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Preface

The thesis contains six chapters with new results on spectral graph theory
(Chapters 2-7), together with an introductory chapter (Chapter 1). Chapters
2 and 3 are mainly based on the research that was done while the author was
working as a PhD student at Northwestern Polytechnical University in Xi’an,
China; the other chapters are mainly based on the research of the author
at the University of Twente, The Netherlands. The purpose of this research
was to study the spectra of various matrices and related spectral properties
involving several random graph models. The main focus is on analyzing
the distributions of the spectra, and estimations of the spectra, as well as
on spectral moments, various graph energies, and some other invariants of
graphs. This thesis is based on the following papers that have been published
in or submitted to scientific journals.

Papers underlying this thesis

[1] The Laplacian energy and Laplacian Estrada index of random multi-
partite graphs, Journal of Mathematical Analysis and Applications, 443
(2016), 675–687 (with X. Li, X. Liu and S. Zhang). (Chapter 2)

[2] The von Neumann entropy of random multipartite graphs, Discrete Ap-
plied Mathematics, 232 (2017), 201–206 (with X. Li, X. Liu and S.
Zhang). (Chapter 2)

[3] The spectral distribution of random mixed graphs, Linear Algebra and
its Applications, 519 (2017) 343–365 (with X. Li, X. Liu and S. Zhang).

(Chapter 3)
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[4] The spectra of random mixed graphs, submitted (with H.J. Broersma, J.
Hou and S. Zhang). (Chapter 4)

[5] Spectral analysis of normalized Hermitian Laplacian matrices of ran-
dom mixed graphs, in preparation (with H.J. Broersma, J. Hou and S.
Zhang). (Chapter 5)

[6] On the spectra of general random mixed graphs, submitted (with H.J.
Broersma, J. Hou and S. Zhang). (Chapter 6)

[7] On the spectra of random oriented graphs, in preparation (with H.J.
Broersma, J. Hou and S. Zhang). (Chapter 7)
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Chapter 1

Introduction

Graph theory can be interpreted as the study of binary relations between the
elements of a set. In its simplest form, the elements of the set are represented
by vertices of the graph, and the binary relation is represented by edges or
arcs of the graph: there is an edge or arc in the graph between two vertices
if and only if the elements associated with the two vertices are related (If the
binary relation is symmetric, this can be represented by an edge; if the binary
relation is not symmetric, an arc should be used to indicate the direction of
the relation).

Although graph theory is a relatively young area within mathematics, for
us mortals it already has a long history, originating with the problem of the
Seven Bridges of Königsberg, raised by Leonhard Euler in 1735 and solved by
him in 1736 [49].

Spectral graph theory is an important study field within graph theory. It
mainly focuses on the properties of a graph in relationship to the eigenvalues
and eigenvectors of various matrices associated with the graph, as well as
on applications. Several different specific matrices can be associated with a
given graph, such as its adjacency matrix, its Laplacian matrix, and its nor-
malized Laplacian matrix, to name just a few. The spectra of these matrices,
i.e., their (multi)sets of eigenvalues, are called the spectra of the graph. We
will study these spectra in detail in this thesis.

The most important themes of spectral graph theory generally include:

1



2 Chapter 1. Introduction

relationships between the spectra of graphs and the structure of graphs;
estimates, lower and upper bounds for the eigenvalues of graphs; the dis-
tribution of the spectra; relations between the spectra of graphs and other
invariants of graphs, such as graph energy and spectral moment.

In traditional graph theoretical problems, the graphs are considered to
be fixed (deterministic) and their associated matrices contain constant fixed
entries. However, for more realistic and complicated network applications
containing stochastic elements, the corresponding graphs result in random
matrices, and the traditional approaches are no longer feasible. Indeed, the
size of such realistic networks typically ranges from hundreds of thousands
to billions of vertices, and the corresponding huge and random data poses
new difficulties and challenges.

In the 1950s, Erdős and Rényi [48] founded the theory of random graphs.
Since then, random graph theory has been one of the fundamental approaches
within the research of complex networks. It is an interdisciplinary field
between graph theory and probability theory. The simplest random graph
model, known as the Erdős-Rényi random graph, was developed by Erdős
and Rényi [48] and Gilbert [59]. The Erdős-Rényi random graph Gn(p) con-
sists of all graphs on n vertices in which the edges are chosen independently
with probability p, where 0 < p < 1. This edge probability can be fixed, or,
in more interesting scenarios, a function of n. Random graph theory has de-
veloped quickly and considerably in recent years [4,19,78], due to its many
applications in different real world problems. These include, but are not lim-
ited to disperse areas such as telephone and information networks, contact
and social networks, and biological networks [90,94].

A random matrix is a matrix with entries consisting of random values
from some specified distribution. Many different random matrices can be
associated with a random graph. The spectra of these corresponding matrices
are called the spectra of the random graph. The spectra of random graphs are
critical to understanding the properties of random graphs. However, there is
a relatively small amount of existing literature about the spectral properties
of random graphs. This is the main motivation for the work in this thesis.
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In the subsequent chapters, we investigate the spectra and spectral prop-
erties of several random graph models, such as estimates for the eigenvalues
of random graphs, the distribution of their spectra, and relationships between
the spectra of random graphs and other invariants. Our researches are mainly
based on the following models: the random multipartite graph model, the
random mixed graph model, and the random oriented graph model. Among
those models, the random mixed graph model is initially proposed and ana-
lyzed in this thesis. We finish this section with a short overview of the main
contributions of this thesis. In the next section, we give more details, accom-
panied by the necessary terminology and notation.

1. Random multipartite graph model

The random multipartite graph model can be seen as a generalization of the
Erdős-Rényi random graph model. Both models play an important role by
serving as relatively simple objects approximating arbitrarily large graphs.
Evidently, one can immediately calculate some spectral invariants of a graph
by first computing the eigenvalues of the graph. However, it is rather difficult
to give an exact expression for the value of the eigenvalues of a large random
matrix. In Chapter 2, we estimate the eigenvalues of the Laplacian matrices
of random multipartite graphs, and we investigate the relationships between
the spectra of these random graphs and other invariants of these graphs, such
as the Laplacian energy, the Laplacian Estrada index and the von Neumann
entropy.

2. Random mixed graph model

The second part of the thesis consists of Chapters 3, 4, 5 and 6. Results about
eigenvalues of digraphs (directed graphs) are sparse. One important reason
for this is, that the adjacency matrix of a digraph is usually difficult to work
with. In [67], Guo and Mohar showed that mixed graphs are equivalent to
digraphs if we regard (replace) each undirected edge as (by) two oppositely
directed arcs. A different Hermitian matrix which captures the adjacencies
of the digraph is introduced. In this part, motivated by the work of Guo and
Mohar, we initially propose a new random graph model – the random mixed
graph. Each arc is determined by an independent random variable. More
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generally, one could have different probabilities assigned to different arcs.
We investigate some spectral properties of these random graphs, such as the
distributions of the spectra, estimates of the spectra, spectral moments and
energies. Moreover, for general random mixed graphs, we estimate the spec-
trum of the Hermitian adjacency matrix, and we prove a result expressing the
concentration of the spectrum of the normalized Hermitian Laplacian matrix.

3. Random oriented graph model

The third part of the thesis is Chapter 7. A natural notion of a random di-
graph is that of a random orientation of a fixed undirected graph. Starting
with a graph, we orient each edge with equal probability for the two possible
directions, and independently of all other edges. This model has been stud-
ied previously in for instance [2,64,87,95]. In Chapter 7, we investigate the
correlation in general random graphs, that is, every edge exists with a dif-
ferent probability, independently of the other edges. From a general random
graph, we get a directed graph, which is a random oriented graph, obtained
as described above. Eigenvalues of various matrices of random graphs have
been related to numerous properties of these graphs. Among these, the spec-
tral radii of different matrices of the graph, i.e., the largest absolute value of
eigenvalues of the corresponding matrices, have received the most attention.
The investigation on the spectral radii of different matrices of a graph is an
important topic in the theory of graph spectra. In Chapter 7, we estimate
upper bounds for the spectra radii of the skew adjacency matrix and skew
Randić matrix of random oriented graphs.

In the remainder of this chapter, we give a brief account of our main results,
and we also formally introduce the three random graph models we consider
in this thesis.

1.1 Terminology and notation

This section gives some notations, definitions and preliminary results that
we will use throughout the thesis. For terminology and notation not defined
here, we refer the reader to [21,22,25,38,39,74,117].
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We use G = (V (G), E(G)) to denote a graph with vertex set V (G) and
edge set E(G). We denote the numbers of vertices and edges in G by |V (G)|
and |E(G)|, and call these cardinalities the order and size of G, respectively.
A graph is finite if its order and size are both finite. For a vertex v ∈ V (G),
we use NG(v) to denote the neighborhood of v, i.e., the set of all vertices
adjacent to v. The degree of a vertex v in a graph G, denoted by dG(v), is
the number of edges of G incident with v, with each loop counting as two
edges. In particular, if G is a simple graph (without loops or multiple edges),
dG(v) = |NG(v)|.

A complete graph is a graph in which every pair of distinct vertices is ad-
jacent, and an edgeless graph is a graph in which no vertices are adjacent. As
usual, we use Kn (respectively, nK1) to denote the complete graph (respec-
tively, edgeless graph) on n vertices.

A walk of length l in G is a sequence v0, e1, v1, . . . , vl−1, el , vl , whose terms
are alternately vertices and edges of G (not necessarily distinct), such that
ei = vi−1vi ∈ E(G) for all i ∈ {1, 2, . . . , l}. A walk is closed if its initial and
terminal vertices are identical, and is a path if all its vertices and edges are
distinct. A closed walk v0, e1, v1, . . . , vl−1, el , vl of length l ≥ 3 is a cycle if
v0, e1, v1, . . . , vl−1 is a path. A graph is said to be connected if it contains a
path between any pair of distinct vertices, and disconnected otherwise. A tree
is a connected graph without simple cycles.

A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V (G) and E′ ⊆ E(G). For
a nonempty subset X of V (G), we use G[X ] = (X , EX ) to denote the subgraph
of G induced by X , where EX = {vi v j ∈ E(G) | vi , v j ∈ X }. A graph G is called a
k-partite graph if V (G) can be partitioned into k disjoint subsets V1, V2, . . . , Vk

such that each G[Vi] is an edgeless graph; such a partition (V1, V2, . . . , Vk) is
called a k-partition of G, and V1, V2, . . . , Vk its parts. In addition, if any two
vertices in distinct parts are adjacent in G, then G is said to be a complete
k-partite graph. As usual, we use Kn1,n2,...,nk

to denote the complete k-partite
graph with (|V1|, |V2|, . . . , |Vk|) = (n1, n2, . . . , nk).

Let G be a simple undirected graph with vertex set VG = {v1, v2, . . . , vn}
and edge set EG . The adjacency matrix A(G) of G is the symmetric ma-
trix (Ai j)n×n, where Ai j = A ji = 1 if vertices vi and v j are adjacent, and
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Ai j = A ji = 0 otherwise. We denote by λi(A(G)) the i-th largest eigenvalue of
A(G) (multiplicities counted). We use {λ1(A(G)),λ2(A(G)), . . . ,λn(A(G))} to
denote the spectrum of A(G) in nonincreasing order. The set of these eigenval-
ues is called the (adjacency) spectrum (or A-spectrum) of G. Let dG(vi) denote
the degree of the vertex vi . Denote by dG = Σvi∈VG

dG(vi) the degree sum of G.
The Laplacian matrix of G is the matrix L(G) = D(G)− A(G), where D(G),
called the degree matrix, is a diagonal matrix with as diagonal entries the de-
grees of the vertices of G. We denote by µi(L(G)) the i-th largest eigenvalue
of L(G) (multiplicities counted). We use {µ1(L(G)),µ2(L(G)), . . . ,µn(L(G))}
to denote the spectrum of L(G) in nonincreasing order. The set of these
eigenvalues is called the Laplacian spectrum of G.

A Hermitian matrix (sometimes called self-adjoint matrix) is a complex
square matrix that is equal to its own conjugate transpose, i.e., the (i, j)-th
element is equal to the complex conjugate of the ( j, i)-th element, for all
indices i and j. Hence, a matrix M = [mi j] is Hermitian if for all i, j, we
have mi j = m ji . We let Cn×n

Herm denote the set of n× n Hermitian matrices,
which is a subset of the set Cn×n of all n× n matrices with complex entries.
For each matrix M ∈ Cn×n, the spectral radius of M is the nonnegative real
number ρ(M) = max{|λi(M)| : 1 ≤ i ≤ n}, where λi(M) (1 ≤ i ≤ n) are
all eigenvalues of M . We use λmax(M) to denote the largest eigenvalue of
M . The set {λi(M) : 1 ≤ i ≤ n} is called the spectrum of M , and denoted by
spec(M). The spectral norm ‖M‖ is the largest singular value of M , i.e., we
have

‖M‖=
p

λmax(M∗M).

Here M∗ is the conjugate transpose of M . The Spectral Theorem for Hermitian
matrices states that all M ∈ Cn×n

Herm have n real eigenvalues (possibly with
repetitions) that correspond to an orthonormal set of eigenvectors.

When M ∈ Cn×n
Herm, we have ‖M‖ = max{|λi(M)| : 1 ≤ i ≤ n}. Then

ρ(M) = ‖M‖ = max{λmax(M),λmax(−M)}. We use Tr(M) (the trace of M)
to denote the sum of the eigenvalues of M .

We say that an event in a probability space holds asymptotically almost
surely (a.s. for short) if its probability goes to one as n tends to infinity. Given
a random graph model G (n, p), we are interested in what properties graphs
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G ∈ G (n, p) have with high probability. In particular, we say that a property
A holds in G (n, p) asymptotically almost surely (a.s. for short), if

lim
n→∞

Pr(G ∈ G (n, p) has the propertyA ) = 1,

or we say that almost all graphs G ∈ G (n, p) have property A , or we say G
almost surely (a.s.) satisfies the propertyA .

We shall use the following standard asymptotic notations throughout.
Let f (n), g(n) be two functions of n. Then f (n) = o(g(n)) means that
f (n)/g(n) → 0, as n → ∞; f (n) = O(g(n)) means that there exists a con-
stant C such that | f (n)| ≤ C g(n), as n → ∞; f (n) = Ω(g(n)) means that
there exists a constant C > 0 such that f (n)≥ C g(n).

We shall also use standard matrix notation throughout. In particular, the
n× n matrix with every entry equal to 1 will be denoted by Jn, or J if the
dimension is understood. The n× n identity matrix will be denoted by In, or
I if the dimension is understood.

As we will examine the spectra of random graphs, we will require an un-
derstanding of random matrices for several of our main results. A random
matrix M is a matrix in which each entry is a random variable. We write
E(M) to denote the coordinate-wise expectation of M , so E(M)i j = E(Mi j).
We define the variance matrix in an analogous way to one-dimensional ran-
dom variables, so Var(M) = E[(M − E(M))(M − E(M))∗]. In particular, for
a square Hermitian matrix M , Var(M) = E[(M −E(M))2].

Other notations and definitions that are not included here will appear at
the first place where they are needed in the thesis.

1.2 Random multipartite graphs

We use Kn;β1,...,βk
to denote the complete k-partite graph of order n, for which

the vertex set is the disjoint union of the nonempty parts V1, . . . , Vk (2 ≤ k =
k(n)≤ n) satisfying |Vi|= nβi = nβi(n), i = 1, 2, . . . , k. The random k-partite
graph model Gn;β1,...,βk

(p) consists of all random k-partite graphs in which the
edges are chosen independently with probability p from the set of edges of
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Kn;β1,...,βk
. We denote by An,k := A(Gn;β1,...,βk

(p)) = (x i j)n×n the adjacency
matrix of a random k-partite graph Gn;β1,...,βk

(p) ∈ Gn;β1,...,βk
(p), where x i j

is a random indicator variable for vi v j being an edge with probability p, for
i ∈ Vl and j ∈ V \ Vl , i 6= j, 1 ≤ l ≤ k. Then An,k satisfies the following
properties:

• x i j ’s, 1≤ i < j ≤ n, are independent random variables with x i j = x ji;

• Pr(x i j = 1) = 1 − Pr(x i j = 0) = p if i ∈ Vl and j ∈ V \ Vl , while
Pr(x i j = 0) = 1 if i ∈ Vl and j ∈ Vl , 1≤ l ≤ k.

Note that when k = n, then Gn;β1,...,βk
= Gn(p), that is, the random mul-

tipartite graph model can be viewed as a generalization of the Erdős-Rényi
model.

The energy of a graph G of order n is defined as the sum of the absolute
values of its eigenvalues. i.e.,

E (G) =
n
∑

i=1

|λi|.

This notion was first introduced by Gutman [68] in 1978. It is a graph pa-
rameter that arose from the Hückel molecular orbital approximation for the
total π-electron energy [121] from chemistry. Since then, graph energy has
been studied extensively by lots of mathematicians and chemists. For results
on the study of the energy of graphs, we refer the reader to the book [83]
and the more recent book [71].

In 2006, Gutman et al. [72] introduced a new matrix eL(G) for a graph G
of order n, i.e.,

eL(G) := L(G)−
n
∑

i=1

dG(vi)
n

In = L(G)− 2
n
∑

i=1

∑

i> j

Ai j

n
In.

Based on eL(G), they defined the Laplacian energy of G as

EL(G) =
n
∑

i=1

|µi − 2m/n|=
n
∑

i=1

|ξi|, (1.1)
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where m is the number of edges of G, µ1,µ2, . . . ,µn are the eigenvalues of
L(G), and ξ1,ξ2, . . . ,ξn are the eigenvalues of eL(G). Obviously, the Laplacian
energy can be regarded as a variant of the graph energy. Up until now, a lot
of results have been obtained on the Laplacian energy. The interested reader
is referred to [27, 40, 41, 56, 114, 126]. In [45], Du et al. have considered
the Laplacian energy of the Erdős-Rényi model Gn(p). They obtained a lower
bound and an upper bound for the Laplacian energy of Gn(p), and showed
that for almost all Gn(p) ∈ Gn(p), E (Gn(p)) is no more than EL(Gn(p)).

In 2009, Fath-Tabar et al. [51] first proposed the Laplacian Estrada index
of graphs. For a graph G of order n, its Laplacian Estrada index is defined as

LEE1(G) =
n
∑

i=1

eµi .

Independently, also in 2009, Li et al. [84] defined the Laplacian Estrada index
of G as

LEE2(G) =
n
∑

i=1

eµi−2m/n =
n
∑

i=1

eξi . (1.2)

Clearly, LEE1(G) = e2m/n LEE2(G). Thus, these two definitions of the Lapla-
cian Estrada index are essentially equivalent. In this thesis, we adopt Defini-
tion (1.2) and denote LEE2(G) simply by LEE(G) for convenience. For more
properties of this index, we refer the interested reader to [15, 42, 51, 77, 84,
127].

The von Neumann entropy was originally introduced by von Neumann
around 1927 for proving the irreversibility of quantum measurement pro-
cesses in quantum mechanics [115]. It is defined to be

S =−
∑

i

ζi log2 ζi ,

where ζi are the eigenvalues of the density matrix describing the quantum-
mechanical system (Normally, a density matrix is a positive semidefinite
matrix whose trace is equal to 1). Up until now, there are lots of stud-
ies on the von Neumann entropy, and we refer the interested reader to
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[5,6,9,85,96,99,100,104,110,115,125].

In [24], Braunstein et al. defined the density matrix of a graph G as

PG :=
1

dG
L(G) =

1

Tr(D(G))
L(G),

where dG =
∑

vi∈VG
dG(vi) = Tr(D(G)) is the degree sum of G, and Tr(D(G)) is

the trace of D(G). Suppose that λ1 ≥ λ2 ≥ · · · ≥ λn = 0 are the eigenvalues
of PG . Then

S(G) :=−
n
∑

i=1

λi log2λi ,

is called the von Neumann entropy of the graph G. By convention, we define
0 log2 0 = 0. It is known that the von Neumann entropy can be interpreted
as a measure of the regularity of graphs [101], and also that it can be used
as a measure of the graph complexity [73].

Up until now, lots of results on the von Neumann entropy of a graph have
been given. For example, Braunstein et al. [24] proved that, for a graph G
on n vertices, 0 ≤ S(G) ≤ log2(n− 1), with the left equality holding if and
only if G is a graph with only one edge, and the right equality holding if and
only if G is the complete graph Kn. In [102], Passerini and Severini showed
that the von Neumann entropy of regular graphs with n vertices tends to
log2(n−1) as n tends to∞. More interestingly, in [47], Du et al. considered
the von Neumann entropy of the Erdős-Rényi model Gn(p). They proved
that, for almost all Gn(p) ∈ Gn(p), almost surely S(Gn(p)) = (1+o(1)) log2 n,
independently of p.

In Chapter 2, we study the Laplacian energy, the Laplacian Estrada in-
dex and the von Neumann entropy for the random k-partite graph model
Gn;β1,...,βk

(p). In particular, we establish asymptotic lower and upper bounds
for EL(Gn;β1,...,βk

(p)), LEE(Gn;β1,...,βk
(p)) and S(Gn;β1,...,βk

), respectively, for
almost all Gn;β1,...,βk

(p) ∈ Gn;β1,...,βk
(p), by analyzing the limiting behaviour

of the spectra of random symmetric matrices.
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1.3 Random mixed graphs

A graph is called a mixed graph if it contains both directed and undirected
edges. We use G = (V (G), E0(G), E1(G)) to denote a mixed graph with a set
V (G) of vertices, a set E0(G) of (undirected) edges, and a set E1(G) of arcs
(directed edges). We define the underlying graph of G, denoted by Γ(G), as
the graph with vertex set V (Γ(G)) = V (G), and edge set

E(Γ(G)) = {vi v j | vi v j ∈ E0(G) or (vi , v j) ∈ E1(G) or (v j , vi) ∈ E1(G)}.

We adopt the terminology and notation of Liu and Li in [88], and define
the Hermitian adjacency matrix of a mixed graph G of order n to be the n× n
matrix H(G) = (hi j)n×n, where

hi j =















1, if vi v j ∈ E0(G);
i, if (vi , v j) ∈ E1(G) and (v j , vi) /∈ E1(G);
−i, if (vi , v j) /∈ E1(G) and (v j , vi) ∈ E1(G);
0, otherwise.

Here, i =
p
−1. This matrix, that is indeed Hermitian, as one easily sees,

was also introduced independently by Guo and Mohar in [67]. We denote
by λi(H(G)) the i-th largest eigenvalue of H(G) (multiplicities counted). We
use {λ1(H(G)), . . . ,λn(H(G))} to denote the spectrum of H(G) in nonincreas-
ing order. The set of these eigenvalues is called the Hermitian adjacency
spectrum (or H-spectrum) of G. Let V (G) = {v1, v2, . . . , vn}, and let D(G) =
diag(d1, d2, . . . , dn) be a diagonal matrix, in which di is the degree of the ver-
tex vi in Γ(G). Then the matrix L(G) = D(G)− H(G) is called the Hermitian
Laplacian matrix of G, and the matrix L (G) = I − D(G)−

1
2 H(G)D(G)−

1
2 is

called the normalized Hermitian Laplacian matrix of G. Here I is the n× n
identity matrix. We denote by λi(L (G)) the i-th largest eigenvalue of L (G)
(multiplicities counted). We use {λ1(L (G)), . . . ,λn(L (G))} to denote the
spectrum of L (G) in nonincreasing order. The set of these eigenvalues is
called the normalized Hermitian Laplacian spectrum of G.

