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ABSTRACT rods. The shear stress acting on the vessel walls in casevof flo
We present the development and application of an immersed through an aneurysm and the permeability of the porous mate
boundary (IB) method for the simulation of incompressilde/fl rial were analyzed. The computational method converges as
inside and around complex geometrical shapes and cavilies. first order method for Poiseuille flow, with a considerabléiun
IB method is based on a volume-penalization method that-is ap ence derived from the precise definition of the masking fomct
plied throughout the domain, rendering the velocity inistary near solid-fluid interfaces. We identify the best masking{fu

solid parts negligibly small, while the flow in the open paots tion strategy and show that for plane Poiseuille flow even sec
the domain is governed by the Navier-Stokes equations. @lie fl  ond order convergence may be obtained. Qualitatively bddia

solver is based on a skew-symmetric finite-volume disat&iiz results are obtained already at modest resolutions of 8416 g
in combination with explicit time-stepping for the conweetand cells across a characteristic opening in the flow domain,, ¢hg
viscous fluxes, and implicit time-stepping for the I1B fogdiarm. vessel diameter or the size of the gap between individuarsqu

The complex geometry is characterized in terms of a sodtalle rods.
‘masking function’ which equals unity in the solid parts aio

in the open parts of the domain. The focus is on the accuracy
with which gradients of the solution close to solid walls dan
approximated using the 1B methodology. We investigatefahnis INTRODUCT_IO_N o )
flow through a model of an aneurysm as may develop in the cir- Th_e prediction of flowthat arises |ns_|de_and around_solld ob-
cle of Willis in a human brain, and to flow in a structured pasou  J€Cts With a complex shape is a key application area for insger

medium composed of a regular spatial arrangement of square Poundary (IB) methods [1]. IB methods allow for the computa-
tion of flows in complex geometries, e.g., cerebral aneusf@h

and porous media [3]. For brain aneurysms there is a growin
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medical need to predict the flow behavior and shear streases i
order to more completely plan and foresee the effect of satgi
intervention. These stresses are thought to be relatee tikd:
lihood of long-time rupture of aneurysms. Likewise, the eom
putation of transport in porous media is of great importatoce
process engineering, particularly aimed at (i) a more cetepl
control of the conditions, and (ii) better use of scarce ueses.

In this paper we discuss a basic volume-penalization 1B
method and its application to flow in complex cavities andiach

the masking function can strongly reduce the error-levetlefa
inition in which the numerical flow domain is entirely insithee
physical flow domain of the problem considered is found to be
beneficial for reducing the error levels.

The flexibility of the 1B method is illustrated with two ap-
plications; one with a biomedical context, concerning flovai
cerebral aneurysm, and one from process engineeringyingol
the prediction of flow in a porous medium. We adopt an energy
conserving finite-volume discretization that is, by counstion,

a staggered arrangement of square rods. The flow domain isstable on any spatial resolution [4]. In these applicatamyg the

characterized by a so-called ‘masking function’ in whiclidso
and fluid parts are identified by a value of ‘1’ or ‘0’ respeetix
This method of representing a complex shaped domain alloms f
a range of sources for specifying the geometry. In variocls-te
nological applications the design of the flow domain is known
from its CAD file — this is a very precise source for the speaific
tion of the masking function. In certain applications, evghen
complex porous media are involved, consisting of biomadss, i
possible to extract detailed information about the innercstire
of a block of porous material using computed tomography imag
ing. This yields a large number of slices through a porousklo
allowing an approximate identification of the fluid and thédso
parts. In medical applications the shape of cerebral asewy
developing in patients can be inferred from three-dimemaio
rotational angiography. This provides a detailed impssif
the complex cavity and vessel structure that may be undeofis
rupture.

The accuracy with which the flow field in a complex ge-

masking function needs to be specified properly and theadpati
resolution should be fine enough to capture, at least qtiaditg,
the smallest geometrical details. From the study of Pdigseui
flow we infer that about 16 grid points per ‘opening’ in the flow
domain suffices to obtain reliable predictions. This briadgrge
range of laminar and transitional flow in realistically cdep
flow geometries within reach of large-scale computing. lis th
way, numerical flow simulation in combination with the 1B ap-
proach can provide reliable information about the innerkwor
ing of flow equipment that would otherwise not be attainable
from physical experimentation. Such computational maodgli
can help improve process-engineering steps and suppgitalr
interventions in case of medical applications.

