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The proximity of the source and an edge can make the acoustic scattering by wings a
significant source of aerodynamic sound. Theoretical results have shown that elastic edges
lead to reductions of acoustic scattering; however, experimental confirmation of theoretical
trends is difficult, since surface vibrations modify both the source structure and the scat-
tering properties. A simplified, controlled setting for measurements of acoustic scattering,
allowing the evaluation of fluid-structure interactions, would thus be desirable to study how
elastic edges modify the radiated sound. We present an experimental procedure to isolate
the scattered field using a loudspeaker in the vicinity of flat plates. The methodology is
applied to three different plates, made of steel, aluminum and carbon fiber, as a demonstra-
tion. The responses of these elastic plates are studied for a sound source of dipole type near
the trailing edge. The method is based on the experimental determination of frequency
response functions between source and radiated sound for experiments with and without
the plate; subtraction of results, accounting for amplitude and phase, isolates the scattered
field. Experimental results treated with the developed procedure were compared with
predictions made by numerical simulations performed with a Boundary Element Method
(BEM), coupling the acoustic problem with the plate vibration. The comparison between
experimental and numerical results revealed that a two-dimensional model can predict sat-
isfactorily the reductions in scattered field by elastic plates observed in the experiment.
The present methods can be used to support the choice between different materials for
edges focusing on their respective acoustic benefit.

I. Introduction

The generation of noise by solid bodies immersed in a flow was first investigated by Curle.1 Using a
dimensional analysis, it was shown that, in a regime whose Mach number is sufficiently low, the sound
produced due to the presence of the solid surface is dominant. While Curle’s analysis considers compact
surfaces, the problem of acoustic scattering that occurs when an eddy is close to a trailing edge requires an
approach that considers an airfoil acting as a non-compact source. Such trailing edge noise that occurs on
a semi-infinite plate was studied by Powell,2 where dipole type sources were positioned in the vicinity of
the trailing edge, providing an estimate of the radiated sound power spectral density. Ffowcs-Williams and
Hall3 also analyzed the interaction of the trailing edge of the plate with the disturbed flow. The estimate
of the acoustical intensity in the far field showed that the presence of thin edges considerably impacts the
increase of the aerodynamic noise generated in low Mach numbers. Besides the works cited above, there are
other references4–9 that are also devoted to the problem of trailing edge noise; most often, the problem is
studied theoretically or numerically.
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The interaction of a sound source with the trailing edge of a plate gives rise to a scattered acoustic
field which is added to the incident field generated by the source. Whenever modifcations of a plate are
introduced, such as changes in geometry or in stiffness, effects on both source and scattering may occur.
The source may change, as transitional or turbulent boundary layers close to the edge may be influenced
by the aforementioned modifications; in addition to this, changes in acoustic scattering are expected, such
as reductions in radiated sound due to elasticity and porosity effects.8,10,11 Obtaining the scattered field in
a simplified setting, with a fixed, imposed source, may be interesting to characterize a particular wing or
plate in relation to its scattering properties. However, the scattered field may be a small portion of the total
field when a loudspeaker of monopole or dipole type is used as a source. Maybe due to these difficulties,
to the best of our knowledge an experimental acquisition of the scattered field is lacking. In this paper, we
present a method to isolate the scattered field for loudspeakers in the vicinity of elastic plates. Moreover, we
use this method as an experimental study of the elasticity effect on acoustic scattering, with a comparison
of measurements with numerical results obtained with a boundary element method. The present approach
allows a controlled study of potential acoustic benefits of elastic edges.

The remainder of the paper is outlined as follows. An experiment, which was designed to demonstrate the
operation of the data processing procedure is presented in section II, and the signal processing is detailed
in section III. A mathematical model for comparison and numerical procedures are briefly explained in
section IV. Results and discussion are presented in section V and the paper is closed by the presentation of
conclusions in section VI.

II. Experimental description

In this section, we present an experiment that was designed to obtain edge scattering in a controlled
setting, with a source given by a loudspeaker. For this, an incident field that corresponds to white noise will
be used and we will analyze the acoustic field scattered by flat plates with different elasticity properties, i.e.
made of different materials, namely aluminum, steel and carbon fiber.