If we regard (replace) each edge vi v j ∈ E0(G) in G = (V (G), E0(G), E1(G))
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as (by) two oppositely directed arcs (vi , v j) and (v j , vi), then G is a directed
graph. Throughout the thesis, we regard mixed graphs as directed graphs, in
the above sense.

Next, we give the definition of a general random mixed graph bGn(pi j). Let
Kn be a complete graph on n vertices. The complete directed graph DKn is
the graph obtained from Kn by replacing each edge of Kn by two oppositely
directed arcs. Let pi j be a function of n such that 0 < pi j < 1 (i 6= j). We
always assume that pii = 0 for all indices i. The random mixed graph model
bGn(pi j) consists of all random mixed graphs bGn(pi j) in which each arc (vi , v j)

with i 6= j is chosen randomly and independently, with probability pi j from
the set of arcs of DKn, where we let the vertex set be {v1, v2, . . . , vn}. Here
the probabilities pi j for different arcs are not assumed to be equal, that is,
bGn(pi j) is an arc-independent random mixed graph of order n. Then the
Hermitian adjacency matrix of bGn(pi j), denoted by H(bGn(pi j)) = (hi j) (or Hn,
for brevity), satisfies that:

• Hn is a random Hermitian matrix, with hii = 0 for 1≤ i ≤ n;

• the upper-triangular entries hi j , 1≤ i < j ≤ n are independent random
variables, which take value 1 with probability pi j p ji , i with probability
pi j(1 − p ji), −i with probability (1 − pi j)p ji , and 0 with probability
(1− pi j)(1− p ji).

1.3.1 The semicircle law for bGn(p)

Let {Mn}∞n=1 be a sequence of n × n random Hermitian matrices. Suppose
that λ1(Mn),λ2(Mn), . . . ,λn(Mn) are the eigenvalues of Mn. The empirical
spectral distribution (ESD) of Mn is defined as

F Mn(x) =
1

n
#{λi(Mn) | λi(Mn)≤ x , i = 1, 2, . . . , n},

where #{·} is the cardinality of the set. The distribution to which the ESD of
Mn converges as n → ∞ is called the limiting spectral distribution (LSD) of
{Mn}∞n=1.
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The ESD of a random Hermitian matrix has a very complicated form
when the order of the matrix is large. In particular, it seems very difficult
to characterize the LSD of an arbitrary given sequence of random Hermitian
matrices. A pioneering work on the spectral distribution of random Hermi-
tian matrices [12,93] we owe to Wigner, is now known as Wigner’s semicircle
law [119, 120]. Wigner’s semicircle law characterizes the LSD of a certain
type of random Hermitian matrices. This type of random Hermitian matrices
is now usually called Wigner matrices, denoted by Xn = (x i j)n×n, satisfying
that

• Xn is an n× n random Hermitian matrix;

• the upper-triangular entries x i j , 1 ≤ i < j ≤ n, are i.i.d. complex
random variables with zero mean and unit variance;

• the diagonal entries x ii , 1 ≤ i ≤ n, are i.i.d. real random variables,
independent of the upper-triangular entries, with zero mean; and

• for each positive integer k, max
¦

E(|x11|k),E(|x12|k)
©

<∞.

We state Wigner’s semicircle law as follows.

Theorem 1.1. ( [120]) Let {Xn}∞n=1 be a sequence of Wigner matrices. Then
the ESD of n−1/2Xn converges to the standard semicircle distribution whose
density is given by

φ(x) :=

(

1
2π

p

4− x2, for |x | ≤ 2,
0, for |x |> 2.

Wigner’s semicircle law has been generalized to more general random
matrices by lots of researchers, including Arnold [7, 8], Grenander [63],
Bai and Yin [10–14, 122], Geman [58], Girko [60–62], Loève [89], and
others. More interestingly, it was generalized to random graphs in recent
years. Adopting the classical random graphs based on the Erdős-Rényi ran-
dom graph model Gn(p), Füredi and Komlós [57] proved that the spectrum
of the adjacency matrix follows Wigner’s semicircle law. Ding et al. [43]
considered the spectral distributions of adjacency and Laplacian matrices of
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random graphs; Du et al. [45, 85] considered the spectral distributions of
adjacency and Laplacian matrices of the Erdős-Rényi model, and the spectral
distribution of adjacency matrices of random multipartite graphs; and Chen
et al. [29] considered the spectral distribution of skew adjacency matrices of
random oriented graphs, and the spectral distribution of adjacency matrices
of random regular oriented graphs. Jiang [79] studied the spectral proper-
ties of the Laplacian matrices, and the normalized Laplacian matrices of the
Erdős-Rényi random graph Gn(pn) for large n. Under the dilute case, that is,
with pn ∈ (0,1) and npn→∞, Jiang proved that the empirical distribution of
the eigenvalues of the Laplacian matrix converges to a deterministic distribu-
tion, which is the free convolution of the semicircle law and standard normal
distribution N(0, 1). However, for its normalized version, Jiang proved that
the empirical distribution converges to the semicircle law.

Let λ1(G),λ2(G), . . . ,λn(G) be the eigenvalues of the Hermitian adja-
cency matrix of a mixed graph G. The Hermitian energy of G was first defined
by Liu et al. [88] in 2015 as

EH(G) =
n
∑

i=1

|λi(G)|,

which can be regarded as a variant similar to the graph energy [83, 85]. Up
until now, various variants on the graph energy of random graphs have been
studied, such as the Laplacian energy [45,75], the signless Laplacian energy
[46], the incidence energy [46], and the distance energy [46]. In [29], Chen
et al. estimated the skew energy of random oriented graphs. Their results
were obtained depending on the LSD of random complex Hermitian matrices.

In Chapter 3 and 5, we respectively characterize the limiting spectral dis-
tribution of the Hermitian adjacency matrices and the normalized Hermitian
Laplacian matrices of random mixed graphs bGn(pi j), where pi j = p = p(n)
for any 1 ≤ i, j ≤ n and 0 for i = j, for some p ∈ (0, 1). We denote this
graph by bGn(p). We prove that the empirical distribution of the eigenvalues
of the Hermitian adjacency matrix converges to Wigner’s semicircle law, and
also that the empirical distribution of the normalized Hermitian Laplacian
matrix converges to Wigner’s semicircle law. As an application of the LSD
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of the Hermitian adjacency matrices, we estimate the Hermitian energy of a
random mixed graph.

1.3.2 The spectrum of Hn for bGn(p)

The field of spectral graph theory is dedicated to the properties of graph
eigenvalues and their applications. Questions about spectra are very impor-
tant in graph theory, as many important parameters of graphs can be charac-
terized by their spectra, largest eigenvalues and spectral gaps.

Given a graph G of order n, let λ1(A), . . . ,λn(A) be the eigenvalues of the
adjacency matrix A of G in nonincreasing order. Adopting the Erdős-Rényi
random graph model Gn(p), Füredi and Komlós [57] showed that asymp-
totically almost surely λ1(A) = (1 + o(1))np and max{λ2(A),−λn−1(A)} ≤
(2+ o(1))

p

np(1− p) provided np(1− p) � ln6 n. These results were ex-
tended to sparse random graphs [52, 80] and general random symmetric
matrices [43,57].

In Chapter 4, we extend these studies to random mixed graphs. Since
we only characterize the limiting spectral distribution of the Hermitian ad-
jacency matrices of random mixed graphs in Chapter 3, the result does not
describe the behaviour of the largest eigenvalues of the Hermitian adjacency
matrices. The purpose of Chapter 4 is to study the spectrum of the Hermitian
adjacency matrix of random mixed graphs.

The k-th spectral moment of a graph G of order n with (not necessarily
distinct) eigenvalues λ1(G),λ2(G), . . . ,λn(G) is defined as

sk(G) =
n
∑

i=1

λk
i (G),

where k ≥ 0 is an integer. Spectral moments are related to many combina-
torial properties of graphs. For example, the 4th spectral moment was used
in [105] to give an upper bound on the energy of a bipartite graph. The
spectral moment is an important algebraic invariant which has found appli-
cations in networks. In [28], Chen et al. gave an estimate for the spectral
moment of random graphs.
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As an application of the asymptotic behaviour of the spectrum of the
Hermitian adjacency matrix, we estimate the spectral moments of random
mixed graphs.

1.3.3 The spectra of Hn and Ln for bGn(pi j)

Spectra of the adjacency matrix and the normalized Laplacian matrix of
graphs have many applications in graph theory. For example, the spectrum of
the adjacency matrix of a graph is related to its connectivity and the number
of occurrences of specific subgraphs, and also to its chromatic number and
its independence number. The spectrum of the normalized Laplacian matrix
is related to diffusion on graphs, random walks on graphs, and the Cheeger
constant. For more details on these notions, and for more applications of
spectra of the adjacency matrix and the normalized Laplacian matrix, we
refer the interested reader to two monographs [31,38].

Also for random graphs, spectra of their adjacency matrices and their
normalized Laplacian matrices are well-studied (See, e.g., [3, 32, 33, 35, 36,
43, 52, 55, 57]). We next present a brief account of some of the results that
were obtained for random graphs. We refrain from giving an exhaustive
overview, and we refer the reader to the sources for more background, and
for terminology and notation.

Tropp [113] determined probability inequalities for sums of independent
random self-adjoint matrices. Alon, Krivelevich, and Vu [3] studied the con-
centration of the s-th largest eigenvalue of a random symmetric matrix with
independent random entries of absolute value at most one. Friedman et
al. [53–55] proved that the second largest eigenvalue (in absolute value) of
random d-regular graphs is almost surely (2+ o(1))

p
d − 1 for any d ≥ 4.

Chung, Lu, and Vu [33] studied spectrum of the adjacency matrix of ran-
dom power law graphs, and spectrum of the normalized Laplacian matrix
of random graphs with given expected degrees. Their results on random
graphs with given expected degree sequences were supplemented by Coja-
Oghlan et al. [35, 36] for sparse random graphs. Lu and Peng [91, 92] stud-
ied spectra of the adjacency matrix and the normalized Laplacian matrix of
edge-independent random graphs, as well as spectrum of the normalized
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Laplacian matrix of random hypergraphs. Oliveira [98] considered the prob-
lem of approximating the spectra of the adjacency matrix and the normalized
Laplacian matrix of random graphs. His results were improved by Chung and
Radcliffe [34].

In Chapter 6, we extend these studies to general random mixed graphs.
We study the spectra of the Hermitian adjacency matrix and the normalized
Hermitian Laplacian matrix of general random mixed graphs.

1.4 Random oriented graphs

Let G be a simple undirected graph with vertex set V (G) = {v1, v2, . . . , vn}
and edge set E(G). Let D(G) = diag(d1, d2, . . . , dn) be a diagonal matrix
where di is the degree of vertex vi in G.

In 1975, Randić [106] first proposed a molecular structure descriptor
which is defined as the sum of 1p

di d j
over all (unordered) edges vi v j of the

underlying (molecular) graph G, i.e., R = R(G) =
∑

vi v j∈E(G)
1p
di d j

. Nowa-

days, R is referred to as the Randíc index. In 1998, Bollobás and Erdős [20]
generalized this index by defining Rα = Rα(G) =

∑

vi v j∈E(G)(did j)α, and
called it the general Randíc index. The (general) Randić index has many
chemical applications, and became a popular topic of research in mathemat-
ics and mathematical chemistry. For more details, see [23,81,82,107,108].

Gutman et al. [70] pointed out that for analyzing the Randić index it is
useful to associate a matrix of order n with the graph G, named the Randíc
matrix R(G), whose (i, j)-entry is defined as

Ri j =







0, if i = j;
1p
di d j

, if the vertices vi and v j of G are adjacent;

0, if the vertices vi and v j of G are not adjacent.

Let Gσ = (V (G), E(Gσ)) be an oriented graph of G with an orientation
σ, which assigns a direction to each edge of G. So, Gσ becomes a directed
graph with arc set E(Gσ). In this case, G is called the underlying graph of
Gσ. The skew adjacency matrix of Gσ is the n×n real skew symmetric matrix
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S(Gσ) = (si j), where si j = 1 = −s ji if (vi , v j) ∈ E(Gσ), and si j = s ji = 0
otherwise.

In [66], Gu, Huang and Li defined the skew Randíc matrix RS = RS(Gσ)
of Gσ, whose (i, j)-th entry is

(Rs)i j =







1p
di d j

, if (vi , v j) ∈ E(Gσ) ;

− 1p
di d j

, if (v j , vi) ∈ E(Gσ);

0, otherwise.

If G does not possess isolated vertices, then it is easy to check that RS(Gσ) =
D(G)−

1
2 S(Gσ)D(G)−

1
2 .

The skew spectrum of Gσ is defined as the spectrum of S(Gσ). As the
matrix S(Gσ) is real and skew symmetric, the spectrum of S(Gσ) consists
of only purely imaginary eigenvalues or 0. The skew spectral radius of Gσ,
denoted by ρS(Gσ), is defined to be the spectral radius of S(Gσ). The skew
Randíc spectrum of Gσ is defined as the spectrum of RS(Gσ). The skew Randíc
spectral radius of Gσ, denoted by ρRS

(Gσ), is defined to be the spectral radius
of RS(Gσ).

We next give the definition of a random oriented graph Gσn (pi j). Let pi j

be a function of n such that 0 < pi j < 1. A random oriented graph on n
vertices is obtained by drawing an edge between each pair of vertices vi and
v j , randomly and independently, with probability pi j and then orienting the
existing edge vi v j , randomly and independently, with probability 1/2. Here
pi j = p ji and {pi j}1≤i< j≤n are not assumed to be equal. The random oriented
graph model Gσn (pi j) consists of all random oriented graphs Gσn (pi j). Now,
the skew adjacency matrix S(Gσn (pi j)) = (si j) (or Sn, for brevity) of Gσn (pi j)
is a random matrix such that

• Sn is skew symmetric, i.e., si j = −s ji for 1 ≤ i < j ≤ n, and sii = 0 for
1≤ i ≤ n;

• the upper-triangular entries si j , 1 ≤ i < j ≤ n are i.i.d. random vari-
ables such that si j = 1 with probability

pi j

2
, si j = −1 with probability

pi j

2
, and si j = 0 with probability 1− pi j .
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In Chapter 7, we study the spectra of the skew adjacency matrix and
the skew Randić matrix of random oriented graphs. In particular, we apply a
probability inequality for sums of independent random matrices to give upper
bounds for the skew spectral radius and the skew Randić spectral radius of
random oriented graphs.





Chapter 2

The Laplacian energy,
Laplacian Estrada index and
von Neumann entropy of
random multipartite graphs

In this chapter, we study the Laplacian energy, the Laplacian Estrada index
and the von Neumann entropy of random multipartite graphs, using the k-
partite graph model Gn;β1,...,βk

(p). We establish asymptotic lower and upper
bounds for EL(Gn;β1,...,βk

(p)), LEE(Gn;β1,...,βk
(p)) and S(Gn;β1,...,βk

), respec-
tively, for almost all Gn;β1,...,βk

(p) ∈ Gn;β1,...,βk
(p), by analyzing the limiting

behaviour of the spectra of random symmetric matrices.

2.1 The Laplacian energy

In this section, we establish a lower bound and an upper bound for the Lapla-
cian energy of random multipartite graphs Gn;β1,...,βk

(p) ∈ Gn;β1,...,βk
(p). Be-

fore proceeding, we give some additional essential definitions and present
some auxiliary lemmas.

21
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Chapter 2. The Laplacian energy, Laplacian Estrada index and von

Neumann entropy of random multipartite graphs

Let M be a real symmetric matrix. Denote by E (M) the sum of the ab-
solute values of the eigenvalues of M . We are going to use the following
inequality.

Lemma 2.1 (Fan [50]). Let X , Y , and Z be real symmetric matrices of order n
such that X + Y = Z. Then

E (X ) + E (Y )≥ E (Z).

We will also use the following result in our proof.

Lemma 2.2 (Shiryaev [112]). Let X1, X2, . . . be an infinite sequence of i.i.d.
random variables with expected value E(X1) = E(X2) = · · · = µ, and E|X j| <
∞. Then

1

n
(X1+ X2+ · · ·+ Xn)→ µ a.s.

In [45], Du et al. established the following asymptotic lower and upper
bounds for the Laplacian energy of Erdős-Rényi random graphs.

Lemma 2.3 (Du et al. [45]). Almost every random graph Gn(p) satisfies

�

2
p

2

3

p

p(1− p) + o(1)

�

n3/2 ≤ EL(Gn(p))≤
�p

2p− p2+ o(1)
�

n3/2.

We are going to extend this result to random multipartite graphs. Let
Gn;β1,...,βk

(p) ∈ Gn;β1,...,βk
(p) with β1 ≥ β2 ≥ · · · ≥ βk. Note that

∑k
l=1 βl = 1.

Then, we have βk =
∑k

l=1 βkβl ≤
∑k

l=1 β
2
l ≤

∑k
l=1 β1βl = β1. This implies

that we can always find an integer r (1 ≤ r ≤ k − 1) such that βr+1 ≤
∑k

l=1 β
2
l ≤ βr . We use this in our first main result, as follows.

Theorem 2.4. Let Gn;β1,...,βk
(p) ∈ Gn;β1,...,βk

(p) with β1 ≥ β2 ≥ · · · ≥ βk and

r (1 ≤ r ≤ k− 1) be an integer such that βr+1 ≤
∑k

l=1 β
2
l ≤ βr . Then almost

surely, EL(Gn;β1,...,βk
(p)) is between

2(p+ o(1))n2
�
∑r

l=1 β
2
l − βr

∑r
l=1 βl

�

−
h
p

2p− p2
�

1+
∑k

i=1 β
3/2
i

�

+ o(1)
i

n3/2 and

2(p+ o(1))n2
�
∑r

l=1 β
2
l − βr+1

∑r
l=1 βl

�

+
h
p

2p− p2
�

1+
∑k

i=1 β
3/2
i

�

+ o(1)
i

n3/2.

Proof. Note that the parts V1, . . . , Vk of the random k-partite graph Gn;β1,...,βk
(p)

satisfy |Vi|= nβi , i = 1,2, . . . , k. Then the adjacency matrix An,k of Gn;β1,...,βk
(p)
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satisfies
An,k + A′n,k = An,

where

A′n,k =















Anβ1

Anβ2

. . .

Anβk















n×n,

and An := A(Gn(p)), Anβi
:= A(Gnβi

(p)), i = 1,2, . . . , k.

The degree matrix Dn,k := D(Gn;β1,...,βk
(p)) of Gn;β1,...,βk

(p) satisfies

Dn,k + D′n,k = Dn,

where

D′n,k =















Dnβ1

Dnβ2

. . .

Dnβk















n×n,

and Dn := D(Gn(p)), Dnβi
:= D(Gnβi

(p)), i = 1, 2, . . . , k.

The Laplacian matrix Ln,k := L(Gn;β1,...,βk
(p)) of Gn;β1,...,βk

(p) satisfies

Ln,k + L′n,k = Ln,

where

L′n,k =















Lnβ1

Lnβ2

. . .

Lnβk















n×n,

and Ln := L(Gn(p)), Lnβi
:= L(Gnβi

(p)), i = 1, 2, . . . , k.

Note that Ln,k = Ln− L′n,k, An,k = An− A′n,k, and

fLn = Ln−
n
∑

i=1

dGn(p)(vi)

n
In = Ln− 2

n
∑

i=1

∑

i> j

(An)i j

n
In.
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Then

gLn,k

=Ln,k − 2
n
∑

i=1

∑

i> j

(An,k)i j

n
In

=Ln− L′n,k − 2
n
∑

i=1

∑

i> j

(An− A′n,k)i j

n
In

=Ln− 2
n
∑

i=1

∑

i> j

(An)i j

n
In− L′n,k +

2

n

k
∑

l=1

nβl
∑

i=1

∑

i> j

(Anβl
)i j In

=fLn− Bn− Cn, (2.1)

where

Bn =











ÞLnβ1

. . .
ÞLnβk











n×n

with

ÞLnβl
= Lnβl

− 2

∑nβl
i=1

∑

i> j(Anβl
)i j

nβl
Inβl

, for 1≤ l ≤ k,

and

Cn =











Cnβ1

. . .

Cnβk











n×n

with

Cnβl
=






2

∑nβl
i=1

∑

i> j(Anβl
)i j

nβl
−

2

n

k
∑

l=1

nβl
∑

i=1

∑

i> j

(Anβl
)i j






Inβl

, for 1≤ l ≤ k.

By (2.1) and Lemma 2.1, we have

|E (fLn− Bn)−E (Cn)| ≤ E (gLn,k)≤ E (fLn) + E (Bn) + E (Cn). (2.2)
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Note that

EL(Gn(p)) =
n
∑

i=1

�

�

�

�

µ(Ln)−
Tr(Dn)

n

�

�

�

�

=
n
∑

i=1

�

�ξi(fLn)
�

�= E (fLn),

and

EL(Gn,k(p)) =
n
∑

i=1

�

�

�

�

µi(Ln,k)−
Tr(Dn,k)

n

�

�

�

�

=
n
∑

i=1

�

�

�ξi(gLn,k)
�

�

�= E (gLn,k).

Then

E (Bn) = E (ÞLnβ1
) + · · ·+ E (ÞLnβk

) = EL(Gnβ1
(p)) + · · ·+ EL(Gnβk

(p)).

Thus, Lemma 2.3 implies that

E (fLn)−E (Bn)

=EL(Gn(p))− [EL(Gnβ1
(p)) + · · ·+ EL(Gnβk

(p))]

≥
�

2
p

2

3

p

p(1− p) + o(1)

�

n3/2−
�p

2p− p2+ o(1)
�

n3/2
k
∑

i=1

β
3/2
i

=

 

2
p

2

3

p

p(1− p)−
p

2p− p2
k
∑

i=1

β
3/2
i + o(1)

!

n3/2 a.s., (2.3)

and

E (fLn) + E (Bn)

=EL(Gn(p)) + [EL(Gnβ1
(p)) + · · ·+ EL(Gnβk

(p))]

≤
�p

2p− p2+ o(1)
�

n3/2+
�p

2p− p2+ o(1)
�

n3/2
k
∑

i=1

β
3/2
i

=
�

p

2p− p2

�

1+
k
∑

i=1

β
3/2
i

�

+ o(1)
�

n3/2 a.s. (2.4)

By Lemma 2.1, we have

E (fLn)−E (Bn)≤ E (fLn− Bn)≤ E (fLn) + E (Bn). (2.5)
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Next, by estimating E (Cn), we compare E (fLn−Bn) and E (Cn). Since (An)i j(i >
j) are i.i.d. with mean p and variance p(1− p), it follows from Lemma 2.2
that, with probability 1,

lim
n→∞

2
∑n

i=1

∑

i> j(An)i j

n(n− 1)
= p.