The organization of this paper is as follows. We first presen
a brief sketch of the IB method that is adopted. Then we prbcee
with a discussion of the convergence of numerical predistio
the exact analytical solution in case of Poiseuille flow. \We-c
sider both plane channel flow and flow in a cylindrical tubee Th

ometry can be computed on the basis of an IB method dependsapplication of the IB method to flow in cerebral aneurysms anc

strongly on the spatial resolution of the smallest detdilthe

flow through structured porous media is included to illustthae

domain, as captured by the masking function. As in some casesflexibility of the method. Concluding remarks will be gatedr
the domain may not be specified beyond a rather modest spatialin the final section.

resolution, the issue of sensitivity of predictions on the&lgy

of the geometrical characterization is important to ineludt is
particularly important to assess which conclusions canetie r
ably drawn from simulations, and what aspects remain unclea
because of uncertainties in the actual flow conditions aed th

IMMERSED BOUNDARY METHOD
In this section we give a brief review of the volume-
penalization immersed boundary (IB) method that is comeidie

geometry. This issue can be addressed in detail using compu-in this paper. We focus on incompressible fluids whose dyosami

tational modeling.

The convergence of IB-predictions toward the actual solu-
tion of the Navier-Stokes equations is a key element thatidec
about the usefulness of this approach for realistic apipding.
We analyze this in detail for Poiseuille flow, both in a plane
channel and in a cylindrical tube. The precise definitionhef t
masking function in the near-wall region is shown to havera co
siderable influence on the error-levels that can be attaifred
plane Poiseuille flow it is shown that the approximation af th
no-slip condition at a solid wall may be implemented such tha
the accuracy of the overall method is lifted from first to seto
order. In case of flow in a cylindrical tube the non-alignmeft
the geometry with the Cartesian grid is shown to imply firstesr
convergence only. Also in this example, the precise dedimidif

are governed by the conservation of mass and momentum:

djuj =0, Q)

atUierj(UjUi)ﬁLaip*RieajjUi*fi =0; 2
wheregd; andd; denote partial derivatives with respect to time
t and spatial coordinate;j, uj denotes the velocity component
in the x; direction andp is the pressure. The Reynolds num-
berRe=UL/v is a measure for the relative importance of the
nonlinear convective fluxes and the linear viscous fluxesif5]
is expressed in terms of a reference velocity sthla reference
length-scald and the kinematic viscosity = u/p with molecu-

lar viscosity given byu and the fluid mass-densipy. The forcing
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fi can be used to represent a variety of physical mechanisms tha forced to negligible values within a very thin strip of thedyrA

influence the evolution of the flow. Here, we will use this forc
ing for another purpose, i.e., to approximate no-slip coboi$ at
solid boundaries that are contained in the domain [1].

The IB method enjoys a growing interest in the field of com-
putational science. It provides a strong alternative toveon
tional numerical simulation methods in case flow in and adoun
very complex spatial shapes in a flow domain is considered.
Conventional methods adhere to computational meshesrhat a
body-fitted — for complex flow domains the gridding of the flow

sufficiently small value of will imply a very localized region in
which a non-trivial flow inQ; connects to a solution with neg-
ligible values inQs. This rough sketch identifies that the simple
volume forcing (3) can indeed approximate a no-slip boupndar
condition, localized within the grid-scale.

The equations resulting from the introduction of the fogcin
(3) in the Navier-Stokes equations need to be treated nuoatlisri
We adopt a finite-volume discretization that preserves lteg/s
symmetry of the nonlinear convective fluxes and the positive

domain becomes very time consuming. The task of generating definite dissipative nature of the viscous fluxes [4]. In jsaitr,

grids that yield an accurate discrete computational medebi-
respondingly difficult, up to the point of becoming impraeti
Instead, the IB method can be formulated entirely in terma of
uniform Cartesian grid. The geometry over and through which
the flow takes place is simply immersed in a ‘block’ of physica
space. These striking differences in the computationalegies
also imply important consequences for the accuracy witrckvhi
flow near solid boundaries may generally be captured. Cenven
tional body-fitted methods allow, in principle, for a prexiep-
resentation of no-slip conditions at the body. In contrése,
accuracy achieved by an IB method generally suffers from the
non-alignment of the interface between solid and fluid regio
with the Cartesian grid. This is even more challenging iktrie
the flow velocity, information about the gradient of the \aty,
or of a passive scalar such as temperature or chemical specie
is of interest. For such situations we identify spatial heon
requirements that are needed to yield reliable results.