A. Apparatus

The tests were conducted in the anechoic wind tunnel facility at the University of Twente. The wind tunnel
has an semi-open test section measuring 0.9 x 0.7 m2 in an anechoic chamber measuring 6 x 6 x 4 m3.
All tests were conducted in the anechoic chamber without operation of the wind tunnel, and the ambient
medium was thus at rest. The plates used in the tests were made from aluminum, carbon fiber and steel.
They have a span (w) of 0.7 m in z direction, and a chord (`) of 0.45 m in x direction. Aluminium and steel
plates have thickness equal to 1.0 mm. The carbon fiber laminate has a thickness of 0.5 mm. The plates were
mounted in a structure inside the anechoic chamber. One of the edges was assigned as a “leading edge”; the
plates were in a cantilever configuration, clamped at the leading edge with all other edges free, following a
configuration studied in theoretical works.8,11 The loudspeaker was positioned in the vicinity of the trailing
edge and microphones were used to measure the near and far field.

B. Coordinate system and device positioning

The origin of the coordinate system is at the leading edge. The loudspeaker was positioned at plate midspan,
aligned with the trailing edge in the x direction, and at a distance d = 8 mm in the y direction. Microphone
M1 was positioned 2 mm away from the loudspeaker in the direction y to measure the near field pressure.
The microphones M2 and M3 were positioned at a distance D = 2.4 m to measure the far field, M2 aligned
with the trailing edge and M3 with a different angle, as shown in Figure 1.

III. Signal processing

We now present an approach to process the experimental data using the setup described in the previous
section so as to isolate the scattered sound field. The method will be explained based on the cases studied
here related to the evaluation of acoustic benefits due to plate elasticity, but the approach has broader
application, and can be used in different situations, for example, to characterize the acoustic response of
materials in design phases.
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Figure 1. Sketch of the set up with clamped leading edge and free trailing edge (top view).

The first point to emphasize in this experiment is that besides measuring the acoustic pressure at selected
points of observation with microphones, we would need a simultaneous measurement related to the source.
It could be the input voltage to the loudspeaker or the near field pressure. Both have been attempted in
this study, and were seen to lead to similar results. The near field pressure was measured with mircrophone
M1, shown in Figure 1.

Hereafter we call one of the source measurements (voltage or near field pressure) as X and the observer
measurements (acoustic pressure from microphone M2 or M3) as Y . The frequency-response function (FRF)
between source-observer, when the source is excited stochastically can be estimated as12

G(f) =
SXY (f)

SXX(f)
(1)

where SXY (f), the cross-spectral density between source X and observer Y , is the Fourier transform of the
cross-correlation function, and SXX(f) is the power-spectral density of the source, given by SXX = |X̂(f)|2,
where X̂(f) is the Fourier transform of the signal and f the frequency in Hz. Notice that SXY is a complex-
valued quantity, with amplitude and phase, whereas SXX is real and positive. G(f) gives the expected
amplitude and phase at the observer if the source excitation at frequency f has amplitude equal to 1.

The key to isolate the scattered field is to run an experiment without the plate to obtain Gi(f), i.e. the
FRF for the incident field; the setup to do this is shown in Figure 2(a). Then another experiment with the
plate (Figure 2(b)) is performed to obtain Gt(f), the FRF for the total field. The FRF of the scattered field,
Gs(f), is simply

Gs(f) = Gt(f)−Gi(f), (2)

with subtraction of complex quantities, accounting for amplitudes and phases.
Following the procedure above, Gs(f) can be obtained for different plates.These transfer functions should

be different for the cases investigated, according to theory.5,8 However, for a dipole source close to the edge,
the total transfer functions Gt(f) for different plates are dominated by the incident field and should be
nearly identical. A meaningful quantity to compare to theory and highlight the differences between these
cases would be choose a baseline case, and then compare,

|Gs,sample| − |Gs,baseline|, (3)
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(a) Assembly without the plate to acquire the inci-
dent field generated by the loudspeaker

(b) Assembly with the plate to acquire the acoustic total
field

Figure 2. Experimental set up mounted on the anechoic chamber

which would show the acoustic benefit in the scattered sound as a baseline plate is replaced by other plate. In
this study, we have chosen the steel plate as the baseline case, as it can be considered to be rigid if compared
to the other plates.