Thus, we have

n
∑

i=1

∑

i> j

(An)i j = (p/2+ o(1))n2 a.s. (2.6)

Similarly, for l = 1, 2, . . . , k,

nβl
∑

i=1

∑

i> j

(Anβl
)i j = (p/2+ o(1))n2β2

l a.s. (2.7)

Since β1 ≥ · · · ≥ βk and βr+1 ≤
∑k

l=1 β
2
l ≤ βr , we have

E (Cn) =
k
∑

l=1

�

�

�

�

2

∑nβl
i=1

∑

i> j(Anβl
)i j

nβl
−

2

n

k
∑

l=1

nβl
∑

i=1

∑

i> j

(Anβl
)i j

�

�

�

�

· nβl

=
k
∑

l=1

�

�

�

�

(p+ o(1))nβl − (p+ o(1))n
k
∑

i=1

β2
i

�

�

�

�

· nβl

= (p+ o(1))n2
k
∑

l=1

�

�

�

�

βl −
k
∑

i=1

β2
i

�

�

�

�

· βl

= 2(p+ o(1))n2
� r
∑

l=1

β2
l −

k
∑

l=1

β2
l ·

r
∑

l=1

βl

�

a.s.

Note that
r
∑

l=1

β2
l −

k
∑

l=1

β2
l ·

r
∑

l=1

βl ≥
r
∑

l=1

β2
l − βr ·

r
∑

l=1

βl ≥ 0.

Hence

E (Cn)≥ E (fLn− Bn). (2.8)
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Since βr+1 ≤
∑k

l=1 β
2
l ≤ βr , we have

2(p+ o(1))n2

 

r
∑

l=1

β2
l − βr

r
∑

l=1

βl

!

≤E (Cn)

≤2(p+ o(1))n2

 

r
∑

l=1

β2
l − βr+1

r
∑

l=1

βl

!

. (2.9)

By (2.2), (2.5) and (2.8), we have

E (Cn)−
�

E (fLn) + E (Bn)
�

≤E (Cn)−E (fLn− Bn)

≤E (gLn,k)

≤E (Cn) + E (fLn) + E (Bn).

Then by (2.4) and (2.9), we have

2(p+ o(1))n2

 

r
∑

l=1

β2
l − βr

r
∑

l=1

βl

!

−





p

2p− p2

 

1+
k
∑

i=1

β
3/2
i

!

+ o(1)



n3/2

≤E (gLn,k)

≤2(p+ o(1))n2

 

r
∑

l=1

β2
l − βr+1

r
∑

l=1

βl

!

+





p

2p− p2

 

1+
k
∑

i=1

β
3/2
i

!

+ o(1)



n3/2 a.s.

This completes the proof.

Next, we consider the special case in which each part of Gn;β1,...,βk
(p) ∈

Gn;β1,...,βk
(p) has the same size as n tends to infinity.
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Theorem 2.5. Let Gn;β1,...,βk
(p) ∈ Gn;β1,...,βk

(p) satisfy lim
n→∞

βi

β j
= 1, 1 ≤ i, j ≤

k. Then almost surely





2
p

2p(1− p)

3
−

r

2p− p2

k
+ o(1)



n3/2

≤EL(Gn;β1,...,βk
(p))

≤
�

p

2p− p2

�

1+
1
p

k

�

+ o(1)
�

n3/2.

Proof. We assume that lim
n→∞

βi

β j
= 1, for 1 ≤ i, j ≤ k. Using (2.7), for l, t =

1, . . . , k, we obtain

∑nβl
i=1

∑

i> j(Anβl
)i j

nβl
=

∑nβt
i=1

∑

i> j(Anβt
)i j

nβt
=

∑k
l=1

∑nβl
i=1

∑

i> j(Anβl
)i j

n
a.s.

Then
Cn = 0 a.s.

So, by (2.1), we have
gLn,k =fLn− Bn a.s.

According to Lemma 2.1, we have

E (fLn)−E (Bn)≤ E (gLn,k)≤ E (fLn) + E (Bn). (2.10)

Note that lim
n→∞

βi

β j
= 1 implies that lim

n→∞
βi =

1
k
, for 1≤ i ≤ k. From (2.3) and

(2.4), we have

E (fLn)−E (Bn)

≥

 

2
p

2

3

p

p(1− p)−
p

2p− p2
k
∑

i=1

β
3/2
i + o(1)

!

n3/2

=





2
p

2

3

p

p(1− p)−

r

2p− p2

k
+ o(1)



n3/2 a.s., (2.11)
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and

E (fLn) + E (Bn)≤





p

2p− p2

 

1+
k
∑

i=1

β
3/2
i

!

+ o(1)



n3/2

=
�

p

2p− p2

�

1+
1
p

k

�

+ o(1)
�

n3/2 a.s. (2.12)

Then (2.10), (2.11) and (2.12) imply that





2
p

2p(1− p)

3
−

r

2p− p2

k
+ o(1)



n3/2

≤EL(Gn;β1,...,βk
(p))

≤
�

p

2p− p2

�

1+
1
p

k

�

+ o(1)
�

n3/2.

This completes the proof.

2.2 The Laplacian Estrada index

In this section, we will establish a lower bound and an upper bound for
LEE(Gn;β1,...,βk

(p)) for almost all Gn;β1,...,βk
(p) ∈ Gn;β1,...,βk

(p). Recall that
we use An,k, Ln,k and gLn,k to denote A(Gn;β1,...,βk

(p)), L(Gn;β1,...,βk
(p)) and

eL(Gn;β1,...,µk
(p)), respectively.

We need the following two lemmas for the proof of our result.

Lemma 2.6 (Bryc et al. [26]). Let X be a symmetric random matrix satis-
fying that the entries X i j , 1 ≤ i < j ≤ n, are a collection of i.i.d. random
variables with E(X12) = 0, Var(X12) = 1 and E(X 4

12) < ∞. Define T :=

diag
�

∑

i 6= j X i j

�

1≤i≤n
, and let M = T − X , where diag{·} denotes a diagonal

matrix. Denote by ‖M‖ the spectral radius of M. Then

lim
n→∞

‖M‖
p

2n ln n
= 1 a.s.

Lemma 2.7 (Weyl [118]). Let X , Y and Z be n× n Hermitian matrices such
that X = Y + Z. Suppose that X , Y, Z have eigenvalues, respectively, λ1(X ) ≥
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· · · ≥ λn(X ), λ1(Y ) ≥ · · · ≥ λn(Y ), λ1(Z) ≥ · · · ≥ λn(Z). Then for i =
1,2, . . . , n the following inequalities hold:

λi(Y ) +λn(Z)≤ λi(X )≤ λi(Y ) +λ1(Z).

Theorem 2.8. Let Gn;β1,...,βk
(p) ∈ Gn;β1,...,βk

(p). Then almost surely

(n− 1+ e−np)e
np(
∑k

i=1 β
2
i −max

1≤i≤k
{βi})+o(1)n

≤LEE(Gn;β1,...,βk
(p))

≤(n− 1+ e−np)enp
∑k

i=1 β
2
i +o(1)n.

Proof. Define an auxiliary matrix

cLn := Ln− p(n− 1)In+ p(Jn− In) = [Dn− p(n− 1)In]− [An− p(Jn− In)],

where Jn is the all-ones matrix. Let

T =
1

p

p(1− p)
[Dn− p(n− 1)In]

and

X =
1

p

p(1− p)
[An− p(Jn− In)].

Then E(X12) = 0,Var(X12) = 1, and

E(X 4
12) =

1

p2(1− p)2
(p− 4p2+ 6p3− 3p4)<∞.

By Lemma 2.6, we have

lim
n→∞

‖cLn‖
p

2p(1− p)n ln n
= 1 a.s.

Then

lim
n→∞

‖cLn‖
n
= 0 a.s.,
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i.e.,
‖cLn‖= o(1)n a.s.

Let Qn := p(n − 1)In − p(Jn − In). Then cLn + Qn = Ln. Suppose that
Ln,cLn,Qn have eigenvalues, respectively, µ1(Ln) ≥ · · · ≥ µn(Ln), λ1(cLn) ≥
· · · ≥ λn(cLn), λ1(Qn)≥ · · · ≥ λn(Qn). It follows from Lemma 2.7 that

λi(Qn) +λn(cLn)≤ µi(Ln)≤ λi(Qn) +λ1(cLn), for i = 1, 2, . . . , n.

Notice that λi(Qn) = pn for i = 1,2, . . . , n− 1 and λn(Qn) = 0. We have

µi(Ln) = (p+ o(1))n a.s., for 1≤ i ≤ n− 1, (2.13)

and

µn(Ln) = o(1)n a.s. (2.14)

In the following, we first evaluate the eigenvalues of Ln,k according to the
spectral distribution of Ln and L′n,k.

Since Ln,k = Ln− L′n,k, Lemma 2.7 implies that for 1≤ i ≤ n,

µi(Ln) +µn(−L′n,k)≤ µi(Ln,k)≤ µi(Ln) +µ1(−L′n,k), (2.15)

where µn(−L′n,k) and µ1(−L′n,k) are the minimum and maximum eigenvalues
of −L′n,k, respectively. By (2.13), (2.14) and (2.15), we have

np(1− max
1≤i≤k

{βi}) + o(1)n≤ µi(Ln,k)≤ np+ o(1)n a.s., for 1≤ i ≤ n− 1,

(2.16)

and

−np max
1≤i≤k

{βi}+ o(1)n≤ µn(Ln,k)≤ o(1)n a.s. (2.17)

Now we consider the trace Tr(Dn,k) of Dn,k. Note that Tr(Dn,k) = 2
∑

i> j(An,k)i j .
Since (An)i j(i > j) are i.i.d. with mean p and variance p(1− p), according to



32
Chapter 2. The Laplacian energy, Laplacian Estrada index and von

Neumann entropy of random multipartite graphs

Lemma 2.2, we obtain that with probability 1,

lim
n→∞

∑

i> j(An)i j

n(n−1)
2

= p,

i.e.,
∑

i> j

(An)i j = (p/2+ o(1))n2 a.s.

Then

Tr(Dn) = (p+ o(1))n2 a.s. (2.18)

Similarly, for i = 1, . . . , k,

Tr(Dnβi
) = (p+ o(1))n2β2

i a.s.

Thus,

Tr(Dn,k)

=2
∑

i> j

(An,k)i j

=2
∑

i> j

(An− A′n,k)i j

=2
∑

i> j

(An)i j − 2
∑

i> j

(A′n,k)i j

=2
∑

n≥i> j≥1

(An)i j − 2







∑

nβ1≥i> j≥1

(Anβ1
)i j + · · ·+

∑

nβk≥i> j≥1

(Anβk
)i j







=(p+ o(1))n2−
�

(p+ o(1))(nβ1)
2+ · · ·+ (p+ o(1))(nβk)

2
�

=p

 

1−
k
∑

i=1

β2
i

!

n2+ o(1)n2 a.s. (2.19)

Note that Ln,k −
Tr(Dn,k)

n
In = gLn,k. Then µi(Ln,k) −

Tr(Dn,k)
n

= ξi(gLn,k), for
i = 1, . . . , n, where µi(Ln,k), ξi(gLn,k) are eigenvalues of Ln,k and gLn,k, respec-
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tively. By (2.16), (2.17) and (2.19), we have for 1≤ i ≤ n− 1,

np
� k
∑

i=1

β2
i − max

1≤i≤k
{βi}

�

+ o(1)n≤ ξi(gLn,k)≤ np
k
∑

i=1

β2
i + o(1)n a.s.,

(2.20)

and

np(
k
∑

i=1

β2
i − max

1≤i≤k
{βi} − 1) + o(1)n≤ ξn(gLn,k)≤ np(

k
∑

i=1

β2
i − 1) + o(1)n a.s.

(2.21)

Hence, we have

(n− 1)e
np(
∑k

i=1 β
2
i −max

1≤i≤k
{βi})+o(1)n

≤
n−1
∑

i=1

eξi(ÞLn,k) ≤ (n− 1)enp
∑k

i=1 β
2
i +o(1)n a.s.,

(2.22)

and

e
np(
∑k

i=1 β
2
i −max

1≤i≤k
{βi}−1)+o(1)n

≤ eξn(ÞLn,k) ≤ enp(
∑k

i=1 β
2
i −1)+o(1)n a.s. (2.23)

Then (2.22) and (2.23) imply that

LEE(Gn;µ1,...,µk
(p))

=
n
∑

i=1

eξi(ÞLn,k)

≥(n− 1)e
np(
∑k

i=1 β
2
i −max

1≤i≤k
{βi})+o(1)n

+ e
np(
∑k

i=1 β
2
i −max

1≤i≤k
{βi}−1)+o(1)n

=(n− 1+ e−np)e
np(
∑k

i=1 β
2
i −max

1≤i≤k
{βi})+o(1)n

a.s., (2.24)

and

LEE(Gn;β1,...,βk
(p))

≤(n− 1)enp
∑k

i=1 β
2
i +o(1)n+ enp(

∑k
i=1 β

2
i −1)+o(1)n
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=(n− 1+ e−np)enp
∑k

i=1 β
2
i +o(1)n a.s. (2.25)

This completes the proof.

Corollary 2.9. Let Gn;β1,...,βk
(p) ∈ Gn;β1,...,βk

(p). Then

LEE(Gn;β1,...,βk
(p)) = (n− 1+ e−np)eo(1)n a.s. (2.26)

if and only if max{β1, . . . ,βk}= o(1).

Proof. By (2.20), (2.21), (2.22) and (2.23), we have that (2.26) holds if and
only if

ξi(gLn,k) = o(1)n a.s., for 1≤ i ≤ n− 1, (2.27)

and

ξn(gLn,k) =−np+ o(1)n a.s. (2.28)

By (2.16), (2.17) and (2.19), we have that (2.27) and (2.28) hold if and only
if max{β1, . . . ,βk}= o(1).

Note that if k = n, then Gn;β1,...,βk
(p) = Gn(p), that is, βi =

1
n
, 1 ≤ i ≤ n.

Using Corollary 2.9, the following result is immediate.

Corollary 2.10. Let Gn(p) ∈ Gn(p) be a random graph. Then almost surely
LEE(Gn(p)) = (n− 1+ e−np)eo(1)n.

Next, we consider two specific families of random k-partite graphs. Let
Gn;β1,...,βk

(p) ∈ Gn;β1,...,βk
(p) satisfy lim

n→∞
max
1≤i≤k

{βi} > 0 and lim
n→∞

βi

β j
= 1. Then

Gn;β1,...,βk
(p) is a balanced k-partite graph. By Theorem 2.8, we have the

following result immediately.

Corollary 2.11. Let Gn;β1,...,βk
(p) ∈ Gn;β1,...,βk

(p) and suppose that Gn;β1,...,βk
(p)

satisfies lim
n→∞

max{β1,β2, . . . ,βk}> 0 and lim
n→∞

βi

β j
= 1. Then

(n− 1+ e−np)eo(1)n ≤ LEE(Gn;β1,...,βk
(p))≤ (n− 1+ e−np)e(p/k+o(1))n a.s.
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Let Gn;β1,...,βk
(p) ∈ Gn;β1,...,βk

(p) satisfy lim
n→∞

max
1≤i≤k

{βi}> 0, and there exist

βi and β j such that lim
n→∞

βi

β j
< 1. Then Gn;β1,...,βk

(p) is an unbalanced k-partite

graph. Since
∑k

i=1 βi = 1 and lim
n→∞

max
1≤i≤k

{βi} > 0, there exists at least one

βi = O(1) (Otherwise, if βi = o(1) for all 1≤ i ≤ k, then lim
n→∞

max
1≤i≤k

{βi}= 0, a

contradiction). Thus, |Vi|= nβi are of order O(n). Without loss of generality,
we can find an integer such that 1 ≤ r ≤ k, |V1|, . . . , |Vr | are of order O(n)
and |Vr+1|, . . . , |Vk| are of order o(n). By Theorem 2.8, we have the following
result readily.

Corollary 2.12. Let Gn;β1,...,βk
(p) ∈ Gn;β1,...,βk

(p) and suppose that Gn;β1,...,βk
(p)

satisfies lim
n→∞

max{β1,β2, . . . ,βk} > 0, and there exist βi and β j such that

lim
n→∞

βi

β j
< 1, that is, there exists an integer r ≥ 1 such that |V1|, . . . , |Vr | are

of order O(n) and |Vr+1|, . . . , |Vk| are of order o(n). Then

(n− 1+ e−np)e
np(
∑r

i=1 β
2
i −max

1≤i≤r
{βi})+o(1)n

≤LEE(Gn;β1,...,βk
(p))

≤(n− 1+ e−np)enp
∑r

i=1 β
2
i +o(1)n a.s.

2.3 The von Neumann entropy

In this section, we establish a lower and upper bound for S(Gn;β1,...,βk
) for

almost all Gn;β1,...,βk
(p) ∈ Gn;β1,...,βk

(p), by analyzing the limiting behaviour
of the spectra of random symmetric matrices. Our main result is stated as
follows.

Theorem 2.13. Let Gn;β1,...,βk
(p) ∈ Gn;β1,...,βk

(p) . Then almost surely

1+ o(1)

1−
k
∑

i=1
β2

i

log2

 

n

 

1−
k
∑

i=1

β2
i

!!

≤S(Gn;β1,...,βk
(p))
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≤
1− max

1≤i≤k
{βi}+ o(1)

1−
k
∑

i=1
β2

i

log2













n

�

1−
k
∑

i=1
β2

i

�

1− max
1≤i≤k

{βi}













,

independently of 0< p < 1.

Proof. By (2.16), (2.17) and (2.19), the eigenvalues of PGn,k
=

Ln,k

Tr(Dn,k)
sat-

isfy that, for 1≤ i ≤ n− 1,

p
�

1− max
1≤i≤k

{βi}
�

+ o(1)

p

�

1−
k
∑

i=1
β2

i

�

n+ o(1)n

≤ λi(PGn,k
)≤

p+ o(1)

p

�

1−
k
∑

i=1
β2

i

�

n+ o(1)n

a.s.,

(2.29)

and

−p max
1≤i≤k

{βi}+ o(1)

p

�

1−
k
∑

i=1
β2

i

�

n+ o(1)n

≤ λn(PGn,k
)≤

o(1)

p

�

1−
k
∑

i=1
β2

i

�

n+ o(1)n

a.s.

(2.30)

Then (2.29) and (2.30) imply that

S(Gn;β1,...,βk
(p))

≥−
n−1
∑

i=1













p+ o(1)

p

�

1−
k
∑

i=1
β2

i

�

n+ o(1)n

log2













p+ o(1)

p

�

1−
k
∑

i=1
β2

i

�

n+ o(1)n

























−
o(1)

p

�

1−
k
∑

i=1
β2

i

�

n+ o(1)n

log2













o(1)

p

�

1−
k
∑

i=1
β2

i

�

n+ o(1)n












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=
1+ o(1)

1−
k
∑

i=1
β2

i

log2

 

n

 

1−
k
∑

i=1

β2
i

!!

(2.31)

and

S(Gn;β1,...,βk
(p))

≤−
n−1
∑

i=1













p
�

1− max
1≤i≤k

{βi}
�

+ o(1)

p

�

1−
k
∑

i=1
β2

i

�

n+ o(1)n

log2













p
�

1− max
1≤i≤k

{βi}
�

+ o(1)

p

�

1−
k
∑

i=1
β2

i

�

n+ o(1)n

























−
−p max

1≤i≤k
{βi}+ o(1)

p

�

1−
k
∑

i=1
β2

i

�

n+ o(1)n

log2













−p max
1≤i≤k

{βi}+ o(1)

p

�

1−
k
∑

i=1
β2

i

�

n+ o(1)n













=−
1− max

1≤i≤k
{βi}+ o(1)

1−
k
∑

i=1
β2

i

log2













1− max
1≤i≤k

{βi}

n

�

1−
k
∑

i=1
β2

i

�













=
1− max

1≤i≤k
{βi}+ o(1)

1−
k
∑

i=1
β2

i

log2













n

�

1−
k
∑

i=1
β2

i

�

1− max
1≤i≤k

{βi}













. (2.32)

This completes the proof.

Finally, we present some additional results implied by Theorem 2.13.

Corollary 2.14. Let Gn;β1,...,βk
(p) ∈ Gn;β1,...,βk

(p). Then

S(Gn;β1,...,βk
(p)) = (1+ o(1)) log2 n a.s.

if and only if max{β1, . . . ,βk}= o(1).

Note that if k = n, then Gn;β1,...,βk
(p) = Gn(p), that is, βi =

1
n
, 1 ≤ i ≤ n.

By Corollary 2.14, we have the following result immediately.
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Neumann entropy of random multipartite graphs

Corollary 2.15 (Du et al. [47]). Let Gn(p) ∈ Gn(p) be a random graph. Then
almost surely S(Gn(p)) = (1+ o(1)) log2 n.

The following corollaries are also easy to get.

Corollary 2.16. Let Gn;β1,...,βk
(p) ∈ Gn;β1,...,βk

(p) satisfy lim
n→∞

max
1≤i≤k

{βi} > 0

and lim
n→∞

βi

β j
= 1. Then

1+ o(1)

1− 1
k

log2

�

n
�

1−
1

k

��

≤ S(Gn;β1,...,βk
(p))≤

�

1+
k− 1

k
o(1)

�

log2 n.

Corollary 2.17. Let Gn;β1,...,βk
(p) ∈ Gn;β1,...,βk

(p) satisfy lim
n→∞

max
1≤i≤k

{βi} > 0,

and there exist βi and β j such that lim
n→∞

βi

β j
< 1, that is, there exists an integer

r ≥ 1 such that |V1|, . . . , |Vr | are of order O(n) and |Vr+1|, . . . , |Vk| are of order
o(n). Then almost surely

1+ o(1)

1−
r
∑

i=1
β2

i

log2

 

n

 

1−
r
∑

i=1

β2
i

!!

≤S(Gn;β1,...,βk
(p))

≤
1− max

1≤i≤r
{βi}+ o(1)

1−
r
∑

i=1
β2

i

log2













n

�

1−
r
∑

i=1
β2

i

�

1− max
1≤i≤r

{βi}













.



Chapter 3

The spectral distribution of
random mixed graphs

In this chapter, we characterize the limiting spectral distribution of the Her-
mitian adjacency matrix of a random mixed graph bGn(pi j), where pi j = p =
p(n) for any 1 ≤ i, j ≤ n and 0 for i = j, for some p ∈ (0,1). We denote this
graph by bGn(p). We prove that the empirical distribution of the eigenvalues
of the Hermitian adjacency matrix converges to Wigner’s semicircle law. As
an application, we estimate the Hermitian energy of a random mixed graph.

3.1 Preliminaries

Before proceeding, we collect some results that will be used in the sequel of
the chapter.