We employ a basic IB method in which the forcing tefm
represents a volume penalization. The impenetrability sflal
wall to fluid flow is approximated by direct penalization okth
flow from entering the solid domain. This is represented hgre
a forcing term

fi = %F(x)ui (x,t), 3)

in which the control parameter < 1 (a typical value used is
£ = 10719 andr (x) denotes the so-called ‘masking function’ or
‘phase indicator’ which assumes the value ‘1’ in case thatpoi
x belongs to a solid part of the flow domain and ‘0’ in case it is
located in an open fluid-filled part of the domain. In this wag t
entire flow domainQ is decomposed into a solid pd?s and a
fluid partQ+; while in Q; the forcing is absent and the original,
incompressible Navier-Stokes equations govern the flaewain-
ious fluxes in the momentum equation are entirely overruied b
the IB forcing insideQs. The form of the forcingf; inside the
solid part implies that the velocity componentsare negligible;

if at some location in the solid; would, for some reason, have
become non-zero then the forcing drives the local veloditgkb
to negligible values. In the region near the interface betwe
solid and the fluid parts of the domain the velocity field woloéd

this method can be shown to be stable on any (coarse) rasuluti
without having to resort to artificial dissipation that wdsimear
out small-scale details in a numerical solution. This igtipar
larly important in case turbulent flow is simulated with dymia
cally important fluid motions on a wide spectrum of scalesAl
for laminar flows in a complex porous medium the use of such
discretization is important since a wide range of flow-ssalen
emerge from the passage of a flow through a fine ‘maze’ of ob
structing elements. In order to capture e.g., forces ondhid s
parts of the domain or heat transfer characteristics framilthid

to the solid, the treatment of the small near-wall flow stuues

is essential. A second order accurate method for the fluxes |
employed, implemented on a staggered grid. The effect skthe
fluxes is integrated in time using an explicit time-steppéatg
gorithm of Adams-Bashforth type [6]. The contribution o&th
forcing termf is integrated implicitly in time, which overcomes
severe stability problems that would arise with explicitthoels
ase < 1.

The staggered grid arrangement poses the particular que
tion how exactly the masking functioh should be defined.
Globally, T is easily defined as indicated above. However, there
is some freedom in its definition on grid-scale near a solidifl
interface. In this paper, first, we choose to work with an-4ndi
vidual grid cell as the smallest elementary unit; this ireplihat
a grid cell is considered either as part of the solid or as girt
the fluid. If the center of the cell is solid or fluid, then we as-
sign this property for the entire grid cell. Second, we need t
identify which component of the solution is used as a bagis fo
the masking function. In fact, as all three velocity compuse;
and the pressurp are defined on their respective grids, one may
consider, or I'p. Also, combinations of these are possible in
principle, e.g., the sum of all velocity-based masking tiores.
We choose to work withi , in most applications, which defines
the precise location (within the resolution of the adopted)g
of the solid-fluid interface in a ‘staircase’ approximatidssing
the inter-relation betweel, andly;, one may readily infer the
velocity-based masking functions from the pressure-beeyae-
sentation. The use dfp uniquely defines the geometry of the
flow domain and is not biased toward one of the coordinate di
rections, as would be the case with one offtihe

In the next section we will consider the performance of the
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IB method in combination with the skew-symmetric discratiz
tion and determine the accuracy of predictions in relatemthe
spatial resolution that is used.

VALIDATION AND CONVERGENCE

The convergence of the volume-penalization IB method is
studied on the basis of laminar Poiseuille flow in a straidfate
nel and in a cylindrical tube. This represents a set of tases
of growing complexity, for which the exact analytical sadut
is available as point of reference. For the channel flow wé wil
determine the importance of approximating the no-slip dord
exactly at the solid wall, or shifted by half a grid cell. Thdio-
drical tube application tests the IB method for geomethasare
not aligned with the Cartesian grid; this test-case wilabBsh
that the error-level depends considerably on the precis® -
ration of the cylindrical wall.