In order to ensure that there are no background noise issues, it is necessary to be within the limits of
linear acoustics and vibration and to avoid significant spurious noise in the measurements. This occurs when
the coherence between X and Y is close to unity, which highlights the linearity of the FRF.

IV. Numerical Simulations

As previously mentioned, the experiment performed in this study consists of flat plates being excited
by a sound source in the vicinity of the trailing edge. It was designed in such a way that it is possible to
compare its results with those that are obtained numerically by a method that calculates the acoustic field
scattered by finite elastic plates, described in Cavalieri et al.8 and Nilton et al.11 It is beyond the scope of
this document to explain the complete method, but the essential aspects for understanding this study will
be addressed in this section.

A. Basic equations

The problem at hand is a flat elastic plate, which is discretized into a finite number of elements, with a sound
source S positioned in the vicinity of the trailing edge. The sound source is modeled as a dipole to represent
an unboxed loudspeaker, Figure 3(a) shows an incident field generated by a dipole source close to the plate.
The model used is two-dimensional, so the plate has an infinite span in the direction z and finite chord in
the direction x. The plate boundary conditions corresponding to the experiment are: clamped leading edge
and free trailing edge, as represented in Figure 3(b).

To obtain the scattered pressure field, we solve the inhomogeneous non-dimensional Helmholtz equation,

∇2p+ k2
0p = −S, (4)
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(a) Incident field generated by a dipole, acoustic wavenumber
k0 = 20.

(b) Schematic of a rectangular elastic plate with finite chord
and infinite span, where one edge is clamped along the z axis
and the other edge is free, subject to acoustic radiation from
source S

Figure 3. Conditions used for numerical simulation.

where k0 is the non-dimensional acoustic wavenumber, given as ω̃`/c̃0 for angular frequency ω̃, characteristic
length ` and speed of sound c̃0. The overhead tildes indicate dimensional terms, and an exp(−iω̃t̃) time
dependence is implicitly assumed. The pressure p is given as p̃/(ρ̃f c̃

2
0), where ρ̃f is the fluid density, and S

is the acoustic source function. Equation 4 is subject to boundary conditions matching velocities of the fluid
and vibrating plate at the fluid-solid interface,

∇4η − k4
0

Ω4
η = ε

k3
0

Ω6
∆p (5)

where η is the plate displacement, Ω is the vacuum bending wave Mach number and ε is the intrinsic fluid
loading parameter. This is derived from the equation for a harmonic load ∆p applied to a thin elastic plate;
details on the derivation can be found in the references.11,13 Typical values of ε for steel and aluminium in
air can be found in Howe.14 For the carbon fiber plate this value can be calculated as

ε =
ρ̃f
ρ̃s

(
E

12ρ̃sc̃20(1− ν2)

)1/2

, (6)

where E is the Young’s modulus, ρ̃s is the mass density of the plate material and ν is the Poisson’s ratio.
Another important parameter in problems involving fluid-structure interaction is the relation ωch/c0, a
non-dimensional coincidence frequency, given by,

ωch

c0
=
c̃0
c̃1

(
12(1− σ)2

1− 2σ

)1/2

≡ ρ̃f
ερ̃s

. (7)

We need another boundary condition to close the problem, and it is given by the linearised Euler equation,
that relates the pressure and its normal derivative on the plate surface,

k2
0η =

∂p

∂y


y=0

. (8)

The acoustic problem is represented by Equation 4 subject to boundary conditions 5 and 8. It is necessary
to provide two boundary conditions for the vibration problem 5 at each end of the plate to close the problem.
For the cantilever plate configuration of Figure 3(b) these conditions are

η(0) =
∂η(0)

∂x
=
∂2η(1)

∂x2
=
∂3η(1)

∂x3
= 0. (9)