Lemma 3.1 (See [12]). The number of closed walks of length 2s which satisfy
that each directed edge and its inverse directed edge in the closed walk both
appear once and the underlying graph of the closed walk is a tree is 1

s+1

�2s
s

�

.

39
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Lemma 3.2 (See [12]). Let φ(x) be as in Theorem 1.1. Then, for s =
0,1, 2, . . ., we have

∫ 2

−2

xkφ(x)dx =

(

0, for k = 2s+ 1,
1

s+1

�2s
s

�

, for k = 2s.

Lemma 3.3 (Cauchy-Schwarz’s Inequality). Let ξ and η be two complex ran-
dom variables. Then

|E(ξη)|2 ≤ E(|ξ|2) ·E(|η|2).

Proof. For any t ∈ C, we have

0≤ E(tξ−η)(tξ−η)

= E(tξ−η)(tξ−η)

= t tE(ξξ)− tE(ξη)− tE(ξη) +E(ηη).

Let

t =
E(ξη)

E(ξξ)
.

Then

0≤−
E(ξη)E(ξη)

E(ξξ)
+E(ηη)

=−
E(ξη)E(ξη)
E(|ξ|2)

+E(|η|2)

=−
|E(ξη)|2

E(|ξ|2)
+E(|η|2).

Hence
|E(ξη)|2 ≤ E(|ξ|2) ·E(|η|2).

This completes the proof.
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Lemma 3.4 (Chebyshev’s Inequality). Let X be a random variable. Then for
any ε > 0, we have

Pr (|X −E(X )| ≥ ε)≤
Var(X )
ε2 .

Lemma 3.5 (Borel-Cantelli Lemma). If
∑∞

n=1 Pr(En) < ∞ and the events
{En}∞n=1 are independent, then Pr(limsupn→∞ En) = 0.

Lemma 3.6 (Rank Inequality (See [11])). Let A and B be two n×n Hermitian
matrices. Then

‖FA− F B‖ ≤
1

n
rank(A− B),

where ‖ f (x)‖ := supx | f (x)| for a function f (x), and FA means the ESD of A.

Lemma 3.7 (Chernoff Bounds (See [30])). Let X1, . . . , Xn be independent ran-
dom variables with

Pr(X i = 1) = pi and Pr(X i = 0) = 1− pi for all i.

Consider the sum X =
∑n

i=1 X i with expectation E(X ) =
∑n

i=1 pi . Then for any
b > 0,

(i) Lower tail: Pr(X ≤ E(X )− b)≤ exp
�

− b2

2E(X )

�

;

(ii) Upper tail: Pr(X ≥ E(X ) + b)≤ exp
�

− b2

2(E(X )+b/3)

�

.

Definition 3.1 (See [12]). Let An be an n×n Hermitian matrix, and λ1, . . . ,λn

be the eigenvalues of An. Then, for any real-valued function f ,

∫

f (x)dFAn(x) =
1

n

n
∑

i=1

f (λi)

is called the linear spectral statistics (LSS) of An.

3.2 The LSD of Hermitian adjacency matrices of bGn(p)

In this section we characterize the LSD of the Hermitian adjacency matri-
ces of random mixed graphs. We prove that the empirical distribution of
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the eigenvalues of the Hermitian adjacency matrices converges to Wigner’s
semicircle law. Our main result is stated as follows.

Theorem 3.8. Let {Hn}∞n=1 be a sequence of Hermitian adjacency matrices of
random mixed graphs {bGn(p)}∞n=1 with p = p(n), 0 < p < 1. Define σ =
p

2p− p2− p4. Then the ESD of 1
σ
p

n
Hn converges to the standard semicircle

distribution whose density is given by

φ(x) :=

(

1
2π

p

4− x2, for |x | ≤ 2,
0, for |x |> 2.

The proof of Theorem 3.8 is postponed until the end of this section. Recall
that Hn is a random Hermitian matrix whose upper-triangular entries are
i.i.d. copies of a random variable ξ and diagonal entries are 0. Recall also
that ξ takes value 1 with probability p2, i with probability p(1− p) , −i with
probability p(1− p), and 0 with probability (1− p)2. Then

E(ξ) = p2, Var(ξ) = E[(ξ−E(ξ))(ξ−E(ξ))] = 2p− p2− p4.

Let f (x) = x3 + x − 2. Then f ′(x) = 3x2 + 1 > 0. So, −2 = f (0) < f (p) <
f (1) = 0. Thus Var(ξ) = 2p− p2− p4 = p(2− p− p3)> 0.

Let σ =
p

Var(ξ) =
p

2p− p2− p4, and define

Mn =
1

σ
[Hn− p2(Jn− In)] = (ηi j),

where Jn is the all-ones matrix of order n and In is the identity matrix of
order n. It can be easily verified that

• Mn is a Hermitian matrix;

• the diagonal entries ηii = 0 and the upper-triangular entries ηi j , 1 ≤
i < j ≤ n are i.i.d. copies of random variable η which takes value
1−p2

σ
with probability p2, i−p2

σ
with probability p(1 − p) , −i−p2

σ
with

probability p(1− p), and −p2

σ
with probability (1− p)2.
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We denote the distribution function of η by Φ. Note that the random variable
η of Mn has mean 0 and variance 1, that is,

E(η) = 0 and Var(η) = 1.

Note also that the expectation

E(|η|s) =
(1− p2)s · p2+ 2(1+ p4)s/2 · p(1− p) + p2s · (1− p)2

(2p− p2− p4)s/2
.

It is easy to check that 2p − p2 − p4 → 0 as p(n) → 0 or p(n) → 1. So, if
lim

n→∞
p(n) = 0, then

E(|η|s)→
2p

(2p)s/2

=
1

(2p)s/2−1
.

This implies that if p = o(1), then Mn is not a Wigner matrix. Thus the LSD
of Mn cannot be directly derived by Wigner’s semicircle law. In the following,
we will use the moment method to prove that the ESD of 1p

n
Mn converges to

the standard semicircle distribution.

Theorem 3.9. Let σ =
p

2p− p2− p4, and Mn =
1
σ
[Hn− p2(Jn− In)]. Then

the ESD of n−1/2Mn converges to the standard semicircle distribution whose
density is given by

φ(x) :=

(

1
2π

p

4− x2, for |x | ≤ 2,
0, for |x |> 2.

Proof of Theorem 3.9. Let

Wn :=
1
p

n
Mn =

�

ηi j
p

n

�

.

To prove that the ESD of Wn converges to the standard semicircle distribution,
it suffices to show that the moments of the ESD converge almost surely to the
corresponding moments of the semicircle distribution.
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For a positive integer k, by Definition 3.1, the kth moment of the ESD of
the matrix Wn is

Mk,n =

∫

xkdFWn(x)

=
1

n

n
∑

i=1

(λi(Wn))
k

=
1

n
Tr(W k

n )

=
1

n
Tr

�

�

1
p

n
Mn

�k
�

=
1

n1+k/2
Tr(M k

n )

=
1

n1+k/2

∑

1≤i1,...,ik≤n

ηi1 i2ηi2 i3 · · ·ηik i1 , (3.1)

where W := i1i2 . . . ik−1ik i1 corresponds to a closed directed walk of length k
in the complete directed graph of order n. For each directed edge (i, j) ∈W ,
let qi j be the number of occurrences of the directed edge (i, j) in the walk
W . Note that all directed edges of a mixed graph are mutually independent.
Then we rewrite (3.1) as

Mk,n =
1

n1+k/2

∑

W

∏

i< j

η
qi j

i j η
q ji

ji . (3.2)

Then

E(Mk,n) =
1

n1+k/2

∑

W

∏

i< j

E
�

η
qi j

i j η
q ji

ji

�

. (3.3)

Here the summation is taken over all directed closed walks of length k.

To show that FWn(x) converges to the standard semicircle distribution
whose density is φ(x), by the Moment Convergence Theorem (MCT), it suf-
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fices to prove

lim
n→∞

Mk,n =

∫ 2

−2

xkφ(x)dx , k = 1,2, . . . . (3.4)

Define ÝMn = (η′i j), where

η′i j =

¨

ηi j , if |ηi j|<
p

n,
0, if |ηi j| ≥

p
n.

Let

ÝWn =
1
p

n
ÝMn =

 

η′i j
p

n

!

,

and let M ′k,n be the kth moment of the ESD of the matrixÝWn. Similar to (3.1),
(3.2) and (3.3), we have

M ′k,n =
1

n1+k/2

∑

1≤i1,...,ik≤n

η′i1 i2
η′i2 i3
· · ·η′ik i1

=
1

n1+k/2

∑

W

∏

i< j

η
′qi j

i j η
′q ji

ji , (3.5)

and

E(M ′k,n) =
1

n1+k/2

∑

1≤i1,...,ik≤n

E(η′i1 i2
η′i2 i3

· ·η′ik i1
) =

1

n1+k/2

∑

W

∏

i< j

E
�

η
′qi j

i j η
′q ji

ji

�

.

(3.6)

Now (3.4) can be easily verified by combining Facts 3.1–3.3 below that we
are going to prove separately. This completes the proof of Theorem 3.9.

Fact 3.1. Let φ(x) be as in Theorem 3.8, and let M ′k,n be as in Eq. (3.5). Then

lim
n→∞
E(M ′k,n) =

∫ 2

−2

xkφ(x)dx =

(

0, for k = 2s+ 1,
1

s+1

�2s
s

�

, for k = 2s.
(3.7)

Fact 3.2. Let M ′k,n be as in Eq. (3.5). Then

lim
n→∞

M ′k,n = lim
n→∞
E(M ′k,n) a.s. (3.8)
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Fact 3.3. Let Mk,n and M ′k,n be as in Eqs. (3.2) and (3.5), respectively. Then

lim
n→∞

Mk,n = lim
n→∞

M ′k,n a.s. (3.9)

It remains to prove Facts 3.1–3.3.

Proof of Fact 3.1. The second equality of (3.7) follows from Lemma 3.2
straightforwardly. Next, we prove the first equality of (3.7).

Consider the underlying undirected graph Γ(G) of the directed graph G.
We decompose E(M ′k,n) into parts Em,k,n, m = 1, 2, . . . , k, containing the m-
fold sums,

E(M ′k,n) =
k
∑

m=1

Em,k,n, (3.10)

where

Em,k,n =
1

n1+k/2

∑

{W :|E(Γ(W ))|=m}

∏

i< j

E
�

η
′qi j

i j η
′q ji

ji

�

, (3.11)

and |E(Γ(W ))|= m means the cardinality of the edge set of Γ(W ) is m. Here
the summation in (3.11) is taken over all closed directed walks W of length
k.

Recall that E(η) = 0, and recall also that qi j denotes the number of oc-
currences of the directed edge (i, j) in the closed walk W . So, if qi j+q ji = 1,

that is, qi j = 1, q ji = 0 or qi j = 0, q ji = 1, then
∏

i< j E
�

η
qi j

i j η
q ji

ji

�

= 0 and
∏

i< j E
�

η
′qi j

i j η
′q ji

ji

�

= 0. On the other hand, if m > k
2

and qi j + q ji ≥ 2, then

Em,k,n = 0. So, in the following, we only consider the case that m ≤ k
2

and
qi j + q ji ≥ 2.

Case 1. k is odd. Then m≤
�

k
2

�

. Note that |E(Γ(W ))|= m, i.e., there are m
edges in Γ(W ). Then there are at most m+ 1 vertices in Γ(W ). This shows
that the number of such closed walks of length k is at most nm+1 · (m+ 1)k.
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Then

Em,k,n ≤
nm+1 · (m+ 1)k

n1+k/2

∏

i< j

E
�

η
′qi j

i j η
′q ji

ji

�

=
(m+ 1)k

nk/2−m

∏

i< j

E
�

η
′qi j

i j η
′q ji

ji

�

.

Note that Eη= 0. Then

E(ηη) = E|η|2 = E[(η−E(η))(η−E(η)] = Var(η) = 1.

Recall that the distribution function of η is denoted by Φ. Then

E|η|2 =
∫

|x |2dΦ= 1<∞.

Thus, for any r ≥ 3,

n(2−r)/2

∫

|x |<
p

n

|x |rdΦ= o(1), (3.12)

which follows from the fact (See [7,8]) that for any distribution function Ψ,

∫

|x |tdΨ<∞=⇒ n(t−r)/2

∫

|x |<
p

n

|x |rdΨ= o(1) (for any r ≥ t + 1).

Note that qi j + q ji ≥ 2 implies that qi j ≥ 1, q ji ≥ 1 or qi j ≥ 2, q ji = 0 or
qi j = 0, q ji ≥ 2. We consider these three subcases separately.

First assume qi j ≥ 1, q ji ≥ 1. Then we set

E1 = {i j ∈ Γ(W )|qi j > 1, q ji > 1},

E2 = {i j ∈ Γ(W )|qi j > 1, q ji = 1 or qi j = 1, q ji > 1},

E3 = {i j ∈ Γ(W )|qi j = 1, q ji = 1}.

Let mi = |Ei|, for i = 1, 2,3. Clearly, E(Γ(W )) = E1 ∪ E2 ∪ E3 and m1 +m2 +
m3 = m. Then, by (3.12) and Lemma 3.3, we have

(m+ 1)k

nk/2−m

∏

i< j

�

�

�E
�

η
′qi j

i j η
′q ji

ji

�
�

�

�
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≤
(m+ 1)k

nk/2−m

∏

i< j

Ç

E
�

�

�η
′qi j

i j

�

�

�

2
·E
�

�

�η
′q ji

ji

�

�

�

2

=
(m+ 1)k

nk/2−m

∏

i< j

q

E|η′i j|
2qi j ·E|η′ji|

2q ji

=
(m+ 1)k

nk/2−m





∏

E1

q

E|η′i j|
2qi j ·E|η′ji|

2q ji





·





∏

E2

q

E|η′i j|
2qi j ·E|η′ji|

2q ji









∏

E3

q

E|η′i j|
2qi j ·E|η′ji|

2q ji





=
(m+ 1)k

nk/2−m





∏

E1

r

o(1)

n(2−2qi j)/2
·

o(1)

n(2−2qi j)/2









∏

E2

r

o(1)

n(2−2qi j)/2



 · 1

=
(m+ 1)k

nk/2−m





∏

E1

r

o(1)

n2−qi j−q ji









∏

E2

r

o(1)

n1−qi j





=
(m+ 1)k

nk/2−m

r

o(1)

n2m−k

=(m+ 1)k · o(1)

→0, as n→∞.

Next assume qi j ≥ 2, q ji = 0. Then we set

E4 = {i j ∈ Γ(W )|qi j > 2, q ji = 0},

E5 = {i j ∈ Γ(W )|qi j = 2, q ji = 0}.

Let mi = |Ei|, for i = 4,5. Then E(Γ(W )) = E4 ∪ E5 and m4 +m5 = m. So,
we have

(m+ 1)k

nk/2−m

∏

i< j

�

�

�E
�

η
′qi j

i j η
′q ji

ji

�
�

�

�

≤
(m+ 1)k

nk/2−m

∏

i< j

E
�

�

�η
′qi j

i j

�

�

�
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=
(m+ 1)k

nk/2−m

∏

i< j

E|η′i j|
qi j

=
(m+ 1)k

nk/2−m







∏

E4

E|η′i j|
qi j











∏

E5

E|η′i j|
qi j





=
(m+ 1)k

nk/2−m

∏

E4

o(1)

n(2−qi j)/2
· 1

=
(m+ 1)k

nk/2−m
·

o(1)

n(2m−k)/2

=(m+ 1)k · o(1)

→0, as n→∞.

Finally assume qi j = 0, q ji ≥ 2. Then, by a similar discussion as above, we
have

(m+ 1)k

nk/2−m

∏

i< j

�

�

�E
�

η
′qi j

i j η
′q ji

ji

�
�

�

�→ 0, as n→∞.

Thus, by (3.10), we have

lim
n→∞
E(M ′k,n) = 0 for k is odd.

Case 2. k = 2s (s = 1,2, . . .) is even. Recall that m ≤ k
2
= s and qi j + q ji ≥ 2.

We distinguish two subcases.

Case 2.1. m < s = k
2
. Note that |E(Γ(W ))| = m. Then there are at most

m+ 1 vertices in Γ(W ). This shows that the number of such closed walks of
length k is at most nm+1 · (m+ 1)k. Then

Em,k,n ≤
nm+1 · (m+ 1)k

n1+k/2

∏

i< j

E
�

η
′qi j

i j η
′q ji

ji

�

=
(m+ 1)k

nk/2−m

∏

i< j

E
�

η
′qi j

i j η
′q ji

ji

�

.

Notice that qi j + q ji ≥ 2. Then qi j ≥ 1, q ji ≥ 1 or qi j ≥ 2, q ji = 0 or



50 Chapter 3. The spectral distribution of random mixed graphs

qi j = 0, q ji ≥ 2. By similar discussions as in Case 1, it can be verified that

(m+ 1)k

nk/2−m

∏

i< j

�

�

�E
�

η
′qi j

i j η
′q ji

ji

�
�

�

�→ 0, as n→∞.

Thus, for m< s, we have

lim
n→∞
Em,k,n = 0, for k = 2s.

Case 2.2. m = s. In this case, qi j + q ji ≥ 2 implies that qi j = 1, q ji = 1 (each
edge in the closed walk appears only once, and so does its inverse edge) or
qi j = 2, q ji = 0 or qi j = 0, q ji = 2. Consider the following cases.

If qi j = 1, q ji = 1, and the underlying graph of the closed walk is a tree (i.e.,
there are s+ 1 vertices in Γ(W )), then by Lemma 3.1, the number of closed
walks of length k = 2s satisfying qi j = 1, q ji = 1 and the underlying graph of
the closed walk is a tree is 1

s+1

�2s
s

�

. Recall that E(ηη) = Var(η) = 1. Then
these terms will contribute

n(n− 1) · · · (n− s) · 1
s+1

�2s
s

�

n1+k/2

∏

i< j

E(η′i jη
′
ji)

=
n1+s(1+O(n−1)) · 1

s+1

�2s
s

�

n1+s

∏

i< j

E(η′i jη
′
ji)

=(1+O(n−1)) ·
1

s+ 1

�

2s

s

�

· 1

→
1

s+ 1

�

2s

s

�

, as n→∞.

If qi j = 1, q ji = 1, and the underlying graph of the closed walk is not a tree
(i.e., there are at most s vertices in Γ(W )). It is clear that the number of such
closed walks of length k is at most ns · sk. Recall that E(ηη) = Var(η) = 1.
Then these terms will contribute at most

ns · sk

n1+k/2

∏

i< j

E(η′i jη
′
ji) =

sk

n
→ 0, as n→∞.
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If qi j = 2, q ji = 0, then there are at most s vertices in Γ(W ). It is clear that
the number of such closed walks of length k is at most ns · sk. Then these
terms will contribute at most

ns · sk

n1+k/2

∏

i< j

E
�

η
′qi j

i j η
′q ji

ji

�

=
sk

n

∏

i< j

E
�

η
′qi j

i j η
′q ji

ji

�

.

In addition,

sk

n

∏

i< j

�

�

�E
�

η
′qi j

i j η
′q ji

ji

�
�

�

�≤
sk

n

∏

i< j

E|η′qi j

i j |

=
sk

n

∏

i< j

E(|η′i j|
qi j )

=
sk

n
→ 0, as n→∞.

Hence,

ns · sk

n1+k/2

∏

i< j

E
�

η
′qi j

i j η
′q ji

ji

�

→ 0, as n→∞.

If qi j = 0, q ji = 2, by a similar discussion as above, it can be verified that

sk

n

∏

i< j

�

�

�E
�

η
′qi j

i j η
′q ji

ji

�
�

�

�→ 0, as n→∞.

Thus, for m= s, we have

lim
n→∞
Em,k,n =

1

s+ 1

�

2s

s

�

, for k = 2s.

Hence, by (3.10), we have

lim
n→∞
E(M ′k,n) =

1

s+ 1

�

2s

s

�

, for k = 2s.
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Therefore, the first equality of (3.7) is proved. This completes the proof of
Fact 3.1.

Proof of Fact 3.2. Note that |M ′k,n−E(M
′
k,n)|

4 is a random variable. Suppose
that {a4

i } is the set of all values that |M ′k,n − E(M
′
k,n)|

4 takes. Then, for any
k, n, we have

E[|M ′k,n−E(M
′
k,n)|

4]

=
∑

i

a4
i Pr(|M ′k,n−E(M

′
k,n)|

4 = a4
i )

≥
∑

ai≥ε
a4

i Pr(|M ′k,n−E(M
′
k,n)|

4 = a4
i )

≥ε4
∑

ai≥ε
Pr(|M ′k,n−E(M

′
k,n)|

4 = a4
i )

=ε4 Pr(|M ′k,n−E(M
′
k,n)|

4 ≥ ε4)

=ε4 Pr(|M ′k,n−E(M
′
k,n)| ≥ ε).

Hence,

Pr(|M ′k,n−E(M
′
k,n)| ≥ ε)≤ ε

−4E[|M ′k,n−E(M
′
k,n)|

4]. (3.13)

Recall that

M ′k,n =
1

n1+k/2

∑

1≤i1,...,ik≤n

η′i1 i2
η′i2 i3
· · ·η′ik i1

:=
1

n1+k/2

∑

W

η′(W ),

where W := i1i2 . . . ik−1ik i1 corresponds to a closed directed walk of length k
in the complete directed graph of order n. Note (See Bai [11, p.620]) that

E[|M ′k,n−E(M
′
k,n)|

4] =
1

n4+2k

∑

W 1,...,W 4

E

(

4
∏

i=1

[η′(W i)−E(η′(W i))]

)

,

(3.14)

where W i (i = 1, . . . , 4) corresponds to a closed directed walk of length k in
the complete directed graph of order n.

Set i0 ∈ {1,2, 3,4}. If Γ(W i0) has no common edge with Γ(cW\W i0),
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where cW =W 1∪W 2∪W 3∪W 4, that is, W i0 is independent of cW\W i0 , then
(3.14) is equal to zero since

E

(

4
∏

i=1

[η′(W i)−E(η′(W i))]

)

=E







4
∏

i=1
i 6=i0

[η′(W i)−E(η′(W i))]







E[η′(W i0)−E(η′(W i0))]

=0,

due to the independence.

If there is a directed edge (i0, j0) whose number of occurrences in cW =
W 1∪W 2∪W 3∪W 4 is 1 and ( j0, i0) /∈cW , without loss of generality, we assume
that (i0, j0) ∈W 1, and (i0, j0) /∈W i for i ∈ {2,3, 4}. Since E(η′) = E(η) = 0,
we have E(η′(W 1)) = E(η′i0 j0

)E[η′(W 1\{(i0, j0)})] = 0. Then

E

(

4
∏

i=1

[η′(W i)−E(η′(W i))]

)

=E

(

η′(W 1)
4
∏

i=2

[η′(W i)−E(η′(W i))]

)

=E(η′i0 j0
)E

(

η′(W 1\{(i0, j0)})
4
∏

i=2

[η′(W i)−E(η′(W i))]

)

=0,

which implies that (3.14) is also equal to zero.