Plane Poiseuille flow is one of the few exact solutions to the
incompressible Navier-Stokes equations [7]. The basiogty
consists of two infinitely extended parallel plates. The floun
the streamwise; direction, while the wall-normal and spanwise
coordinates are denoted By andxs respectively. The parallel
plates are located ab = 0 andx, = 1. In a non-dimensional
form the velocity profile is given by, = u3 = 0 and

U1(X2) = dUmaxx2(1—X2), (4)

whereUnax is the maximal velocity in the flow, arising at the
center-plane between the two parallel plates. The velaity
corresponds directly to the external pressure gradiebighim-
posed to maintain the flow. In case of flow through a cylinder
aligned with thex; axis, the Poiseuille profile is given by

U1(r) = Umax(1—r?), (5)

where 0<r < 1 is the radial coordinate. These two parabolic
profiles provide strict tests for the IB method; in the follogy
we investigate the achieved accuracy as a function of $patia
olution.

By defining the masking function appropriately, an IB model
can be obtained with which the analytical Poiseuille flow ban
approximated numerically. We consider the plane Poiseflidiv
first. In Fig. 1 we collect predictions of the streamwise eelo
ity profile obtained at a range of resolutions in the wallmat
direction. We illustrate two ways of approximating the rip-s
condition at the solid wall. In the first method we assume the
solid walls atx; = 0 andx, = 1 to coincide with a surface of the
pressure control volume — this implies that the conditiantie
wall-normal component; = 0 is imposed exactly at the wall,
but that the no-slip approximation for the dominant streégsew

4
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FIGURE 1. Streamwise velocity componentx,) at various spatial
resolutionsny andRe= 1. In (a) we show the convergence toward the
Poiseuille profile in the reference case in which no-slipditons for
the streamwise velocity are imposed at half a grid cell gk wall,

in (b) the no-slip conditions were imposed exactly at thetmn of the
wall. Symbols correspond to the choicengf= Xwithk=2,...,7.

velocity component is off by half a grid cell. We refer to tlis
the ‘reference’ method. In the second method we identifydhe
cation of the wall with the center of the pressure controlivog.
Shifting by half a grid cell we now imposg = 0 exactly at the
wall and approximate the wall-normal condition with halfridg
cellinaccuracy. For both methods of imposing the no-sliprizb
ary condition, we observe a clear convergence of the nualeric
results toward the analytical solution. On closer inspecii ap-
pears that the convergence toward the exact solution exrfagth
the ‘shifted’ method, compared to the ‘reference’ method.

The convergence of the numerical solution toward the exac
solution for the plane Poiseuille flow can be quantified imtr
of the discretd? or | (max-) norms. The findings for the two
methods of imposing the no-slip boundary conditions in &ur |
method are collected in Fig. 2. The general impression seen i
Fig. 1 is now confirmed. The simulation error on any grid res-
olution is considerably lowered if the no-slip conditiorr fhe
dominant streamwise velocity component is imposed exadttly
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FIGURE 2. Convergence rates of the error between the analytical and

the numerical solution it (squares) (or max-) norm até-norm (cir-
cles) for increasing resolution in the wall-normal direatiny. The re-
sults in (a) correspond to the reference method with noeslipditions
for the streamwise velocity component imposed half a gritliaside
the wall and in (b) the no-slip conditions imposed exactlghatlocation
of the wall.

the solid wall, instead of approximately shifted by half adgr
cell. In addition to the level of error, we also observe thn t
rate of convergence increases from first order to seconda ¢rde
the max-norm) in case the no-slip condition for the streagsawi
velocity component is imposed exactly at the wall. This gy
is currently being investigated in more detail in order toalep

near-wall treatments that converge as a second order mgthod

general, smooth geometries. This generalized algoritheoris

sidered for skewed and curved geometries and will be puddish

elsewhere.

The convergence of the IB method toward the Poiseuille ve-

locity profile is investigated next for laminar flow in cylirid

cal tubes. Motivated by the results for the plane channel, flow

we identify three methods of identifying the masking fuoati
These are sketched in Fig. 3; we refer to these as ‘innerg-mi
dle’ and ‘outer’, depending on the criterion when exactlyria g
cell is counted as part of theolid region. In the ‘inner’ strategy
a grid cell is considered part of the fluid region if all fourits
corner-points are in the fluid. The ‘middle’ strategy alsdinles
grid cells that share 3 of its corner points with the fluid ane t

5

-1,
15 -1 -05 o 05 1 15 (b)

-15
“15 -1 -05 o 05 1 15 (C)

FIGURE 3. Definition of the ‘inner’ (a), ‘middle’ (b) and ‘outer’ (c)
strategy for defining the masking function across a cylzalriube. Ei-
ther all four grid points are in the fluid (a), or at least th(bg or at
least two (c) to distinguish the different strategies. Gxédls that are
identified with the fluid region are drawn in solid lines.