This formulation is directly applicable to isotropic materials. The composite materials are characterized
by their anisotropy, so to analyze them some modifications in the mathematical model are required; this
specific treatment can be found in Cavalieri et al .15
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B. Solution of problem using a structural modal basis

The fluid-structure interaction problem is solved by rewriting equation 5 and substituting ∇4 for an operator
L. Now let us consider the auxiliary eigenvalue problem

L(η) = β4η, (10)

subject to the same boundary conditions of equation 9. Solutions of this eigenvalue problem lead to a
complete orthonormal basis φi for functions satisfying the boundary conditions of the problem, such that

L(φi) = β4
i φi, where 〈φi, φj〉 = δij . (11)

φi is called the modal basis; these modes are used as an auxiliary basis to solve the fluid-loaded plate problem.
The eigenvalues of this problem are real and positive, and βi is identified as the bending wavenumber of a
vibration mode φi of the plate.

Since the modal basis is a complete orthonormal set for functions satisfying the boundary conditions
of the problem, we can use it to write the plate displacement η and from equation 8 obtain the following
equation, that relates the pressure difference between the two sides of the plate ∆p with the transverse
pressure gradient evaluated at the plate surface ∂p/∂y|y=0,

∂p

∂y


y=0

=
εk5

0

Ω6

〈∆p, φj〉
β4 − k4

0

Ω4

φj . (12)

C. Numerical methods

The eigenvalue problem 11 is solved using a pseudo-spectral method.16 The problem of acoustic scattering is
solved by a boundary element method. A fundamental solution for the Helmholtz equation is the free space
Green function, G(x,y), written for a two-dimensional formulation as

G(x,y) =
i

4
H

(1)
0 (k0|x− y|). (13)

Here, H
(1)
0 stands for the Hankel function of the first kind and order zero. Using Green’s second identity,

one can write the following boundary integral equation

T (x)p(x) =

∫
Γ

[
∂p(y)

∂ny
G(x,y)− ∂G(x,y)

∂ny
p(y)

]
dΓ− ∂G(x, zi)

∂zin
S(zi) (14)

where T (x) = 1/2 when x is on a smooth boundary surface Γ, and T (x) = 1 when x is a field point anywhere
in the fluid region. The derivatives with respect to the inward normal direction of the boundary surface are
represented by ∂/∂n and n is an inward unit normal. The ith source location is zi and the incident dipolar
field can be computed as the first derivative of the Green’s function.

The scattering surface, Γ, is discretized into a finite number of elements with polynomial reconstructions
for the unknowns in each element. Then, equation 14 is solved for each of these elements through the solution
of a linear system of equations, written in compact form as

[H]{p} − [G]{∂p/∂n} = {S}, (15)

whose solution is possible since {p} and {∂p/∂n} are related by equation 12.

V. Results

A. Numerical results

In this section we will present results found using the numerical method described above. For all config-
urations, a dipole source was positioned at the vicinity of the trailing edge. The free edge is located at
(x, y) = (1, 0), and the dipole is placed at (x, y) = (1,−0.0178). We calculate the pressure for observers
in the acoustic field located 5.33 chords from the plate trailing edge, which corresponds to the positioning
radius of the microphones in the experiment. In order to solve the problem at hand we need the parameters
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related to the fluid-structure interaction, ε and ωch/c0. For the cases studied here, the plates are immersed
in air and the values of these parameters for aluminum and steel are available in the reference.14 For the
carbon fiber laminate they can be calculated using equations 6 and 7, and the mechanical properties of the
biaxial lamina, E1 = 51.83 GPa, E2 = 51.83 GPa, G12 = 2.82 GPa, ν12 = 0.06 and the laminate density,
which is 1336 kg/m3. The resulting parameters for three plates are shown in the table 1. The carbon fiber
laminate is more flexible than the aluminum plate, which in turn is more flexible than the steel plate. This
reflects on the fluid loading parameter ε, which is expected to be higher as elasticity is increased.