Next, we consider the case that (3.14) may be nonzero. So, from the
cases we already discussed above, we know that, in such a case, there exists
no directed edge such that the total number of occurrences of this directed
edge and its inverse edge in cW is just 1. For ei ∈ E(Γ(G)), define v#

i to
be number of occurrences of the directed edges (x , y) and (y, x) in G such
that (x , y) and (y, x) correspond to the edge ei in Γ(G), called the multi-
plicity of ei . Assume that Γ(cW ) has edges e1, e2, . . . , el with multiplicities
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υ#
1 ,υ#

2 , . . . ,υ#
l . Clearly, υ#

i ≥ 2 for i = 1, . . . , l, and υ#
1 +υ

#
2 + · · ·+υ

#
l = 4k.

So l ≤ 2k.

Note that

η′i j =

¨

ηi j , if |ηi j|<
p

n,
0, if |ηi j| ≥

p
n.

Let

τi j =
η′i j
p

n
,

Then

|τi j|=
|η′i j|
p

n
< 1,

and

M ′k,n =
1

n1+k/2

∑

1≤i1,...,ik≤n

η′i1 i2
η′i2 i3
· · ·η′ik i1

=
1

n

∑

1≤i1,...,ik≤n

τi1 i2τi2 i3 · · ·τik i1

:=
1

n

∑

W

τ(W ),

where W := i1i2 . . . ik−1ik i1 corresponds to a closed directed walk of length

k in the complete directed graph of order n. Then

1

n4+2k

∑

W 1,...,W 4

�

�

�

�

�

E

(

4
∏

i=1

[η′(W i)−E(η′(W i))]

)
�

�

�

�

�

=
1

n4

∑

W 1,...,W 4

�

�

�

�

�

E

(

4
∏

i=1

[τ(W i)−E(τ(W i))]

)
�

�

�

�

�

=
1

n4

∑

W 1,...,W 4

�

�

�

�

E[τ(W 1)τ(W 2)τ(W 3)τ(W 4)]

− 4E(τ(W 1))E[τ(W 2)τ(W 3)τ(W 4)]

+ 6E[τ(W 1)τ(W 2)]E(τ(W 3))E(τ(W 4))
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− 3E(τ(W 1))E(τ(W 2))E(τ(W 3))E(τ(W 4))

�

�

�

�

≤
1

n4

∑

W 1,...,W 4

�
�

�

�

�

E[τ(W 1)τ(W 2)τ(W 3)τ(W 4)]

�

�

�

�

+ 4

�

�

�

�

E(τ(W 1))E[τ(W 2)τ(W 3)τ(W 4)]

�

�

�

�

+ 6

�

�

�

�

E[τ(W 1)τ(W 2)]E(τ(W 3))E(τ(W 4))

�

�

�

�

+ 3

�

�

�

�

E(τ(W 1))E(τ(W 2))E(τ(W 3))E(τ(W 4))

�

�

�

�

�

, (3.15)

where W i (i = 1, . . . , 4) corresponds to a closed directed walk of length k in
the complete directed graph of order n.

Recall that Γ(cW ) has edges e1, e2, . . . , el with multiplicities υ#
1 ,υ#

2 , . . . ,υ#
l ,

and υ#
i ≥ 2 for i = 1, . . . , l, and l ≤ 2k. Without loss of generality, we set

eh = vi v j . Then υ#
h = q#

i j + q#
ji , where q#

i j denotes the number of occurrences

of the directed edge (i, j) in cW . Then

E[τ(W 1)τ(W 2)τ(W 3)τ(W 4)] =
∏

i< j
|E(Γ(cW ))|=l

E
�

τ
q#

i j

i j τ
q#

ji

ji

�

. (3.16)

Next, we will compute E
�

τ
q#

i j

i j τ
q#

ji

ji

�

. Note that q#
i j + q#

ji ≥ 2 implies that

q#
i j ≥ 1, q#

ji ≥ 1 or q#
i j ≥ 2, q#

ji = 0 or q#
i j = 0, q#

ji ≥ 2, since |τi j| < 1 and
E(τi j) = 0. We again consider these three cases.

If q#
i j ≥ 1, q#

ji ≥ 1, then we have

�

�

�E
�

τ
q#

i j

i j τ
q#

ji

ji

�

�

�

�≤ E
�

�

�τ
q#

i j−1

i j ·τ
q#

ji−1

ji ·τi j ·τi j

�

�

�

≤ 1q#
i j+q#

ji−2E|τi jτ ji|

= E|τi j|2

=
1

n
E|η′i j|

2
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=
1

n

∫

|x |<
p

n

|x |2dΦ

≤
1

n
. (3.17)

If q#
i j ≥ 2, q#

ji = 0, then we have

�

�

�E
�

τ
q#

i j

i j τ
q#

ji

ji

�

�

�

�≤ E
�

�

�τ
q#

i j

i j

�

�

�

≤ 1q#
i j−2E|τ2

i j|

≤
1

n
. (3.18)

If q#
i j = 0, q#

ji ≥ 2, by a similar discussion as above, we have

�

�

�E
�

τ
q#

i j

i j τ
q#

ji

ji

�

�

�

�≤
1

n
. (3.19)

By (3.16), (3.17), (3.18) and (3.19), we have

�

�E[τ(W 1)τ(W 2)τ(W 3)τ(W 4)]
�

�≤
1

nl
.

If there are l1 edges in Γ(W 1) and there are l2 edges in Γ(W 2∪W 3∪W 4),

then l1+l2 ≥ l, since E(τi j) = E(
η′i jp

n
) = 0, for all 1≤ i < j ≤ n. So, E(τ(W 1))

is nonzero if and only if the total number of occurrences of each directed edge
and its inverse edge of DKn in the directed walk W 1 is at least 2. By (3.17),
(3.18) and (3.19), we have

�

�E(τ(W 1))
�

�≤
1

nl1
.

Similarly, we have

�

�E[τ(W 2)τ(W 3)τ(W 4)]
�

�≤
1

nl2
.
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Then
�

�E(τ(W 1))E[τ(W 2)τ(W 3)τ(W 4)]
�

�≤
1

nl1+l2
≤

1

nl
.

Similarly we have

�

�E(τ(W 1))E(τ(W 2))E[τ(W 3)τ(W 4)]
�

�≤
1

nl
,

and
�

�E(τ(W 1))E(τ(W 2))E(τ(W 3))E(τ(W 4))
�

�≤
1

nl
.

Therefore,

1

n4

∑

W 1,...,W 4

�

�

�

�

�

E

(

4
∏

i=1

[τ(W i)−E(τ(W i))]

)
�

�

�

�

�

≤
1

n4

∑

W 1,...,W 4

14 ·
1

nl
.

Note that there are at most two pieces of connected subgraphs in Γ(cW ). Then
there are at most l +2 vertices in Γ(cW ). This shows that the number of such
cW is at most nl+2Cl,k, where Cl,k is a constant depending on k and l only.
Hence

1

n4

∑

W 1,...,W 4

�

�

�

�

�

E

(

4
∏

i=1

[τ(W i)−E(τ(W i))]

)
�

�

�

�

�

≤
14

n4

2k
∑

l=1

nl+2Cl,k
1

nl

=
14

n2

2k
∑

l=1

Cl,k,

By (3.14) and (3.15), we have

E[|M ′k,n−E(M
′
k,n)|

4] = O(n−2), k = 1,2, . . . .

Then

∞
∑

n=1

E[|M ′k,n−E(M
′
k,n)|

4] =
∞
∑

n=1

O(n−2)<∞, k = 1,2, . . . .
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By (3.13), we have

∞
∑

n=1

Pr(|M ′k,n−E(M
′
k,n)| ≥ ε)<∞, k = 1,2, . . . .

Note that the events {|M ′k,n − E(M
′
k,n)| ≥ ε}

∞
n=1 are independent. Then,

by Lemma 3.5, we have

Pr(|M ′k,n−E(M
′
k,n)| ≥ ε) = 0,

i.e.,
lim

n→∞
M ′k,n = lim

n→∞
E(M ′k,n) a.s.

This completes the proof of Fact 3.2.

Proof of Fact 3.3. Note that

Mk,n =

∫

xkdFWn(x) =

∫

xkdF n−1/2Mn(x)

and

M ′k,n =

∫

xkdFÝWn(x) =

∫

xkdF n−1/2
ÝMn(x).

By Lemma 3.6, we have

‖ FWn − FÝWn ‖=‖ F n−1/2Mn − F n−1/2
ÝMn ‖≤

1

n
rank(Mn−ÝMn).

Notice that rank(Mn−ÝMn)≤ the number of nonzero entries in (Mn−ÝMn),
which is bounded by

∑

jk I{|η jk|≥
p

n}, where

I{|η jk|≥
p

n} =

¨

0, if |η jk|<
p

n,
1, if |η jk| ≥

p
n.

Then

‖ FWn − FÝWn ‖≤
1

n

∑

jk

I{|η jk|≥
p

n}.
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Let
p jk = Pr(|η jk| ≥

p
n).

Since E(ηη) = E|η|2 = 1, we have

∑

jk

p jk =
∑

jk

Pr(|η jk| ≥
p

n)≤
1

n

∑

jk

E|η jk|2 I{|η jk|≥
p

n} = O(n).

Consider the n(n−1)/2 independent terms of I{|η jk|≥
p

n}, (1≤ j < k ≤ n),
which are independent random variables, with

Pr(I{|η jk|≥
p

n} = 1) = p jk, Pr(I{|η jk|≥
p

n} = 0) = 1− p jk,

and the sum of the n(n− 1)/2 independent terms of I{|η jk|≥
p

n},

E







∑

j<k

I{|η jk|≥
p

n}






=
∑

j<k

p jk =
∑

j<k

Pr(|η jk| ≥
p

n). (3.20)

For any ε > 0, applying Lemma 3.7 to (3.20), we have

Pr

 ∑

j<k I{|η jk|≥
p

n}

n
≥ ε

!

=Pr







∑

j<k

I{|η jk|≥
p

n} ≥ εn







=Pr







∑

j<k

I{|η jk|≥
p

n}−E







∑

j<k

I{|η jk|≥
p

n}






≥ εn−

∑

j<k

p jk







≤exp









−
(εn−

∑

j<k p jk)2

2
�

∑

j<k p jk +
εn−

∑

j<k p jk

3

�









=exp

 

−
3(εn−

∑

j<k p jk)2

2εn+ 5
∑

j<k p jk

!

=exp(−bn),
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for some positive constant b. Then, by Lemma 3.5, we have

∑

j<k I{|η jk|≥
p

n}

n
→ 0 a.s. (n→∞)

Notice that with probability 1, the truncation does not affect the LSD of
Mn. So

‖F n−1/2Mn − F n−1/2
ÝMn‖ ≤

1

n

∑

jk

I{|η jk|≥
p

n}→ 0.

Then we have
lim

n→∞
Mk,n = lim

n→∞
M ′k,n a.s.

This completes the proof of Fact 3.3.

Proof of Theorem 3.8. Recall that

Wn = n−1/2Mn =
1

σ
p

n
[(Hn+ p2 In)− p2Jn],

and set

W 0
n =

1

σ
p

n
(Hn+ p2 In).

Then

W 0
n −Wn =

1

σ
p

n
· p2Jn.

Note that

rank
�

1

σ
p

n
· p2Jn

�

= 1.

By Lemma 3.6, we have

‖FW 0
n (x)− FWn(x)‖ ≤

1

n
· 1=

1

n
.

This implies that the LSDs of W 0
n and Wn are the same. By Theorem 3.9, we

have

lim
n→∞

FW 0
n (x) = lim

n→∞
FWn(x) = F(x) :=

∫ x

−∞
φ(x)dx . (3.21)
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Consider the matrices W 1
n =

1
σ
p

n
Hn and W 0

n =
1
σ
p

n
(Hn+ p2 In). Note that

W 0
n −W 1

n =
1

σ
p

n
· p2 In :=∆n In,

and

∆n =
1

σ
p

n
p2→ 0 (n→∞).

Note also that λ is an eigenvalue of W 1
n if and only if λ+∆n is an eigenvalue

of W 0
n . Then

FW 1
n (x) = FW 0

n (x +∆n).

On the other hand, ∆n → 0 (n→∞) implies that for any ε > 0, there exists
an N such that |∆n|< ε for all n> N . Since FW 0

n (x) is an increasing function
for all n> N , we have

FW 0
n (x − ε)≤ FW 0

n (x +∆n)≤ FW 0
n (x + ε).

Then

F(x − ε) = lim
n→∞

FW 0
n (x − ε)

≤ lim
n→∞

FW 0
n (x +∆n)

≤ lim
n→∞

FW 0
n (x + ε)

= F(x + ε) a.s.

From (3.21), we see that the density of F(x) is smooth. Then F(x) is contin-
uous. By choosing ε > 0 as small as possible, we conclude that

lim
n→∞

FW 1
n (x) = lim

n→∞
FW 0

n (x +∆n) = F(x) a.s.

i.e.,
lim

n→∞
F

1
σ
p

n Hn(x) = F(x) a.s.

This completes the proof.
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3.3 The Hermitian energy

In this section we give an estimation of the Hermitian energy for almost all
mixed graphs.

Theorem 3.10. Let p = p(n), 0< p < 1. Then the Hermitian energy EH(bGn(p))
of the random mixed graph bGn(p) satisfies almost surely (a.s.) the following
equation:

EH(bGn(p)) = n3/2(2p− p2− p4)1/2
�

8

3π
+ o(1)

�

,

that is, with probability 1, EH(bGn(p)) satisfies the above equation as n→∞.

In order to prove the above theorem, we need the following results.

Lemma 3.11 (See [18]). Let µ be a measure. Suppose that the functions an,
bn, and fn converge almost everywhere to the functions a, b, and f , respectively,
and that an ≤ fn ≤ bn almost everywhere. If

∫

andµ→
∫

adµ and
∫

bndµ→
∫

bdµ, then
∫

fndµ→
∫

f dµ.

Theorem 3.12. Define σ =
p

2p− p2− p4. Let Hn be an Hermitian adjacency
matrix of a random mixed graph bGn(p) with p = p(n), 0< p < 1. Let φ(x) be
as in Theorem 3.8, and F(x) =

∫ x

−∞φ(x)dx. Then

lim
n→∞

∫

|x |dF
1
σ
p

n Hn(x) =

∫

|x |dF(x) =

∫

|x |φ(x)dx a.s.

Proof of Theorem 3.12. Note that F
1
σ
p

n Hn(x) =
∫ x

−∞φ
1
σ
p

n Hn(x)dx and

F(x) =
∫ x

−∞φ(x)dx . Note also that

lim
n→∞

F
1
σ
p

n Hn(x) = F(x).

Then
lim

n→∞
φ

1
σ
p

n Hn(x) = φ(x).
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Let I be the interval [−2,2], and IC the set R\I . Since φ(x) is bounded on
I , it follows that with probability 1, x2φ

1
σ
p

n Hn(x) is bounded almost every-
where on I . By the Bounded Convergence Theorem (See [111]), we have

lim
n→∞

∫

I

x2dF
1
σ
p

n Hn(x) =

∫

I

x2dF(x) a.s.

Then

lim
n→∞

∫

IC

x2dF
1
σ
p

n Hn(x) = lim
n→∞

�
∫

x2dF
1
σ
p

n Hn(x)−
∫

I

x2dF
1
σ
p

n Hn(x)

�

= lim
n→∞

∫

x2dF
1
σ
p

n Hn(x)− lim
n→∞

∫

I

x2dF
1
σ
p

n Hn(x)

=

∫

x2dF(x)−
∫

I

x2dF(x) a.s.

=

∫

IC

x2dF(x) a.s. (3.22)

Set

an(x) = 0, bn(x) = x2φ
1
σ
p

n Hn(x), and fn(x) = |x |φ
1
σ
p

n Hn(x).

Notice that
|x | ≤ x2, if x ∈ IC .

Then
an(x)≤ fn(x)≤ bn(x), if x ∈ IC .

By Lemma 3.11 and (3.22), we have

lim
n→∞

∫

IC

|x |φ
1
σ
p

n Hn(x)dx =

∫

IC

|x |φ(x)dx a.s.,

i.e.,

lim
n→∞

∫

IC

|x |dF
1
σ
p

n Hn(x) =

∫

IC

|x |dF(x) a.s. (3.23)
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Note that with probability 1, |x |φ
1
σ
p

n Hn(x) is bounded almost everywhere
on I , since φ(x) is bounded on I . Again, by the Bounded Convergence The-
orem (See [111]), we have

lim
n→∞

∫

I

|x |dF
1
σ
p

n Hn(x) =

∫

I

|x |dF(x) a.s. (3.24)

By (3.23) and (3.24), we have

lim
n→∞

∫

|x |dF
1
σ
p

n Hn(x) =

∫

|x |dF(x) =

∫

|x |φ(x)dx a.s.

This completes the proof.

Proof of Theorem 3.10. Recall that σ =
p

2p− p2− p4, and Hn denotes
the Hermitian adjacency matrix of bGn(p). Suppose that λ1,λ2, . . . ,λn and
λ′1,λ′2, . . . ,λ′n are the eigenvalues of Hn and 1

σ
p

n
Hn, respectively. By Theo-

rem 3.9, the ESD of n−1/2Mn converges to the standard semicircle distribu-
tion whose density is given by

φ(x) =

(

1
2π

p

4− x2, for |x | ≤ 2,
0, for |x |> 2.

By Theorem 3.12, we have

EH(bGn(p))

σn
3
2

=
1

σn
3
2

n
∑

i=1

|λi|

=
1

n

n
∑

i=1

�

�

�

�

1

σ
p

n
λi

�

�

�

�

=
1

n

n
∑

i=1

|λ′i|

=

∫

|x |dF
1
σ
p

n Hn(x)

→
∫

|x |dF(x) (n→∞)
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=

∫

|x |φ(x)dx

=
1

2π

∫ 2

−2

|x |
p

4− x2dx

=
8

3π
.

This completes the proof.





Chapter 4

The spectrum of Hn for random
mixed graphs

Let bGn(p) be a random mixed graph as described in the introduction of Chap-
ter 3. In Chapter 3, we proved that the empirical distribution of the eigen-
values of the Hermitian adjacency matrix of bGn(p) converges to Wigner’s
semicircle law. Since Theorem 3.8 only characterizes the limiting spectral
distribution of the Hermitian adjacency matrix of random mixed graphs, it
does not describe the behaviour of the largest eigenvalue of the Hermitian
adjacency matrix. In this chapter, we deal with the asymptotic behaviour of
the spectrum of the Hermitian adjacency matrix of random mixed graphs.
We will present and prove a separation result between the first and the re-
maining eigenvalues of Hn. As an application of the asymptotic behaviour
of the spectrum of the Hermitian adjacency matrix, we estimate the spectral
moments of random mixed graphs.

4.1 Preliminaries

We start with some notations and lemmas that we will use throughout the
chapter. Let λ1(G),λ2(G), . . . ,λn(G) be (not necessarily distinct) eigenvalues
of the Hermitian adjacency matrix H(G) of a mixed graph G of order n. Recall

67
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that the k-th Hermitian spectral moment of G is defined as

sk(H(G)) =
n
∑

i=1

λk
i (G),

where k ≥ 0 is an integer. It is easy to verify that s1(H(G)) = Tr(H(G)) =
0. As an application of the asymptotic behaviour of the spectrum of the
Hermitian adjacency matrix, we estimate the spectral moments of random
mixed graphs.

A closed walk W is good if each edge in E(W ) occurs more than once.
Let G 0(n, k, m) be the set of walks in Kn using k edges and m vertices where
each edge in the walk is used at least twice, i.e., let G 0(n, k, m) be the set of
good closed walks in Kn of length k and with m vertices. In [57], Füredi and
Komlós proved the following result.

Lemma 4.1 (Füredi and Komlós [57]). Let G 0(n, k, m) be the set of good
closed walks in Kn of length k and with m vertices. For m< n+ 1,

|G 0(n, k, m)| ≤ n(n− 1) · · · (n−m+ 1)
1

m

�

2m− 2

m− 1

��

k

2m− 2

�

m2(k−2m+2).

Let G̃ 0(k, m) be the set of good closed walks W of length k in Km where
vertices first appear in W in the order 1, 2, . . . , m. The main contribution
from Vu’s paper [116] is the following bound.

Lemma 4.2 (Vu [116]). Let G̃ 0(k, m) be the set of good closed walks W of
length k in Km where vertices first appear in W in the order 1,2, . . . , m. Then

|G̃ 0(k, m)| ≤
�

k

2m− 2

�

22k−2m+3mk−2m+2(k− 2m+ 4)k−2m+2.

It is easy to check that |G 0(n, k, m)| = n(n− 1) · · · (n−m+ 1)|G̃ 0(k, m)|.
Thus, this combination with the bound in Lemma 4.2 improves Füredi-Komlós’
upper bound.

For a directed edge e = (v1, v2), the vertices v1, v2 are called the ends of e,
while v1 is the initial (vertex) of e, and v2 is the terminal (vertex) of e. If two
directed edges have the same set of ends, they are said to be coincident. If
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there is no directed edge with the same set of ends as the directed edge (u, v),
(u, v) is said to be single. Let I = (i1, . . . , ik) be a vector valued on {1, . . . , n}k.
With the vector I , Bai et al. [11, 12] defined a Γ-graph as follows. Draw
a horizontal line and plot the numbers i1, . . . , ik on it. Consider the distinct
numbers as vertices, and draw k directed edges e j from i j to i j+1, j = 1, . . . , k,
where ik+1 = i1 by convention. Denote the number of distinct i j ’s by m. Such
a graph is called a Γ(k, m)-graph. An example of a Γ(7, 4)-graph is given
in Figure 4.1, in which there are 8 vertices (i1 up to i8), 4 non-coincident
vertices (v1 up to v4), 7 edges, a maximum of 4 mutually non-coincident
edges (e.g., the non-dashed (solid) edges indicated in Figure 4.1), and 2
single edges (v4, v3) and (v2, v4). By definition, we can traverse all edges of
the Γ(k, m)-graph by starting from vertex i1, and traversing the k directed
edges consecutively from i1 to i2, i2 to i3, etc., and finally returning to i1 by
using the edge from ik to i1. That is, a Γ(k, m)-graph represents a closed
directed walk (possibly containing loops).

v2 = i2 = i4 = i7

v1 = i1 = i8
v3 = i3 = i6

v4 = i5

FIGURE 4.1: Γ(7,4)-graph

A closed directed walk W is good if the total number of occurrences of
each directed edge and its inverse edge in the directed walk W is at least 2.
The set of all good closed directed walks of length k in DKn is denoted by
G (n, k). Let G (n, k, t) denote the set of closed good directed walks on DKn

of length k using exactly t different vertices.