‘outer’ strategy further allows grid cells with only 2 commints
in the fluid. We performed simulations on a range of gridstfics t
flow problem and investigated the accuracy of predictionfife
inner-middle-outer strategies.

The convergence of the numerical results, as measured in tt
discretd.,-norm, is collected in Fig. 4. We observe that all three
strategies display first order convergence. This appearsi€o
tent with the results obtained for the plane channel flow seca
the no-slip condition is imposed within half a grid cell ofeth
solid wall. In case of a cylindrical tube, the non-alignmefthe
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FIGURE 4. Convergence of the discrdtenorm of the error in the nu-
merical solution compared to the exact Poiseuille profile amction of
the spatial resolutioM. The solid curve denotes first order convergence
and the labels are such that ‘squares’ denote the ‘outesterisks’ the
‘middle’ and ‘circles’ the ‘inner’ strategy for the definitih of the mask-
ing function.

Cartesian grid with the precise geometry implies that thay
imate no-slip condition in the IB method is in all points with
half a grid cell. We observe a strong dependence of the ldvel o
the error on the masking strategy, with a strong improveriment
thel,-norm if we adopt the ‘inner’ strategy for defining the fluid
part of the domain. If we use a masking function for the fluid re
gion that is entirely inside the cylinder wall, i.e., the éidomain

is ‘retracted’ by about half a grid cell from the actual Iaoatof
the cylinder wall, then the predictions at all resolutions more
accurate. This relation between the error-level and theigze
definition of the masking function near solid walls will be-ex
ploited to achieve higher accuracy in more general geoasetri
this is a topic of ongoing investigations.

FLOW IN MODEL ANEURYSMS
The application of the IB method to flow inside curved ves-

presented in this section. We consider simple geometticgies
and investigate the flow field and the corresponding sheasstr
that arises.

In Fig. 5 we display an impression of the developing flow in
a curved cylindrical vessel and in a model aneurysm thatdast
in addition a spherical cavity. The flow is simulated at a Réga
number ofRe= 100, and the unsteady solution is followed time-
accurately. The effect of the IB masking function for theicol
region is clearly observed in terms of the regions of ‘esaént
zero velocity outside the flow domain. The connection with th

flow inside the tube appears to be correctly captured — the ap-

proximate no-slip condition is expressed in a very narraip stf

(@

(b)

FIGURE 5. Snapshot of the developing flow inside a curved cylindri-
cal tube, without (a) and with (b) a spherical cavity attath€he flow

is visualized in a cross-section through the geometry, lojtiph the
velocity vectors corresponding to thig anduy velocity components.

the Cartesian grid, as is desired from the 1B volume-peatitin
method. The addition of a spherical cavity is seen to affeet t
flow in the curved tube, which leads to the development of a de
tached ‘jet’ that proceeds to flow toward the wall of the cgvit
producing a vortical structure that fills a large part of tpher-
ical cavity with a detached, recirculating flow. The occoae

of such flow structures contributes to an increase of thesayeer

. . ‘residence time’ of blood inside the flow domain, expressing
sels and model aneurysms, as may develop in a human brain, is

deterioration of the quality of transport of nutrients andste
products to and from the tissue surrounding the aneurysrnis. Th
can be an important indicator for the rate at which healtksris
may develop.

The main challenge for the IB method in case of flow
through model aneurysms is in capturing the flow near the
boundary; which is required to compute the shear stress. W
define the shear stress in terms of the gradient of the vglocit
The rate of strain tens@is such that

Sj:%(diuj‘f'djui)- (6)
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FIGURE 6. Predicted shear-stress distribution over the vesselafall
a model aneurysm, composed of a curved cylindrical tube whioh a
spherical cavity is attached. The unsteady flow that degedtipe= 100

is simulated time-accurately and a characteristic impoass the shear
stress is shown. The spatial resolution is&84 x 64.