Table 1. Bending stiffness and fluid-structure parameters of plates in air

Plate ωch/c0 ε0

Steel 0.22 0.00073

Aluminum 0.22 0.0021

Carbon fiber laminate 0.1904 0.0049

For each of the three plates, we performed a sweep in k0. To evaluate the effect of flexibility in acoustic
scattering, Figure 4 show the scattered sound power level (PWL) of the three cases. In this figure and
hereafter, CFP stands for carbon fiber composite plate. The first point to be observed is the acoustic
benefit, with noise reduction as we move from steel plate to aluminium plate and then to carbon fiber
laminate; as elasticity is increased, reductions of acoustic scattered are observed, in agreement with previous
works.8,10,14

Acoustic wavenumber k
0

100 101 102

P
W

L 
(d

B
)

-15

-10

-5

0

5

10

15

Aluminium
Steel
CFP: h = 0.5mm

Figure 4. Sound power level radiated by elastic plates

For each value of k0, there is an associated value of Ω, given by,

Ω =

√
k0(h/`)

ωch/c0
. (16)

The variation of Ω for the three plates is shown in the Figure 5, which is basically a reproduction of Figure
4, but each chart contains only one plate and at the top one can see a scale of Ω. Note that for the steel and
aluminum plates, the ranges of Ω are identical since these plates have the same thickness and the parameter
ωch/c0 is also the same. By the joint analysis of figures 4 and 5, it can be observed that there are more
significant reductions of PWL as Ω is decreased, which is consistent with results for semi-infinite plates.7

However, it is important to note that k0 > 1, since the opposite condition, k0 < 1 leads to lower reduction of
PWL, as demonstrated in reference.8 Another feature that can be observed is the presence of sharp peaks,
which correspond to resonances of the fluid-loaded plates. As Ω is reduced the acoustic excitation frequency
crosses successive resonance conditions.

Another way to present the results is to show the sound pressure level (SPL) in the observer positions
corresponding to the microphones M2 (90 degrees to the x-axis) and M3 (135 degrees to the x-axis). We are
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Acoustic wavenumber k
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(a) Sound power level radiated by steel
plate

Acoustic wavenumber k
0

100 101 102

P
W

L 
(d
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15

Aluminium
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-15
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0
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(b) Sound power level radiated by alu-
minium plate

Acoustic wavenumber k
0

100 101 102

P
W

L 
(d

B
)

-15
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0

5

10

15

CFP: 0.5mm

Ω0.1 0.4 0.7

-15

-10

-5

0

5

10

15

(c) Sound power level radiated by car-
bon fiber composite plate

Figure 5. Sound power level radiated by elastic plates, attention to the Ω scale in charts top.

interested in the acoustic benefit of one plate in relation to the others, so the Figure 6 shows the variation
of sound pressure level (∆SPL) in relation to the steel plate. Reductions of up to 5dB are expected for the
composite plate compared to the baseline case.

Acoustic wavenumber k
0

100 101 102

∆
 S

P
L 

(d
B

)

-15

-10

-5

0

5

10

15

Aluminium
CFP: 0.5mm

(a) At M2 microphone observer position (90◦)

Acoustic wavenumber k
0

100 101 102

∆
 S

P
L 

(d
B

)

-15

-10

-5

0

5

10

15

Aluminium
CFP: 0.5mm

(b) At M3 microphone observer position (135◦)

Figure 6. Difference in scattered field amplitude with respect to the scattered field of the steel plate, calculated
numerically.

B. Experimental results

As mentioned in section III, two signals were acquired to characterize the source: one measured by the
microphone M1 and also the input voltage in the loudspeaker. The results that we present in this section
were obtained using the input voltage signal to the loudspeaker, the results obtained with the microphone
M1 are similar and will not be shown for the sake of brevity.

In a linear noise-free system, the frequency content of the output is the same as the frequency content
of the input; only the magnitudes and phases of the frequency components are altered by the system. The
coherence function for the input and output of a linear noise-free system is unity, indicating maximum or
complete coherence. In this experiment, the coherence between the observer and the acoustic source was
verified. Results for the microphone M2 are shown in the Figure 7, and for M3 in the Figure 8.