By definition, a good directed walk in DKn using k edges and m vertices
is indeed equivalent to a Γ(k, m)-graph which has no single directed edge.
For any Γ(k, m)-graph which has no single directed edge, if we ignore the
orientation, we will obtain the equivalent of a good walk in Kn using k edges
and m vertices. Thus, we have

|G (n, k, m)| ≥ |G 0(n, k, m)|.
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On the other hand, for any good walk W 0 = i1i2 . . . ik−1ik i1 in Kn using k
edges and m vertices, if we add the orientation (i j , i j+1) (1≤ j ≤ k, ik+1 = i1),
then we will obtain a good directed walk in DKn using k edges and m vertices.
Thus, we have

|G (n, k, m)| ≤ |G 0(n, k, m)|.

Hence,
|G (n, k, m)|= |G 0(n, k, m)|.

The following result is immediate.

Lemma 4.3. Let G (n, k, m) be the set of good closed directed walks in DKn

using k edges and m vertices. Then |G (n, k, m)| ≤

n(n− 1) · · · (n−m+ 1)
�

k

2m− 2

�

22k−2m+3mk−2m+2(k− 2m+ 4)k−2m+2.

4.2 Spectral bounds

In this section, we study the spectrum of the Hermitian adjacency matrix
of bGn(p). In Chapter 3, we proved that the empirical distribution of the
eigenvalues of the Hermitian adjacency matrix Hn follows Wigner’s semicircle
law. In particular, for any c > 2σ, with probability 1− o(1) all eigenvalues
of Hn except for at most o(n) lie in the interval I = (−c

p
n, c
p

n) (where
σ =

p

2p− p2− p4). In this chapter, we show that with probability 1− o(1)
all eigenvalues except for the largest eigenvalue λ1(Hn) belong to the above
interval I , that is, only the largest eigenvalue λ1(Hn) (possibly) is outside I .
Our main result is stated as follows.

Theorem 4.4. Suppose that C and C ′ are sufficiently large. Let Hn denote the
Hermitian adjacency matrix of bGn(p). Let the eigenvalues of Hn be λ1 ≥ λ2 ≥

· · · ≥ λn. Define K =
q

1+p4

2
and σ =

p

2p− p2− p4. If σ ≥ C ′Kn−
1
2 ln2 n,

then asymptotically almost surely we have

(i) λ1 = (1+ o(1))np2,

(ii) max
2≤i≤n

|λi| ≤ 2σ
p

n+ C
p

Kσn
1
4 ln n.
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That max
2≤i≤n

|λi| cannot be much smaller than 2σ
p

n, is guaranteed by the

semicircle law. We postpone the proof of Theorem 4.4. Our proof is based on
the following theorem that we prove first. In the following |x | denotes the
Euclidean norm of x ∈ R.

Theorem 4.5. Let Jn be the all 1’s matrix, let Hn be the Hermitian adjacency
matrix of bGn(p), and let Un = p2Jn−Hn. Suppose that C and C ′ are sufficiently

large. Define K =
q

1+p4

2
and σ =

p

2p− p2− p4. If σ ≥ C ′Kn−
1
2 ln2 n, then

asymptotically almost surely

‖Un‖ ≤ 2σ
p

n+ C
p

Kσn
1
4 ln n.

Here ‖Un‖=max
|x |=1
|Un x |=max{|λ1(Un)|, |λn(Un)|}.

Before presenting the proof of Theorem 4.5, we recall the following well-
known result that will be used in the sequel of the chapter.

Lemma 4.6 (Markov’s Inequality [112]). Let X be a nonnegative, real-valued
random variable and a > 0. Then

Pr(X > a)≤
E(X )

a
.

Proof of Theorem 4.5. We rely on Wigner’s high moment method. We define

ÓMn =
1
p

2
(Un− p2 In),

where In denotes the n× n identity matrix. This implies that

‖Un‖ ≤
p

2‖ÓMn‖+ ‖p2 In‖=
p

2‖ÓMn‖+ p2.

So, it remains to establish the right upper bound for ‖ÓMn‖.
Recall that Hn = (hi j)n×n is the Hermitian adjacency matrix of bGn(p).

Then hi j (1 ≤ i < j ≤ n) are independent random variables with the follow-
ing properties:

• E(hi j) = p2;
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• Var(hi j) = 2p− p2− p4 = σ2;

• hi j , hi′ j′ are independent, unless (i, j) = ( j′, i′). If i > j, we have h ji =
hi j , i.e., h ji is the complex conjugate of hi j;

• |hi j| ≤ 1.

Let mi j denote the (i, j)-th entry of ÓMn. Using the definitions and the
above properties, we easily deduce that mi j (1 ≤ i < j ≤ n) are independent
random variables with the following properties:

• E(mi j) = 0;

• Var(mi j) =
Var(hi j)

2
= 2p−p2−p4

2
= σ2

2
;

• mi j , mi′ j′ are independent, unless (i, j) = ( j′, i′). If i > j, we have
m ji = mi j;

• |mi j| ≤
q

1+p4

2
= K ≤ 1.

Now let k ≥ 2 be an even integer. We estimate

Tr(ÓMn
k
) =

n
∑

i=1

λi(ÓMn)
k

≥max{λ1(ÓMn)
k,λn(ÓMn)

k}

=‖ÓMn‖k.

A standard fact in linear algebra tells us that for any positive integer k,

Tr(ÓMn
k
) =

∑

i1,...,ik∈[n]

mi1 i2 mi2 i3 · · ·mik i1 , (4.1)

where [n] = {1, 2, . . . , n}.
Let us now take a closer look at Tr(ÓMn

k
). This is a sum where a typical

term is mi1 i2 mi2 i3 . . . mik−1 ik mik i1 , where W := i1i2 . . . ik−1ik i1 corresponds to
a closed directed walk of length k in the complete directed graph DKn of
order n. In other words, each term corresponds to a closed walk of length
k (containing k, not necessarily distinct, directed edges) of the complete
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directed graph DKn on [n]. For each directed edge (i, j) ∈ W , let qi j be the
number of occurrences of the directed edge (i, j) in the walk W . Note that
all directed edges of a mixed graph are mutually independent. We rewrite
(4.1) as

Tr(ÓMn
k
) =
∑

W

∏

i< j

m
qi j

i j m
q ji

ji . (4.2)

Then

E(Tr(ÓMn
k
)) = E

�

∑

W

∏

i< j

m
qi j

i j m
q ji

ji

�

=
∑

W

∏

i< j

E
�

m
qi j

i j m
q ji

ji

�

,

where the summation is taken over all directed closed walks of length k.

We decompose E(Tr(ÓMn
k
)) into parts En,k,t , t = 2, . . . , k, containing the

t-fold sums, as follows:

E(Tr(ÓMn
k
)) =

k
∑

t=2

En,k,t , (4.3)

where
En,k,t =

∑

{W :|V (W )|=t}

∏

i< j

E
�

m
qi j

i j m
q ji

ji

�

, (4.4)

and |V (W )| = t means the cardinality of the vertex set of W is t. (Note that
as mii = 0 by construction of ÓMn we have that En,k,1 = 0.) So, the summation
in (4.4) is taken over all closed directed walks W of length k using exactly t
different vertices.

Recall that the entries mi j of ÓMn are independent random variables with
mean zero, i.e., E(mi j) = 0, for all 1 ≤ i < j ≤ n, and recall also that qi j

denotes the number of occurrences of the directed edge (i, j) in the closed
walk W . So, if qi j + q ji = 1, that is, qi j = 1, q ji = 0 or qi j = 0, q ji = 1,

then
∏

i< j E
�

m
qi j

i j m
q ji

ji

�

= 0. Thus, the expectation of a term is nonzero if
and only if the total number of occurrences of each directed edge and its
inverse edge of DKn in the directed walk W is at least 2, i.e., we only need
to consider the case that qi j + q ji ≥ 2. In other words, we only need to
consider good directed walks. The set of all good closed directed walks of
length k in DKn is denoted by G (n, k). Considering a good closed directed
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walk W , the underlying graph Γ(W ) of W uses l different edges e1, . . . , el ,
i.e., |E(Γ(W ))|= l, with corresponding multiplicities s1, . . . , sl (where the shs
are positive integers at least 2 summing up to k). Without loss of generality,
we set eh = vi v j , so that sh = qi j + q ji . The (expected) contribution of the

term defined by this directed walk to E(Tr(ÓMn
k
)) is

∏

i< j
|E(Γ(W ))|=l

E
�

m
qi j

i j m
q ji

ji

�

. (4.5)

Next, we will compute E
�

m
qi j

i j m
q ji

ji

�

. Note that qi j + q ji ≥ 2 implies that
qi j ≥ 1, q ji ≥ 1 or qi j ≥ 2, q ji = 0 or qi j = 0, q ji ≥ 2, since |mi j| ≤ K ≤ 1 and
E(mi j) = 0. We consider these three cases separately.

If qi j ≥ 1, q ji ≥ 1, then we have

�

�

�E
�

m
qi j

i j m
q ji

ji

�
�

�

�≤ E
�

�

�m
qi j−1
i j ·mq ji−1

ji ·mi j ·mi j

�

�

�

≤ Kqi j+q ji−2E|mi jm ji|

= Kqi j+q ji−2E|mi j|2

= Kqi j+q ji−2E(mi jmi j)

= Kqi j+q ji−2Var(mi j)

=
1

2
Kqi j+q ji−2σ2. (4.6)

If qi j ≥ 2, q ji = 0, then we have

�

�

�E
�

m
qi j

i j m
q ji

ji

�
�

�

�≤ E
�

�

�m
qi j

i j

�

�

�

≤ Kqi j−2E|m2
i j|

=
1

2
Kqi j−2σ2. (4.7)

If qi j = 0, q ji ≥ 2, then similarly, we have

�

�

�E
�

m
qi j

i j m
q ji

ji

�
�

�

�≤
1

2
Kq ji−2σ2. (4.8)

Let G (n, k, t) denote the set of good closed directed walks on DKn of length
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k using exactly t different vertices. Notice that for each directed walk W in
G (n, k, l+1), the underlying graph Γ(W ) of W must have at least l different
edges. By (4.5)-(4.8), the contribution of a term corresponding to such a
good directed walk to E(Tr(ÓMn

k
)) is at most

1

2l
Kk−2lσ2l .

By the pigeon hole principle, if l + 1 > k
2
+ 1, then there must be a directed

edge (i, j) such that the total number of occurrences of this directed edge
and its inverse edge of DKn in the directed walk W is 1, i.e., qi j + q ji = 1. As
we argued before, this implies En,k,l+1 = 0 for l > k

2
.

So, in the following, we only consider the case that l ≤ k
2

and qi j+q ji ≥ 2.
Using Lemma 4.3, we have

E(Tr(ÓMn
k
))

≤

k
2
∑

l=1

|G (n, k, l + 1)|
1

2l
Kk−2lσ2l

=

k
2
+1
∑

m=2

|G (n, k, m)|
1

2m−1 Kk−2(m−1)σ2(m−1)

≤

k
2
+1
∑

m=2

Kk−2(m−1)σ2(m−1)

2m−1 nm
�

k

2m− 2

�

22k−2m+3mk−2m+2(k− 2m+ 4)k−2m+2

=

k
2
+1
∑

m=2

S(n, k, m), (4.9)

where the final equality defines S(n, k, m). Now fix k = g(n) ln n, where
g(n) tends to infinity (with n) arbitrarily slowly. Let us consider the ratio
S(n, k, m− 1)/S(n, k, m) for some m≤ k

2
+ 1:

S(n, k, m− 1)
S(n, k, m)
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=
Kk−2(m−2)σ2(m−2)

2m−2 nm−1� k
2m−4

�

22k−2m+5(m− 1)k−2m+4(k− 2m+ 6)k−2m+4

Kk−2(m−1)σ2(m−1)

2m−1 nm� k
2m−2

�

22k−2m+3mk−2m+2(k− 2m+ 4)k−2m+2

=
K2(2m− 2)(2m− 3)22(m− 1)k−2m+4(k− 2m+ 6)k−2m+4

σ2

2
n(k− 2m+ 4)(k− 2m+ 3)mk−2m+2(k− 2m+ 4)k−2m+2

≤
K24(m− 1)222(m− 1)k−2m+4(k− 2m+ 6)k−2m+4

σ2

2
n(k− 2m+ 4)(k− 2m+ 3)mk−2m+2(k− 2m+ 4)k−2m+2

=
16K2(m− 1)k−2m+6(k− 2m+ 6)k−2m+4

σ2

2
n(k− 2m+ 4)(k− 2m+ 3)mk−2m+2(k− 2m+ 4)k−2m+2

≤
16K2mk−2m+6(k− 2m+ 6)k−2m+4

σ2

2
n(k− 2m+ 4)(k− 2m+ 3)mk−2m+2(k− 2m+ 4)k−2m+2

≤
32K2m4(k− 2m+ 6)k−2m+4

σ2n(k− 2m+ 3)(k− 2m+ 4)k−2m+3

≤
32K2m4(k− 2m+ 6)k−2m+4

σ2n(k− 2m+ 3)k−2m+4

→
32C0K2m4

σ2n

≤
32C0K2k4

σ2n

for some constant C0 independent of σ and K . This implies that

S(n, k, m− 1)≤
32C0K2k4

σ2n
S(n, k, m).

With a proper choice of g(n) guaranteeing that k4 ≤ σ2n
64C0K2 , we have

S(n, k, m− 1)≤
1

2
S(n, k, m).

Then

E(Tr(ÓMn
k
))≤

k
2
+1
∑

m=2

S(n, k, m)
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= S
�

n, k,
k

2
+ 1
�

k
2
+1
∑

m=2

�

1

2

�
k
2
+1−m

≤ 2S
�

n, k,
k

2
+ 1
�

= 2
σk

2
k
2

n
k
2
+12k+1

= 4n(σ
p

2n)k.

Then
E(‖ÓMn

k
‖)≤ E(Tr(ÓMn

k
))≤ 4n(σ

p
2n)k.

Using Lemma 4.6, we get

Pr(‖ÓMn‖ ≥ σ
p

2n+ C ′′
p

Kσn
1
4 ln n)

=Pr(‖ÓMn‖k ≥ (σ
p

2n+ C ′′
p

Kσn
1
4 ln n)k)

≤
E(‖ÓMn

k
‖)

(σ
p

2n+ C ′′
p

Kσn
1
4 ln n)k

≤
4n(σ

p
2n)k

(σ
p

2n+ C ′′
p

Kσn
1
4 ln n)k

=4n

�

σ
p

2n

σ
p

2n+ C ′′
p

Kσn
1
4 ln n

�k

=4n

�

1−
C ′′
p

Kσn
1
4 ln n

σ
p

2n+ C ′′
p

Kσn
1
4 ln n

�k

<4ne
− C′′

p
Kσkn

1
4 ln n

σ
p

2n+C′′
p

Kσn
1
4 ln n

=4ne
− C′′

p
Kσkn

− 1
4 ln n

σ
p

2+C′′
p

Kσn
− 1

4 ln n .

Now let k be an even integer closest to (and at most)
�

σ2n
64C0K2

�
1
4 . By the

assumption that σ ≥ C ′Kn−
1
2 ln2 n, we get

Pr(‖ÓMn‖ ≥ σ
p

2n+ C ′′
p

Kσn
1
4 ln n)
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≤4ne−(1+o(1)) C′′
p

Kσ
σ
p

2
kn−

1
4 ln n

≤4ne
−(1+o(1)) C′′

p
Kσ

σ
p

2
( σ2n

64C0K2 )
1
4 n−

1
4 ln n

=4ne
−(1+o(1)) C′′

4C1/4
0

ln n

=4n
1−(1+o(1)) C′′

4C1/4
0

=o(1)

for sufficiently large C ′′.

Recall that ÓMn =
1p
2
(Un − p2 In). Then asymptotically almost surely we

have

‖Un‖ ≤
p

2‖ÓMn‖+ p2

≤ 2σ
p

n+
p

2C ′′
p

Kσn
1
4 ln n

= 2σ
p

n+ C
p

Kσn
1
4 ln n

for sufficiently large C =
p

2C ′′. This completes the proof.

Finally, to complete this section, we will provide our proof of Theorem 4.4,
using Theorem 4.5 and the following min-max result due to Courant-Fischer
(Theorem 4.2.11 in [74]).

Lemma 4.7 (Courant-Fischer [74]). Let A be an n× n Hermitian matrix with
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, and let k be an integer with 1≤ k ≤ n. Then

λk = min
w1,w2,...,wn−k∈Cn

max
x 6=0,x∈Cn

x⊥w1,w2,...,wn−k

x∗Ax

x∗x
,

and

λk = max
w1,w2,...,wk−1∈Cn

min
x 6=0,x∈Cn

x⊥w1,w2,...,wk−1

x∗Ax

x∗x
.

Proof of Theorem 4.4. Let e denote the all 1’s vector. Suppose that |ξ| = 1
and ξ⊥ e. Then Jnξ= 0. Since Un = p2Jn−Hn, using Theorem 4.5, we get

|Hnξ|= |Unξ| ≤ ‖Un‖ ≤ 2σ
p

n+ C
p

Kσn
1
4 ln n.
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Now let |x | = 1 and x = αy + βz, where y = 1p
n
e, z ⊥ e and |z| = 1 and

α2+ β2 = 1. Then Jnz = 0, and

|Hn x | ≤ |α||Hn y|+ |β ||Hnz|.

Since Hn = p2Jn− Un, we have

|Hn y|=
1
p

n
|Hne|

≤
1
p

n
(np2|e|+ ‖Un‖|e|)

= np2+ ‖Un‖

≤ np2+ 2σ
p

n+ C
p

Kσn
1
4 ln n,

and

|Hnz|= |(p2Jn− Un)z|

= |Unz|

≤ ‖Un‖|z|

= ‖Un‖

≤ 2σ
p

n+ C
p

Kσn
1
4 ln n.

Since 0≤ α,β ≤ 1 and αβ ≤ 1/2 (because α2+β2 = 1), we have |α|+ |β | ≤
p

(|α|+ |β |)2 ≤
p

2. Thus

|Hn x | ≤|α|
h

np2+ 2σ
p

n+ C
p

Kσn
1
4 ln n

i

+ |β |
h

2σ
p

n+ C
p

Kσn
1
4 ln n

i

=|α|np2+ (|α|+ |β |)
h

2σ
p

n+ C
p

Kσn
1
4 ln n

i

≤np2+
p

2
h

2σ
p

n+ C
p

Kσn
1
4 ln n

i

.

This implies that λ1 ≤ (1+ o(1))np2. However,

|Hn y| ≥ |(Hn+ Un)y| − |Un y|

= |p2Jn y| − |Un y|
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≥ np2− (2σ
p

n+ C
p

Kσn
1
4 ln n),

implying λ1 ≥ (1+ o(1))np2. Hence λ1 = (1+ o(1))np2, which completes
the proof of (i).

By Lemma 4.7, we have

λ2 =min
η∈Cn

max
06=ξ⊥η

ξ∗Hnξ

ξ∗ξ

≤ max
06=ξ⊥y

ξ∗Hnξ

ξ∗ξ

= max
06=ξ⊥y

ξ∗(p2Jn− Un)ξ
ξ∗ξ

= max
06=ξ⊥y

ξ∗(−Un)ξ
ξ∗ξ

≤‖Un‖

≤2σ
p

n+ C
p

Kσn
1
4 ln n,

and

λn =min
|ξ|=1

ξ∗Hnξ

≥min
|ξ|=1
(ξ∗Hnξ− p2ξ∗Jnξ)

=min
|ξ|=1
(−ξ∗Unξ)

=−max
|ξ|=1

ξ∗Unξ

=−λ1(Un)

≥−‖Un‖

≥− (2σ
p

n+ C
p

Kσn
1
4 ln n),

where we use that ‖Un‖=max{|λ1(Un)|, |λn(Un)|} and Un = p2Jn−Hn, and
that λ1(Un)> 0 and ‖Un‖ ≥ λ1(Un). So

|λi| ≤ 2
p

n(2p− p2− p4) + C
p

Kσn
1
4 ln n
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for 2≤ i ≤ n. This completes the proof of (ii).

4.3 Spectral moments of random mixed graphs

In this section, as an application of Theorem 4.4, we give an estimation of the
Hermitian spectral moment for random mixed graphs. The result is stated as
follows.

Theorem 4.8. Let p = p(n), 0< p < 1. Let Hn denote the Hermitian adjacency
matrix of bGn(p). Then almost surely

s2(Hn) = (2p− p2+ o(1))n2.

Suppose C ′ is sufficiently large. Define K =
q

1+p4

2
and σ =

p

2p− p2− p4. If

σ ≥ C ′Kn−
1
2 ln2 n, then for k > 2, the k-th Hermitian spectral moment sk(Hn)

of the random mixed graph bGn(p) almost surely satisfies the following equation:

sk(Hn) = (p
2k + o(1))nk.

Proof of Theorem 4.8. Let bGn(p) and Hn = (hi j)n×n be defined as above.
For k = 2,

s2(Hn) = Tr(H2
n) =

∑

i 6= j

hi jh ji =
∑

i 6= j

|hi j|2 = 2
∑

1≤i< j≤n

|hi j|2.

Since |hi j|2(i > j) are i.i.d. with mean 2p − p2, it follows from Lemma 2.2
that, with probability 1,

lim
n→∞

∑n
i=1

∑

i> j |hi j|2

n(n−1)
2

= 2p− p2.

Then

lim
n→∞

s2(Hn)
n2 = lim

n→∞

2
∑n

i=1

∑

i> j |hi j|2

n2 = 2p− p2,

i.e.,
s2(Hn) = (2p− p2+ o(1))n2 a.s.



82 Chapter 4. The spectrum of Hn for random mixed graphs

Suppose that λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of Hn. By Theorem
4.4, we have

lim
n→∞

λ1

n
= p2 a.s., (4.6)

and for any ε > 1
2
,

lim
n→∞

λi

nε
= 0 a.s., i = 2, . . . , n. (4.7)

With the definition of the k-th Hermitian spectral moment, one can deduce
that for k > 2,

�λ1

n
�k + (n− 1) min

2≤i≤n

��λi

n
�k	≤

sk(Hn)

nk
≤
�λ1

n
�k + (n− 1) max

2≤i≤n

��λi

n
�k	,

or, equivalently

�λ1

n
�k+

n− 1

n
min

2≤i≤n

�� λi

n1− 1
k

�k	≤
sk(Hn)

nk
≤
�λ1

n
�k+

n− 1

n
max
2≤i≤n

�� λi

n1− 1
k

�k	.

Since 1− 1
k
> 1

2
, using (4.6) and (4.7), we obtain that

lim
n→∞

sk(Hn)

nk
= p2k,

i.e.,
sk(Hn) = (p

2k + o(1))nk a.s.

This completes the proof.



Chapter 5

The spectral analysis of Ln for
random mixed graphs

In this chapter, we again consider random mixed graphs bGn(p) as described
in the introduction of Chapter 3. Let bGn(p) be a random mixed graph on the
vertex set {1,2, . . . , n}. We study the spectral properties of the normalized
Hermitian Laplacian matrix of bGn(p) for large n, and characterize the limiting
spectral distribution in case p ∈ (0,1) and n(2p− p2 − p4)/ ln4 n→∞. Our
main result is stated as follows.