The shear stresSis a measure for the off-diagonal components
of S We introducesj; = S if i # j and=;j = 0. Then,

E2 =55 = (7)
The distribution of the shear streg§sacross the vessel wall is
an important indicator for the forces that act on the wall.isTh
makes the shear stress a key quantity of relevance for tloécpre
tion of long-term risk of rupture of the aneurysm wall. In F&
the normalized shear-stress distribution is shown at aacher-

A
\

FIGURE 7. In (a) we define a periodic unit of a staggered arrange-
ment of square rods. In (b) a snapshot of the developing flothig
structured porous medium is shown, simulateRet 600. The spatial
resolution in the plane shown is 1284.

For porous media simulations, the intricate geometry of the
medium requires an IB approach to compute local velocity anc

istic stage in the development of the flow. We observe that the Pressure. In Fig. 7(a) we show the definition of the flow domain
detached jet that was discussed above, impinges on the fvall o I terms of the periodic unit in which the square rods are ar-

the spherical model aneurysm and creates a region of ifitshsi
shear stress. The shear-strégs also quite large in the curved
cylindrical tube that is connected to the sphere. The IB ogtth
appears to provide a reliable impression of the distrilmutibthe
shear stress, showing the flexibility of the approach. Aiteta
analysis of the accuracy with whichis predicted requires a full
grid-refinement study, which will be the subject of an upaogni
publication.

FLOW IN STRUCTURED POROUS MEDIA

Laminar flow in a complex porous medium can be simu-
lated in full detail using the IB method. We consider configu-
rations that are composed of square rods placed in periodic a
rangements. We show the flexibility of the IB method in deglin
with such flow problems and quantify the overall permeapilit
that is obtained at a range of Reynolds nhumbers.

ranged. Only a two-dimensional cross-section is shownftte
geometry is treated in three spatial dimensions. In thisrgey
the IB method can readily yield an impression of the develgpi
flow as shown in Fig. 7(b). At a Reynolds humberRé= 600
(based on the volume-average velodity)| and the heightd)
we observe that a rather intricate pattern of vortical flomcst
tures emerges, that appears to be well captured by the tiBren
method, based on the pressure-based masking functigrthiee.
reference method.

Various macroscopic properties of the flow through a struc:
tured porous medium can be extracted on the basis of the ava
able microscopic flow predictions. As an illustration, weneo
sider the large-scale permeability of this model porousiaorad
at various Reynolds numbers. In Fig. 8 we show the macroscopi
pressure gradientthat develops across a periodic unit evHew
is maintained in they-direction. We compare simulation results
obtained at two spatial resolutions. The agreement ibbessr
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FIGURE 8. Dimensionless macroscopic pressure gradient irxthe
direction as a function of the Reynolds number (a) and theespond-
ing permeability in thex;-direction (b). The dashed line represents
numerical simulation results at a resolution of 684 (marked with
squares) and 128128 (marked with circles).

the accuracy of the simulations in case of slow flow, i.e., low
Reynolds numbers. For a related ‘in-lined’ arrangemen®]8,

method, in case of plane channel flow. This aspect will be uti-
lized in the future to achieve higher order convergence forem
general, smooth flow domains. Moreover, we aim to explicitly
incorporate physical conservation principles into ther+veall
treatment in the computational model and investigate wbich
these properties is most decisive for the quality of theltesu

The application of the IB approach to model aneurysms an
flow through a structured porous medium illustrates the Ifi&xi
ity of this IB method in handling flow through very complex flow
domains. At modest Reynolds numbers, as considered indhis p
per, the relatively coarse representation of the solidifinter-
face was shown not to negatively affect the flow predictiam to
strongly near a solid wall. In future extensions we plan to in
corporate flow-structure interactions for cerebral ansung, to
study pulsatile flow in flexible geometries. This implies tise
of a time-dependent masking function with its own dynamics i
which material properties of the brain tissue surroundieg/es-
sel structures needs to be incorporated. Flow through etated
porous medium will be extended to incorporate heat and mas
transfer, fully coupled to the gas-flow through the fluid doma
In all these extensions the accuracy of the solution, argpasial
derivatives, near the solid-fluid interface are key elemeiihe
freedom in the detailed definition of the masking functioama
wall will be exploited to enhance the accuracy of predicdion
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