The analysis of figures 7 and 8 indicates that there is a range of values of k0, starting at the anechoic
chamber cutoff frequency (200Hz, corresponding to approximately k0 = 1.65), where the coherence is close to
one. To minimize the effect of background noise, we will only work with the acoustic wavenumber spectrum
where the coherence is close to the unit value, that is, from k0 = 1.65 to 66, which corresponds to a frequency
band from 200Hz to 8000Hz.
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(a) Incident field
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(b) Steel plate
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Figure 7. Coherence between source and microphone M2.
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Figure 8. Coherence between source and microphone M3.

The experiment was performed as described in sectionII, and the data was processed following the proce-
dure described in section III. From this method it was possible to obtain the acoustic field scattered by the
three plates in two observer positions, corresponding to the M2 and M3 microphones. This result is shown
in Figure 9.
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(b) Measured by microphone M3 (135◦)

Figure 9. Acoustic field scattered by the aluminum, carbon fiber and steel plates

To make these results comparable to those obtained by numerical calculations, we will present them in
terms of the difference in sound pressure level (∆SPL) with respect to the steel plate, which was chosen as
the reference case. To obtain ∆SPL the following equation is used,

∆SPL = 20log(|(Gs,sample)|)− 20log(|(Gs,baseline)|). (17)

Results are shown in Figure 10, where it is possible to observe, in general, that when we replace the steel
plate by the carbon fiber laminate we have greater reductions in the scattered acoustic field than when this
replacement is made by the aluminum plate. For the composite plate, reductions of up to 5dB are seen for
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lower values of k0, in agreement with what was seen in the numerical results. In the following section the
numerical and experimental results will be compared.
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Figure 10. Difference in scattered field amplitude with respect to the scattered field of the steel plate, measured
experimentally.

C. Comparison of results

In this section we present a comparison of numerical and experimental results. Figures 11 and 12 show the
variations of sound pressure level in the observers positions corresponding to the microphones M2 and M3,
respectively. The graphs related to the carbon fiber laminate indicate that the model was able to predict
the general trends that were observed in the experiment. For example, if we look at Figure 11(b) for k0

approximately equal to 8.0, we see a drop in the experimental graph that was correctly predicted by the
numerical calculation. Other similar trends can be observed. However, for the aluminum plate, we observed
in the numerical results that the minor difference in scattered field compared to the steel plate is likely
difficult to be captured in the experiment.
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Figure 11. Difference in scattered field amplitude with respect to the scattered field of the steel plate, at
microphone M2 observer position (90◦).
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(a) Aluminium plate

Acoustic wavenumber k
0

100 101 102

∆
 S

P
L 

(d
B

)

-15

-10

-5

0

5

10

15

Numerical results
Experimental results

(b) Carbon fiber laminate

Figure 12. Difference in scattered field amplitude with respect to the scattered field of the steel plate, at
microphone M3 observer position (135◦).

VI. Conclusions

We presented a procedure for signal processing focused on the experimental isolation of the scattered
acoustic field for a setup with a loudspeaker in the vicinity of a plate edge. To prove the efficacy of the
method, an experiment was designed, in which the scattered fields by flexible plates were analyzed. The
overall behaviour observed here highlights that the effect of flexibility leads to reductions of the radiated
sound. This is a proof of concept for the present approach; it could be extended to other applications focused
on the analysis of the acoustics of fluid-structure interaction.

Experimental results are similar when we consider the signal measured by the microphone in the near
field or the voltage in the loudspeaker as the system input. Moreover, as a form of validation, we found that
the results remain unchanged when we vary the interval in the time series, the number of discrete points in
the Fourier transform, the overlap and also the way of estimating frequency response functions.

Numerical results for the problem were obtained by means of a formulation based on the boundary
element method. The modal basis of the free-vibration problem is calculated numerically with a pseudo-
spectral method, in a second step the acoustic problem is solved by a boundary element solver, which uses
the previously obtained modal basis to relate ∂p/∂n on the plate surface to the pressure difference across the
plate. The acoustic problem was modeled in two dimensions, and despite this limitation, when comparing
numerical and experimental results it is observed that it is able to predict satisfactorily the trends observed
in the experiment. This suggests that the main trends in trailing-edge noise may be reasonably predicted
using a simpler, two-dimensional acoustic problem.
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