Theorem 5.1. Let {Ln}∞n=1 be a sequence of normalized Hermitian Laplacian
matrices of random mixed graphs {bGn(p)}∞n=1 with p = p(n), 0 < p < 1. Let

σ =
p

2p− p2− p4, and δ = (n−1)(2p− p2). If nσ2/ ln4 n→∞ as n→∞,
then the ESD of δ

σ
p

n
(In−Ln) converges to the standard semicircle distribution

whose density is given by

φ(x) :=

(

1
2π

p

4− x2, for |x | ≤ 2,
0, for |x |> 2.

We are going to present our proof of the above theorem in the final sec-
tion of this chapter. We first concentrate on the spectral properties of several
different matrices related to the normalized Hermitian Laplacian matrix Ln.

83



84 Chapter 5. The spectral analysis of Ln for random mixed graphs

5.1 The spectral properties of random matrices

The normalized Hermitian Laplacian matrix of bGn(p) is defined as

Ln = In− D
− 1

2
n HnD

− 1
2

n ,

where In is the identity matrix, Hn is the Hermitian adjacency matrix of
bGn(p), and Dn denotes the diagonal degree matrix of the underlying graph
Γ(bGn(p)). We can rewrite Ln as

Ln = In− [D
− 1

2
n HnD

− 1
2

n − D
− 1

2
n EHnD

− 1
2

n ]− D
− 1

2
n EHnD

− 1
2

n .

Now, we let

Cn = D
− 1

2
n HnD−

1
2 − D

− 1
2

n EHnD
− 1

2
n .

Instead of directly dealing with Cn, we first consider the related matrix

Rn = (EDn)
− 1

2 Hn(EDn)
− 1

2 − (EDn)
− 1

2EHn(EDn)
− 1

2 .

Similar to our proof of Theorem 4.5 in Chapter 4, we can derive the next
theorem by using Lemma 4.3. We will use the conclusion of this result near
the end of the proof of Theorem 5.1.

Theorem 5.2. Letσ =
p

2p− p2− p4 and Rn = (EDn)
− 1

2 (Hn−EHn)(EDn)
− 1

2 .
Assume that δ = (n−1)(2p− p2). If nσ2/ ln4 n→∞ as n→∞, then we have

‖Rn‖ ≤ (1+ o(1))
2σ

δ

p
n.

Proof of Theorem 5.2. We rely on Wigner’s high moment method. Recall
that Hn = (hi j)n×n, where hi j (1 ≤ i < j ≤ n) are independent random
variables with the following properties:

• E(hi j) = p2;

• Var(hi j) = 2p− p2− p4 = σ2 < 2;

• hi j , hi′ j′ are independent, unless (i, j) = ( j′, i′). If i > j, we have h ji =
hi j , i.e., h ji is the complex conjugate of hi j;
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• |hi j| ≤ 1.

Let EDn = diag(t1, t2, . . . , tn), where t i = E(di) =
∑n

j=1E|hi j| = (n −
1)(2p−p2) = δ for all 1≤ i ≤ n. Let ri j denote the (i, j)-th entry of Rn. Then
ri j (1 ≤ i < j ≤ n) are independent random variables with the following
properties:

• E(ri j) = 0;

• Var(ri j) =
1

t i t j
Var(hi j) =

1
t i t j
(2p− p2− p4) = σ2

δ2 <
2
δ2 ≤ 1;

• ri j , ri′ j′ are independent, unless (i, j) = ( j′, i′). If i > j, we have r ji =
ri j;

• |ri j| ≤
q

1+p4

t i t j
≤
p

2
δ
≤ 1.

Now let k ≥ 2 be an even integer. We estimate

Tr(Rk
n) =

n
∑

i=1

λi(Rn)
k

≥max{λ1(Rn)
k,λn(Rn)

k}

= ‖Rn‖k.

A standard fact in linear algebra tells us that for any positive integer k,

Tr(Rk
n) =

∑

i1,...,ik∈[n]

ri1 i2 ri2 i3 · · · rik i1 , (5.1)

where [n] = {1,2, . . . , n}.
Let us now take a closer look at Tr(Rk

n). This is a sum where a typical term
is ri1 i2 ri2 i3 . . . rik−1 ik rik i1 , where W := i1i2 . . . ik−1ik i1 corresponds to a closed
directed walk of length k in the complete directed graph DKn of order n. In
other words, each term corresponds to a closed walk of length k (containing
k, not necessarily distinct, directed edges) of the complete directed graph
DKn on [n]. For each directed edge (i, j) ∈ W , let qi j be the number of
occurrences of the directed edge (i, j) in the walk W . Note that all directed
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edges of a mixed graph are mutually independent. Now, we rewrite (5.1) as

Tr(Rk
n) =

∑

W

∏

i< j

r
qi j

i j r
q ji

ji . (5.2)

Then

E(Tr(Rk
n)) = E

�

∑

W

∏

i< j

r
qi j

i j r
q ji

ji

�

=
∑

W

∏

i< j

E
�

r
qi j

i j r
q ji

ji

�

,

where the summation is taken over all directed closed walks of length k.

We decompose E(Tr(Rk
n)) into parts En,k,t , t = 2, . . . , k, containing the

t-fold sums, as follows:

E(Tr(Rk
n)) =

k
∑

t=2

En,k,t , (5.3)

where
En,k,t =

∑

{W :|V (W )|=t}

∏

i< j

E
�

r
qi j

i j r
q ji

ji

�

, (5.4)

and |V (W )| = t means the cardinality of the vertex set of W is t. (Note that
as rii = 0 by construction of Rn we have that En,k,1 = 0.) Here the summation
in (5.4) is taken over all closed directed walks W of length k using exactly t
different vertices.

Recall that the entries ri j of Rn are independent random variables with
zero mean, i.e., E(ri j) = 0, for all 1 ≤ i < j ≤ n. Recall also that qi j de-
notes the number of occurrences of the directed edge (i, j) in the closed walk
W . So, if qi j + q ji = 1, that is, qi j = 1, q ji = 0 or qi j = 0, q ji = 1, then
∏

i< j E
�

r
qi j

i j r
q ji

ji

�

= 0. Thus, the expectation of a term is nonzero if and only
if the total number of occurrences of each directed edge and its inverse edge
of DKn in the directed walk W is at least 2. So, we only need to consider the
case that qi j + q ji ≥ 2. Note that such a closed directed walk is a good di-
rected walk, and the set of all good closed directed walks of length k in DKn

is denoted by G (n, k). Considering a good closed directed walk W , the un-
derlying graph Γ(W ) of W uses l distinct edges e1, . . . , el , i.e., |E(Γ(W ))|= l,
with corresponding multiplicities s1, . . . , sl (the shs are positive integers at
least 2 summing up to k). Without loss of generality, we set eh = vi v j and
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then sh = qi j + q ji . The (expected) contribution of the term defined by this
directed walk to E(Tr(Rk

n)) is

∏

i< j
|E(Γ(W ))|=l

E
�

r
qi j

i j r
q ji

ji

�

. (5.5)

Next, we will compute E
�

r
qi j

i j r
q ji

ji

�

. Note that qi j + q ji ≥ 2 implies that

qi j ≥ 1, q ji ≥ 1 or qi j ≥ 2, q ji = 0 or qi j = 0, q ji ≥ 2, since |ri j| ≤
p

2
δ
≤ 1 and

E(ri j) = 0. We consider these three cases separately.

If qi j ≥ 1, q ji ≥ 1, then we have

�

�

�E
�

r
qi j

i j r
q ji

ji

�
�

�

�≤ E
�

�

�r
qi j−1
i j · rq ji−1

ji · ri j · ri j

�

�

�

≤
�p

2

δ

�qi j+q ji−2

E|ri j r ji|

=

�p
2

δ

�qi j+q ji−2

E|ri j|2

=

�p
2

δ

�qi j+q ji−2

E(ri j ri j)

=

�p
2

δ

�qi j+q ji−2

Var(ri j)

=
�

p
2

δ

�qi j+q ji−2σ2

δ2 . (5.6)

If qi j ≥ 2, q ji = 0, then we have

�

�

�E
�

r
qi j

i j r
q ji

ji

�
�

�

�= E
�

�

�r
qi j

i j

�

�

�

≤
�p

2

δ

�qi j−2

E|r2
i j|

=

�p
2

δ

�qi j−2
σ2

δ2 . (5.7)
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If qi j = 0, q ji ≥ 2, then similarly, we have

�

�

�E
�

r
qi j

i j r
q ji

ji

�
�

�

�≤
�p

2

δ

�q ji−2
σ2

δ2 . (5.8)

Recall that G (n, k, t) denotes the set of good closed directed walks on DKn

of length k using exactly t different vertices. Notice that for each directed
walk W in G (n, k, l+1), the underlying graph Γ(W ) of W must have at least
l different edges. By (5.5)-(5.8), the contribution of a term corresponding to
such a good directed walk to E(Tr(Rk

n)) is at most

�p
2

δ

�k−2l
σ2l

δ2l
=

p
2

k−2l
σ2l

δk
.

By the pigeon hole principle, if l + 1 > k
2
+ 1, then there must be a directed

edge (i, j) such that the total number of occurrences of this directed edge
and its inverse edge of DKn in the directed walk W is 1, i.e., qi j + q ji = 1. As
we argued before, this implies En,k,l+1 = 0 for l > k

2
.

So, in the following, we only consider the case that l ≤ k
2

and qi j+q ji ≥ 2.
By Lemma 4.3, we have

E(Tr(Rk
n))

≤

k
2
∑

l=1

|G (n, k, l + 1)|
p

2
k−2l

σ2l

δk

=

k
2
+1
∑

m=2

|G (n, k, m)|
p

2
k−2(m−1)

σ2(m−1)

δk

≤

k
2
+1
∑

m=2

p
2

k−2(m−1)
σ2(m−1)

δk
nm
�

k

2m− 2

�

22k−2m+3mk−2m+2(k− 2m+ 4)k−2m+2

=

k
2
+1
∑

m=2

S(n, k, m), (5.9)

where the final equality defines S(n, k, m). Now fix k = g(n) ln n, where
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g(n) tends to infinity (with n) arbitrarily slowly. Let us consider the ratio
S(n, k, m− 1)/S(n, k, m) for some m≤ k

2
+ 1:

S(n, k, m− 1)
S(n, k, m)

=

p
2

k−2(m−2)
σ2(m−2)

δk nm−1� k
2m−4

�

22k−2m+5(m− 1)k−2m+4(k− 2m+ 6)k−2m+4

p
2

k−2(m−1)
σ2(m−1)

δk nm� k
2m−2

�

22k−2m+3mk−2m+2(k− 2m+ 4)k−2m+2

=
2(2m− 2)(2m− 3)22(m− 1)k−2m+4(k− 2m+ 6)k−2m+4

σ2n(k− 2m+ 4)(k− 2m+ 3)mk−2m+2(k− 2m+ 4)k−2m+2

≤
32mk−2m+6(k− 2m+ 6)k−2m+4

σ2n(k− 2m+ 4)(k− 2m+ 3)mk−2m+2(k− 2m+ 4)k−2m+2

=
32m4(k− 2m+ 6)k−2m+4

σ2n(k− 2m+ 3)(k− 2m+ 4)k−2m+3

≤
32m4(k− 2m+ 6)k−2m+4

σ2n(k− 2m+ 3)k−2m+4

→
32C0m4

σ2n

≤
32C0k4

σ2n

for some constant C0 independent of σ. This implies that

S(n, k, m− 1)≤
32C0k4

σ2n
S(n, k, m).

With a proper choice of g(n) guaranteeing that k4 ≤ σ2n
64C0

, we have

S(n, k, m− 1)≤
1

2
S(n, k, m).

Then

E(Tr(Rk
n))≤

k
2
+1
∑

m=2

S(n, k, m)
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=S
�

n, k,
k

2
+ 1
�

k
2
+1
∑

m=2

�

1

2

�
k
2
+1−m

≤2S
�

n, k,
k

2
+ 1
�

=2
σk

δk
n

k
2
+12k+1

=4n
�2σ

δ

p
n
�k

.

Then

E(‖Rk
n‖)≤E(Tr(Rk

n))

≤4n
�2σ

δ

p
n
�k

.

Using Markov’s inequality we get

Pr
�

‖Rn‖ ≥ (1+ ε)
2σ

δ

p
n
�

=Pr
�

‖Rn‖k ≥
�

(1+ ε)
2σ

δ

p
n
�k�

≤
E(‖Rk

n‖)

((1+ ε)2σ
δ

p
n)k

≤
4n(2σ

δ

p
n)k

((1+ ε)2σ
δ

p
n)k

=
4n

(1+ ε)k
.

Since k = Ω(ln n), we can find an ε = ε(n) tending to 0 when n tends to
infinity, so that n

(1+ε)k = o(1). Thus, we get

‖Rn‖ ≤ (1+ o(1))
2σ

δ

p
n.

This completes the proof.
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5.2 The LSD of Ln

In this section we characterize the LSD of the normalized Hermitian Lapla-
cian matrix Ln by proving Theorem 5.1. For our proof, we will rely on the
following known result. Here, let L(F, G) denote the Levy distance between
distribution functions F and G, defined by

L(F, G) = inf{ε | F(x − ε)≤ G(x)≤ F(x + ε)},

which characterizes the weak convergence of probability distributions. Then
the following holds for the ESD of Hermitian matrices.

Lemma 5.3 (Norm Inequality (See [11])). Let A and B be two n×n Hermitian
matrices. Then

L(FA, F B)≤ ‖A− B‖,

where FA denotes the ESD of A.

We also use the following concentration result. It involves a variation on
the Chernoff bound, and can, e.g., be found as Lemma A in [32].

Lemma 5.4. Let X1, X2, . . . , Xm be independent random variables satisfying
|X i| ≤ c for all i. Let X =

∑m
i=1 X i . Then for any a > 0,

Pr(|X −E(X )| ≥ a)≤ exp
�

−
a2

2
∑m

i=1 Var(X i) + 2ac/3

�

.

We now have all the ingredients to present our proof of Theorem 5.1.

Proof of Theorem 5.1. Recall that

Rn = (EDn)
− 1

2 Hn(EDn)
− 1

2 − (EDn)
− 1

2EHn(EDn)
− 1

2

=
1

δ
[Hn− p2(Jn− In)],

where Jn is the all 1’s matrix. Set

Mn =
1

σ
[Hn− p2(Jn− In)].
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It is clear that
δ

σ
λi(Rn) = λi(Mn)

for i = 1, 2, . . . , n. Thus by Theorem 3.9, we have that almost surely, the em-

pirical distribution F
δ
σ
p

n Rn(x) of δ
σ
p

n
Rn converges to the standard semicircle

distribution F(x) with density φ(x) as n→∞. Recall that

Cn = D
− 1

2
n HnD−

1
2 − D

− 1
2

n EHnD
− 1

2
n .

We rewrite Cn as follows:
Cn = Rn+ Bn,

where

Bn = D
− 1

2
n (Hn−EHn)D

− 1
2

n − (EDn)
− 1

2 (Hn−EHn)(EDn)
− 1

2 ,

and
Rn = (EDn)

− 1
2 (Hn−EHn)(EDn)

− 1
2 .

Let bi j denote the (i, j)-th entry of Bn, and let ri j denote the (i, j)-th entry of
Rn. To bound ‖Bn‖, we have that almost surely

‖Bn‖= sup
|x |=1
|x∗Bn x |

= sup
|x |=1

�

�

�

∑

i, j

x∗i bi j x j

�

�

�

= sup
|x |=1

�

�

�

�

�

∑

i, j

x∗i ri j x j

p

t i t j −
p

did j
p

did j

�

�

�

�

�

≤ sup
|x |=1

�

�

�

�

�

�

∑

i, j

x∗i ri j x j

p

t j −
p

d j
p

d j

�

�

�

�

�

+

�

�

�

�

�

∑

i, j

x∗i

p
t i −

p

di
p

di

ri j x j

p

t j
p

d j

�

�

�

�

�

�

=: sup
|x |=1
(|x∗Rn y|+ |y∗Rnz|),

where y =
�

x1

p
t1−
p

d1p
d1

, . . . , xn

p
tn−
p

dnp
dn

�T
, and z =

�

x1

p
t1p
d1

, . . . , xn

p
tnp
dn

�T
.



5.2. The LSD of Ln 93

Then we have

‖Bn‖ ≤ sup
|x |=1
(‖Rn‖|y|+ ‖Rn‖|y||z|)

=‖Rn‖ sup
|x |=1
(|y|+ |y||z|),

where |y|2 =
∑n

i=1 |x i|2
�p

t i−
p

dip
di

�2
, |z|2 =

∑n
i=1 |x i|2

t i

di
.

Next, we are going to obtain upper bounds for |y| and |z|. For this, we
will apply Lemma 5.4 to the random variables |hi j| (in the role of X i), and
using the observations that di =

∑n
j=1 |hi j|, and t i = E(di) =

∑n
j=1E|hi j| =

(n−1)(2p−p2) = δ. We first need some preparation in order to obtain upper
bounds for |hi j| and

∑n
j=1 Var(|hi j|).

Obviously, |hi j| ≤ 1, so we can take c = 1, and

n
∑

j=1

Var(|hi j|) =
n
∑

j=1

[E(|hi j|2)− (E|hi j|)2]

≤
n
∑

j=1

E(|hi j|2)

=(n− 1)(2p− p2)

=δ.

We choose a = 3
p

t i ln n. Then, the assumption that δ = t i = (n− 1)(2p−
p2)� ln n implies that a = 3

p

t i ln n ≤ 3t i . Applying Lemma 5.4, we have
for all i,

Pr(|di − t i| ≥ a)≤ e
− a2

2(ti+a/3) ≤
1

n9/4
.

Thus asymptotically almost surely, for all i we have |di − t i| ≤ a = 3
p

t i ln n.

Note that

Pr
�

max
1≤i≤n

t i

di
> (1+ ε)

�

≤ n · max
1≤i≤n

Pr
� t i

di
> (1+ ε)

�

.

This inequality holds since Pr(
⋃

i Ai) ≤
∑

i Pr(Ai). Choose 0 < b = 3
q

ln n
t i
<
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1 such that 1
1−b

< 1+ ε. Then

Pr
� t i

di
> (1+ ε)

�

=Pr
�

{
t i

di
> (1+ ε)}

�

�

�{|di − t i|< bt i}
�

Pr
�

|di − t i|< bt i

�

+ Pr
�

{
t i

di
> (1+ ε)}

�

�

�{|di − t i| ≥ bt i}
�

Pr
�

|di − t i| ≥ bt i

�

=Pr
�

{
t i

di
> (1+ ε)} ∩ {|di − t i|< bt i}

�

+ Pr
�

{
t i

di
> (1+ ε)} ∩ {|di − t i| ≥ bt i}

�

≤Pr
�

{
t i

di
> (1+ ε)} ∩ {|di − t i|< bt i}

�

+ Pr
�

|di − t i| ≥ bt i

�

=0+ Pr
�

|di − t i| ≥ bt i

�

≤e
− (bti )

2

2(ti+bti/3)

≤e
− (bti )

2

2(ti+ti )

=e−
b2 ti

4

=e−
9 ln n

4

=
1

n9/4
.

So

Pr
�

max
1≤i≤n

t i

di
> (1+ ε)

�

≤
1

n5/4
.

Then we have
∞
∑

n=1

Pr
�

max
1≤i≤n

t i

di
> (1+ ε)

�

<∞.

By Lemma 3.5, we have

Pr
�

lim sup
n→∞

max
1≤i≤n

t i

di
> (1+ ε)

�

= 0.
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i.e.,

lim sup
n→∞

t i

di
≤ 1.

Then we have

|z|=
� n
∑

i=1

|x i|2
t i

di

�
1
2

≤ max
1≤i≤n

� t i

di

�
1
2 ·
�

n
∑

i=1

|x i|2
�

1
2 = max

1≤i≤n

� t i

di

�
1
2 ≤ 1,

and

|y|=
� n
∑

i=1

|x i|2
�p

t i −
p

di
p

di

�2� 1
2

≤ max
1≤i≤n

�

(
p

t i −
p

di)2

di

�
1
2

·
� n
∑

i=1

|x i|2
�

1
2

= max
1≤i≤n

�

(t i − di)2

di(
p

t i +
p

di)2

�
1
2

≤ max
1≤i≤n

�

(t i − di)2

t i(
p

t i +
p

t i)2

�
1
2

= max
1≤i≤n

�

(t i − di)2

4t2
i

�
1
2

= max
1≤i≤n

|t i − di|
2t i

≤ max
1≤i≤n

3
p

t i ln n

2t i

= max
1≤i≤n

3

2

È

ln n

t i

=o(1),

where the final equality holds since t i

ln n
= (n−1)(2p−p2)/ ln n→∞. Hence,

using Theorem 5.2, we obtain

‖Bn‖ ≤‖Rn‖ sup
|x |=1
(|y|+ |y||z|)
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≤o(‖Rn‖)

≤o
�

(1+ o(1))
2σ

δ

p
n
�

.

Recall that almost surely F
δ
σ
p

n Rn(x) converges to the standard semicircle dis-
tribution F(x) with density φ(x) as n→∞. Recall that

Cn = Rn+ Bn.

Then by Lemma 5.3, we have

L
�

F
δ
σ
p

n Cn , F
δ
σ
p

n Rn
�

≤
δ

σ
p

n
‖Bn‖ ≤

δ

σ
p

n
o
�

(1+ o(1))
2σ

δ

p
n
�

→ 0.

This implies that the LSDs of δ
σ
p

n
Cn and δ

σ
p

n
Rn are the same. Thus, by The-

orem 3.9, almost surely, F
δ
σ
p

n Cn(x) converges weakly to the standard semi-
circle distribution F(x) with density φ(x) as n→∞. Recall that

Ln =In− Cn− D
− 1

2
n EHnD

− 1
2

n

=In− Cn− D
− 1

2
n p2(Jn− In)D

− 1
2

n .

By Lemma 3.6, we have








F
δ
σ
p

n (In−Ln+D
− 1

2
n p2 InD

− 1
2

n )− F
δ
σ
p

n Cn










=







F
δ
σ
p

n (In−Ln+p2D−1
n )− F

δ
σ
p

n Cn










≤
1

n
rank

� δ

σ
p

n
D
− 1

2
n p2JnD

− 1
2

n

�

≤
1

n
rank(Jn)

=
1

n
→0.

