm outperforms the other
algorithms for the first three datasets. Up to 115 min can be saved per day by
the anodising plant if they utilize the CMAES algorithm instead of their exist-
ing scheduling procedures. With regard to the larger two datasets, the CMAES
performs statistically similar to the SPT heuristic, indicating that further design
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Table 2. Comparative results of the CMAES scheduling algorithm to the benchmark
algorithms and as-is schedules.

Dataset Operations CMAES FIFO SPT Priority As-is

μ σ Time (s) C C C C

07-Aug 34 457.23 11.596 412.16 603 571 600 572

22-Aug 34 470.6 13.051 415.72 556 546 579 560

23-Aug 42 544.3 10.639 649.57 643 608 727 658

50 50 627 0 2276.28 NA 627 NA 798

100 100 1177 0 5985.65 NA 1177 NA 1621

improvements will need to be made to the CMAES algorithm if a larger schedul-
ing horizon is considered in future.

The time required to obtain a solution for each problem was also recorded in
Table 2. A computer running Windows 7 Enterprise with an Intel(R) Core(TM)
i7-4710MQ CPU @ 2.50 GHz with 8 Gb RAM was used to obtain the results.
Running an algorithm overnight to schedule the next morning’s production is
considered acceptable in industry and thus the computational time required to
obtain a solution is not an issue.

5 Using the CMAES Algorithm for Business Decisions

From the results obtained, it is clear that the CMAES algorithm could add value
by reducing the total time required to produce material. This section investigates
the use of the CMAES algorithm to assist the anodising plant in making business
decisions. A sensitivity analysis was conducted on the number of tanks used at
two critical stages in the manufacturing process. Three scenarios were developed.
Scenario 1 involved the addition of two anodising tanks to the existing four
tanks at the anodising station. Scenario 2 involved adding two sealing tanks to
the existing four sealing tanks at the sealing station. Scenario 3 involved adding
both additional anodising and sealing tanks to the existing production line. The
CMAES algorithm was used to solve the three scenarios and the results were
recorded in Table 3.

A statistical analysis was again conducted. For every comparison of scenar-
ios, a Mann-Whitney U test was performed (using the two sets of 30 data points
of the two scenarios being compared) and if the existing scenario statistically
significantly outperformed the second scenario, a win was recorded. If no statis-
tical difference could be observed a draw was recorded. If the second scenario
resulted in statistically significantly better results than the as-is scenario, a loss
was recorded for the as-is scenario. As an example, (5-0-0) in row 1 column 1,
indicates that the “as-is” scenario significantly outperformed Scenario 1 for five
of the datasets. No draws or losses were recorded (Table 4).

Interestingly, the results show that adding additional tanks does not have a
significant impact on the schedule. One possible explanation could be that the
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Table 3. Sensitivity analysis of the CMAES algorithm results to additional tanks.

Dataset As-is setup Scenario 1 Scenario 2 Scenario 3

μ σ μ σ μ σ μ σ

07-Aug 457.23 11.596 524.23 1.2507 536.23 11.227 458.03 12.076

22-Aug 470.6 13.051 496.93 4.0338 507.37 14.39 451 0

23-Aug 544.3 10.639 628.73 0.82768 648.53 5.8648 545.23 11.596

50 627 0 630.37 3.81 649.9 3.2308 627 0

100 1177 0 1182.5 5.0596 1243.3 4.4347 1177 0

Table 4. Hypotheses analysis of the impact of additional tanks on scheduling perfor-
mance.

Scenario 1 Scenario 2 Scenario 3 TOTAL

5-0-0 5-0-0 0-4-1 10-4-1

process bottleneck is now simply moved to another resource, such as the cranes,
which are required to move all jobs between stations. Future work can focus on
a more in-depth analysis of the system bottlenecks.

6 Conclusion

This paper described the development of a CMAES based algorithm for a robotic
flow shop scheduling problem with multiple robots and parallel machines. Data
from a South African anodising plant was used to compare the CMAES algo-
rithm to three popular scheduling rules as well as existing schedules used at the
plant. The CMAES algorithm statistically significantly outperformed all other
algorithms for problems with around 500 operations. An example analysis was
also conducted to show how the algorithm can be used to evaluate various system
parameters.

Future research opportunities lie in the improvement of algorithm perfor-
mance on larger problems, benchmarking the CMAES algorithm against other
meta-heuristic algorithms, more in-depth tuning of the CMAES parameters, and
a more thorough analysis of the system bottlenecks.
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