This implies that the LSDs of δ
σ
p

n
(In−Ln+p2D−1

n ) and δ
σ
p

n
Cn are the same.
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By Lemma 5.3, we have

L

�

F
δ
σ
p

n

�

In−Ln+D
− 1

2
n p2 InD

− 1
2

n

�

, F
δ
σ
p

n

�

In−Ln+(EDn)
− 1

2 p2 In(EDn)
− 1

2

��

≤
δ

σ
p

n
p2‖D−1

n − (EDn)
−1‖

=
δ

σ
p

n
p2 max

1≤i≤n

�

�

�

1

di
−

1

t i

�

�

�

=
δ

σ
p

n
p2 max

1≤i≤n

|t i − di|
t idi

≤
1

σ
p

n
p2 max

1≤i≤n

|t i − di|
t i

≤
1

σ
p

n
p2 max

1≤i≤n

3
p

t i ln n

t i

=
1

σ
p

n
p2 max

1≤i≤n
3

È

ln n

t i

=o(1),

where the final equality holds since t i

ln n
= (n− 1)(2p− p2)/ ln n→∞. This

implies that the LSDs of δ
σ
p

n
(In−Ln+ p2D−1

n ),
δ
σ
p

n
(In−Ln+ p2(EDn)−1),

and δ
σ
p

n
Cn are the same.

By Lemma 5.3, we have

L
�

F
δ
σ
p

n (In−Ln+p2(EDn)−1), F
δ
σ
p

n (In−Ln)
�

≤
δ

σ
p

n
p2‖(EDn)

−1‖

=
δ

σ
p

n
p2 1

δ

=
p2

σ
p

n

→0.

This implies that the LSDs of δ
σ
p

n
(In −Ln + p2(EDn)−1) and δ

σ
p

n
(In −Ln)
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are the same.

So the LSDs of δ
σ
p

n
(In − Ln) and δ

σ
p

n
Cn are the same. Equivalently,

almost surely F
δ
σ
p

n (In−Ln)(x) converges weakly to the standard semicircle
distribution F(x) with density φ(x) as n→∞. This completes the proof.



Chapter 6

The spectra of Hn and Ln for
general random mixed graphs

In this chapter, we study the spectra of the Hermitian adjacency matrix and
the normalized Hermitian Laplacian matrix of general random mixed graphs,
i.e., in which all arcs are chosen independently with different probabilities
(and an edge is regarded as two oppositely oriented arcs joining the same
pair of vertices). For our first main result, we derive a new probability in-
equality and apply it to obtain an upper bound on the eigenvalues of the
Hermitian adjacency matrix. Our second main result shows that the eigen-
values of the normalized Hermitian Laplacian matrix can be approximated
by the eigenvalues of a closely related weighted expectation matrix, with er-
ror bounds depending on the minimum expected degree of the underlying
undirected graph.

6.1 Preliminaries and auxiliary results

We start with some additional terminology and notation that we will use
throughout the chapter.

99
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6.1.1 Additional terminology and notation

We will use the notation A� 0 to indicate that A is positive semidefinite, i.e.,
A ∈ Cn×n

Herm and its eigenvalues are nonnegative, and use the notation A � 0
to indicate that A is positive definite, i.e., A ∈ Cn×n

Herm and its eigenvalues are
positive, where 0 is the zero matrix of the same size as A. With � we denote
the positive semidefinite order on Hermitian matrices, as follows. Given two
Hermitian matrices A and B, we use A� B or B � A to indicate that B−A� 0.

Let f : C → C be an entire analytic function with a power-series repre-
sentation f (x)≡

∑∞
n=0 an xn (x ∈ C). If all an are real, the expression:

f (A)≡
∞
∑

n=0

anAn (A∈ Cd×d
Herm)

corresponds to a mapping from Cd×d
Herm to itself. We note that notions of

convergence are as in [74]. The Spectral Mapping Theorem states that each
eigenvalue of f (A) is equal to f (λ) with λ ∈ spec(A), i.e.,

spec( f (A)) = f (spec(A)). (6.1)

In the sequel, we use the following lemma applied to the matrix exponential,
to be defined shortly.

Lemma 6.1 (Lieb [113]). Let f , g : R → R, and suppose there is a subset
S ⊆ R with f (a) ≤ g(a) for all a ∈ S. If A is a Hermitian matrix with all
eigenvalues contained in S, then f (A)� g(A).

In our proofs, we make use of the matrix exponential, defined as exp(A) =
∑∞

n=0
1
n!

An. From the Spectral Mapping Theorem we know that exp(A) is
always positive definite when A is Hermitian, and that exp(A) converges for
all choices of A. By Lemma 6.1, we have:

for any A∈ Cd×d
Herm, I + A� eA. (6.2)
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Moreover, we shall require brief use of the matrix logarithm. The matrix
logarithm is defined as the functional inverse of the matrix exponential:

for any A∈ Cd×d
Herm, log(eA) := A. (6.3)

This formula defines the logarithm of a positive definite matrix. In general,
if B = exp(A), we say that A is the logarithm of B. As our matrices will be
Hermitian, it is sufficient for uniqueness of this function to require that the
logarithm also be Hermitian. The matrix logarithm is monotone with respect
to the positive semidefinite order (See [17]):

for any A, B ∈ Cd×d
Herm, if A� 0, B � 0 and A� B, then log(A)� log(B). (6.4)

Any notation not mentioned here pertaining to matrices is as in [74].

6.1.2 Auxiliary concentration results

We shall require the following concentration inequalities in order to prove
our main theorems. Various matrix concentration inequalities have been de-
rived by many authors, including Ahlswede and Winter [1], Cristofides and
Markström [37], Oliveira [98], Gross [65], Recht [109], Tropp [113], and
Chung and Radcliffe [34]. In [34], Chung and Radcliffe give a short proof for
the following relatively simple version that is particularly suitable for random
graphs.

Theorem 6.2 ( [34]). Let X1, X2, . . . , Xm be independent random n× n Her-
mitian matrices. Moreover, assume that ‖X i − E(X i)‖ ≤ c for all i. Let X =
∑m

i=1 X i . Then for any a > 0,

Pr(‖X −E(X )‖ ≥ a)≤ 2n exp
�

−
a2

2‖
∑m

i=1 Var(X i)‖+ 2ac/3

�

.

A strengthened version of Theorem 6.2 that we need for our proof in
Section 6.2, is as follows.
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Theorem 6.3. Let X1, X2, . . . , Xm be independent random n×n Hermitian ma-
trices. Moreover, assume that ‖X i‖ ≤ c for all i. Let X =

∑m
i=1 X i . Then, for

a > ‖E(X )‖ :

Pr(λmax(X )≥ a)≤ n exp

�

−
(a−‖E(X )‖)2

2‖
∑m

i=1E(X
2
i )‖+

2c
3
(a−‖E(X )‖)

�

.

In particular, for a > ‖E(X )‖ :

Pr(‖X‖ ≥ a)≤ 2n exp

�

−
(a−‖E(X )‖)2

2‖
∑m

i=1E(X
2
i )‖+

2c
3
(a−‖E(X )‖)

�

. (6.5)

Before we present our proof of Theorem 6.3, we will first show that The-
orem 6.3 implies Theorem 6.2. For this purpose, let X i (1 ≤ i ≤ m) be as
in Theorem 6.2. Let X ′i = X i − E(X i) and X ′ =

∑m
i=1 X ′i = X − E(X ). Then

E(X ′) = 0. From the hypothesis of Theorem 6.2, we see that

‖X ′i‖ ≤ c for all i ∈ {1, . . . , m}.

We also have















m
∑

i=1

E(X ′2i )
















=
















m
∑

i=1

E(X i −E(X i))
2
















=
















m
∑

i=1

Var(X i)
















.

Applying Theorem 6.3, we get that for a > 0= ‖E(X ′)‖,

Pr(‖X −E(X )‖ ≥ a) = Pr(‖X ′‖ ≥ a)

≤ 2n exp

�

−
(a−‖E(X ′)‖)2

2‖
∑m

i=1E(X
′2
i )‖+

2c
3
(a−‖E(X ′)‖)

�

= 2n exp

�

−
a2

2‖
∑m

i=1 Var(X i)‖+ 2ac/3

�

.

This shows that Theorem 6.3 implies Theorem 6.2.
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6.1.3 The proof of Theorem 6.3

We are now going to prove Theorem 6.3. For our proof, we will rely on
Lemma 6.1 and the following known result.

Lemma 6.4 ( [113]). Consider a finite sequence {X i}mi=1 of independent, ran-
dom, Hermitian matrices. Then

E
�

Tr

�

exp

� m
∑

i=1

θX i

���

≤ Tr

�

exp

� m
∑

i=1

logE(exp(θX i))

��

for any constant θ ∈ R.

Proof of Theorem 6.3. We define

g(x) = 2
∞
∑

k=2

xk−2

k!
=

2(ex − 1− x)
x2 ,

and first show the following facts about g, followed by short justifications for
the statements.

• g(0) = 1. In fact,

g(0) = lim
x→0

2(ex − 1− x)
x2 = lim

x→0

2(ex − 1)
2x

= lim
x→0

ex

1
= 1.

• g(x) is monotone increasing for x ≥ 0. Note that for x 6= 0, g ′(x) =
2x−3((x − 2)ex + x + 2), and so it suffices to show that h(x) = (x −
2)ex + x + 2 satisfies h(x) ≥ 0 for all x ∈ R. Clearly, h(0) = 0 and
h′(x) = (x −1)ex +1. Hence, h′(0) = 0 and h′′(x) = xex , so h′′(x)< 0
for x < 0 and h′′(x) > 0 for x > 0. Therefore, h′(x) is monotone
decreasing in x ∈ (−∞, 0] and h′(x) is monotone increasing in x ∈
(0,+∞). So, h′(x) ≥ h′(0) = 0 for all x ∈ R. Thus, h(x) is monotone
increasing for all x ∈ R. Indeed, h(x) ≥ h(0) = 0 for all x ∈ R, as
required.

• g(x) ≤ 1 for x < 0. In fact, g ′(x) = 2x−3h(x) ≤ 0 if x < 0. So, the
function g is decreasing for x < 0. Thus, g(x)≤ g(0) = 1 for x < 0.
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• for x < 3, using k!≥ 2 · 3k−2, we obtain

g(x) = 2
∞
∑

k=2

xk−2

k!
≤
∞
∑

k=2

xk−2

3k−2
=

1

1− x/3
. (6.6)

Recalling that g(x) is monotone increasing for x ≥ 0, for 0 < x ≤ c,
we get g(x) ≤ g(c). Now let X i (1 ≤ i ≤ m) be as in the hypothesis of
Theorem 6.3.

Given a real constant θ > 0, we have ‖θX i‖ ≤ θ c. Applying Lemma 6.1,
we obtain that g(θX i)� g(θ c)I . Therefore, noting that ex = 1+x+ 1

2
x2 g(x),

we have

eθX i = I + θX i +
1

2
θ2 g(θX i)X

2
i

� I + θX i +
1

2
θ2 g(θ c)X 2

i .
(6.7)

We now use that the expectation respects the positive semidefinite order (See
[113]), i.e.,

for any A, B ∈ Cd×d
Herm, A� B almost surely implies EA� EB. (6.8)

Using (6.2), (6.7), and (6.8), we obtain

E(eθX i )� E(I + θX i +
1

2
θ2 g(θ c)X 2

i )

= I + θE(X i) +
1

2
θ2 g(θ c)E(X 2

i )

� eθE(X i)+
1
2
θ2 g(θ c)E(X 2

i ).

(6.9)

Next, we prove the following claim related to the trace of the matrix
exponential.

Claim 1. For the given matrices X i ,

E
�

Tr

�

exp

� m
∑

i=1

θX i

���

≤ Tr

�

exp

�

θE(X ) +
1

2
θ2 g(θ c)

m
∑

i=1

E(X 2
i )

��

.

(6.10)
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Proof of Claim 1. Here we work with the trace of the matrix exponential,
Tr(exp) : A 7→ Tr(exp(A)). This trace exponential function is monotone with
respect to the positive semidefinite order, i.e.,

∀A, B ∈ Cd×d
Herm, A� B implies Tr(exp(A))≤ Tr(exp(B)). (6.11)

See, e.g., [103], Section 2 for a short proof of this fact. Now, using Lemma
6.4, (6.3), (6.4), (6.9) and (6.11), we obtain

E
�

Tr

�

exp

� m
∑

i=1

θX i

���

≤Tr

�

exp

� m
∑

i=1

logE(exp(θX i))

��

≤Tr

�

exp

� m
∑

i=1

log eθE(X i)+
1
2
θ2 g(θ c)E(X 2

i )

��

=Tr

�

exp

� m
∑

i=1

�

θE(X i) +
1

2
θ2 g(θ c)E(X 2

i )
�

��

=Tr

�

exp

�

θE(X ) +
1

2
θ2 g(θ c)

m
∑

i=1

E(X 2
i )

��

,

as required.

Note that exp(θλmax(X )) is a random variable. Suppose that {eθai} is the
set of all values that exp(θλmax(X )) can take. Then, for any real constant
a > 0,

E
�

exp(θλmax(X ))
�

=
∑

i

eθai Pr(exp(θλmax(X )) = eθai )

=
∑

i

eθai Pr(λmax(X ) = ai)

≥
∑

ai≥a

eθai Pr(λmax(X ) = ai)

≥ eθa
∑

ai≥a

Pr(λmax(X ) = ai)

≥ eθa Pr(λmax(X )≥ a).

(6.12)



106 Chapter 6. The spectra of Hn and Ln for general random mixed graphs

By (6.1), for any s ≥ 0, and for any A ∈ Cd×d
Herm, the largest eigenvalue of esA

is esλmax (A) and all eigenvalues of esA are nonnegative. Hence,

exp(sλmax(A)) = λmax(exp(sA))≤ Tr(exp(sA)). (6.13)

We need two more inequalities from matrix analysis, where the first one
is usually referred to as the Golden-Thompson Inequality (See, e.g., [16]), and
the second one can be found, e.g., in [124].

∀d ∈ {1, 2,3, . . .}, and any A, B ∈ Cd×d
Herm, Tr(eA+B)≤ Tr(eAeB). (6.14)

If A and B are n× n positive semidefinite Hermitian matrices, then

0≤ Tr(A · B)≤ Tr(A) ·λmax(B)≤ Tr(A) · Tr(B). (6.15)

Now, given a real constant a > ‖E(X )‖, for every real constant θ > 0,
using (6.10), (6.12), (6.13), (6.14), and (6.15), we obtain

Pr(λmax(X )≥ a)

≤e−θaE
�

eθλmax(X )
�

≤e−θaE
�

Tr(exp(θX )
�

=e−θaE
�

Tr

�

exp

� m
∑

i=1

θX i

���

≤e−θaTr

�

exp

�

θE(X ) +
1

2
θ2 g(θ c)

m
∑

i=1

E(X 2
i )

��

≤e−θaTr

�

exp
�

θE(X )
�

· exp

�

1

2
θ2 g(θ c)

m
∑

i=1

E(X 2
i )

��

≤e−θaλmax

�

exp
�

θE(X )
��

· Tr

�

exp

�

1

2
θ2 g(θ c)

m
∑

i=1

E(X 2
i )

��

≤e−θaλmax

�

exp
�

θE(X )
��

· nλmax

�

exp

�

1

2
θ2 g(θ c)

m
∑

i=1

E(X 2
i )

��
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=ne−θa
�

exp
�

θλmax(E(X ))
��

· exp

�

1

2
θ2 g(θ c)λmax

� m
∑

i=1

E(X 2
i )

��

=n exp

�

− θa+ θλmax(E(X )) +
1

2
θ2 g(θ c)λmax

� m
∑

i=1

E(X 2
i )

��

≤n exp

�

− θa+ θ‖E(X )‖+
1

2
θ2 g(θ c)













m
∑

i=1

E(X 2
i )













�

.

The final inequality holds since ‖E(X )‖ ≥ λmax(E(X )) and









∑m
i=1E(X

2
i )







 ≥

λmax(
∑m

i=1E(X
2
i )).

Recall that we assume a > ‖E(X )‖. Now take θ = a−‖E(X )‖
‖
∑m

i=1 E(X
2
i )‖+

c
3
(a−‖E(X )‖) .

Then, clearly θ c < 3. Using (6.6), we obtain

Pr(λmax(X )≥ a)

≤n exp

�

− θa+ θ‖E(X )‖+
1

2
θ2 g(θ c)













m
∑

i=1

E(X 2
i )













�

≤n exp

�

− θa+ θ‖E(X )‖+
θ2‖

∑m
i=1E(X

2
i )‖

2(1− θ c
3
)

�

=n exp

�

− θ
�

a−‖E(X )‖−
θ‖
∑m

i=1E(X
2
i )‖

2(1− θ c
3
)

��

=n exp

�

− θ
�

a−‖E(X )‖−
θ‖
∑m

i=1E(X
2
i )‖

2
�

1− a−‖E(X )‖
‖
∑m

i=1 E(X
2
i )‖+

c
3
(a−‖E(X )‖) ·

c
3

�

��

=n exp

�

− θ
�

a−‖E(X )‖−
θ‖
∑m

i=1E(X
2
i )‖

2‖
∑m

i=1 E(X
2
i )‖

‖
∑m

i=1 E(X
2
i )‖+

c
3
(a−‖E(X )‖)

��

=n exp

�

− θ
�

a−‖E(X )‖−
θ

2

�












m
∑

i=1

E(X 2
i )













+
c

3
(a−‖E(X )‖)

���

=n exp

�

− θ
�

a−‖E(X )‖−
1

2
(a−‖E(X )‖)

��

=n exp

�

−
θ

2
(a−‖E(X )‖)

�



108 Chapter 6. The spectra of Hn and Ln for general random mixed graphs

=n exp

�

−
(a−‖E(X )‖)2

2‖
∑m

i=1E(X
2
i )‖+

2c
3
(a−‖E(X )‖)

�

. (6.16)

This proves the first statement of Theorem 6.3. To obtain the norm bound
(6.5) in the second statement of Theorem 6.3, recall that for any Y ∈ Cn×n

Herm,

‖Y ‖=max{λmax(Y ),−λmin(Y )}=max{λmax(Y ),λmax(−Y )}.

Using this, we next apply the inequality (6.16) to the sequence {−X i}, i.e.,
we replace the sequence {X i} by the sequence {−X i} in the above inequality
(6.16). We obtain

Pr(λmax(−X )≥ a)≤ n exp

�

−
(a−‖E(−X )‖)2

2‖
∑m

i=1E((−X i)2)‖+
2c
3
(a−‖E(−X )‖)

�

= n exp

�

−
(a−‖E(X )‖)2

2‖
∑m

i=1E(X
2
i )‖+

2c
3
(a−‖E(X )‖)

�

.

Applying the union bound to the estimates for λmax(X ) and −λmin(X ), we
obtain

Pr(‖X‖ ≥ a)≤ 2n exp

�

−
(a−‖E(X )‖)2

2‖
∑m

i=1E(X
2
i )‖+

2c
3
(a−‖E(X )‖)

�

.

This completes the proof of Theorem 6.3.

6.2 The spectrum of Hn

In this section, we give an upper bound on the eigenvalues of the Hermitian
adjacency matrix for general random mixed graphs. We use ∆(Γ(bGn(pi j)))
to denote the maximum expected degree of the underlying graph of bGn(pi j).
Hence, by straightforward calculations, we obtain the following expression:
∆(Γ(bGn(pi j))) =max1≤i≤n

∑n
j=1(pi j + p ji − pi j p ji). We can thus apply Theo-

rem 6.3 to obtain the following result.

Theorem 6.5. Let bGn(pi j) and Hn = (hi j) be defined as in Section 1.3, and let
∆ = ∆(Γ(bGn(pi j))). Let ε > 0 be an arbitrarily small constant, chosen such



6.2. The spectrum of Hn 109

that for n sufficiently large, ∆ > 4
9

ln(2n/ε). Then with probability at least
1− ε, for n sufficiently large, the eigenvalues of Hn satisfy

|λi(Hn)| ≤ max
1≤i≤n

n
∑

j=1

Æ

p2
i j p

2
ji + (pi j − p ji)2+ 2

p

∆ ln(2n/ε)

for all 1≤ i ≤ n.

Before presenting our proof of Theorem 6.5, we recall one more known
result that will be used in the sequel of the chapter.

Lemma 6.6 ( [74]). Let M = (mi j) be an n× n matrix. Then

ρ(M)≤min

¨

max
1≤i≤n

n
∑

j=1

|mi j|, max
1≤ j≤n

n
∑

i=1

|mi j|
«

.

We use EHn as shorthand for E(Hn), and note that it is obvious that
(EHn)i j = E(hi j) = pi j p ji + i(pi j − p ji).

Proof of Theorem 6.5. Let bGn(pi j) and Hn = (hi j) be defined as in Section
1.3, and let ∆=∆(Γ(bGn(pi j))) =max1≤i≤n

∑n
j=1(pi j + p ji − pi j p ji).

For the indices i and j with 1 ≤ i, j ≤ n, let H i j be the n× n matrix with
a 1 in the (i, j)-th position and a 0 everywhere else. Recall that hi j takes
value 1 with probability pi j p ji , value i with probability pi j(1− p ji), value −i
with probability (1− pi j)p ji , and value 0 with probability (1− pi j)(1− p ji).
So, h ji = hi j , i.e., h ji is the complex conjugate of hi j . Take X i j = hi jH

i j +
h jiH

ji = hi jH
i j + hi jH

ji . Then, Hn =
∑

1≤i< j≤n X i j . Now, we can apply
Theorem 6.3 to Hn if we derive a suitable upper bound c on ‖X i j‖. Note that
X i j (1 ≤ i < j ≤ n) are independent random n× n Hermitian matrices, and
that, with the choice c = 1,

‖X i j‖= ‖hi jH
i j + hi jH

ji‖= |hi j|< 1= c.

Before applying Theorem 6.3, we first perform some additional calculations
in order to obtain upper bounds for ‖

∑

1≤i< j≤nE(X
2
i j)‖ and ‖EHn‖.
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For all 1≤ i < j ≤ n, we have

E(X 2
i j) = E(hi jH

i j + hi jH
ji)2

= E[hi j · hi j](H
ii +H j j)

= E[|hi j|2](H ii +H j j)

= (pi j + p ji − pi j p ji)(H
ii +H j j).

We set pii = 0. Then,













∑

1≤i< j≤n

E(X 2
i j)













=













n
∑

i=1

� n
∑

j=1

(pi j + p ji − pi j p ji)

�

H ii













= max
i=1,...,n

n
∑

j=1

(pi j + p ji − pi j p ji)

= ∆.

Recall that (EHn)i j = Ehi j = pi j p ji + i(pi j − p ji), and in particular, EHn is a
Hermitian matrix. So, ‖EHn‖= ρ(EHn). By Lemma 6.6, we have

‖EHn‖= ρ(EHn)

≤min

¨

max
1≤i≤n

n
∑

j=1

|Ehi j|, max
1≤ j≤n

n
∑

i=1

|Ehi j|
«

≤ max
1≤i≤n

n
∑

j=1

Æ

p2
i j p

2
ji + (pi j − p ji)2.

Now, we take a = ‖EHn‖ +
p

4∆ ln(2n/ε). By the assumption that ∆ >
4
9

ln(2n/ε), we obtain that a − ‖EHn‖ < 3∆. Applying Theorem 6.3, and
using c = 1, we get

Pr(‖Hn‖ ≥ a)≤ 2n exp

�

−
(a−‖EHn‖)2

2‖
∑

1≤i< j≤nE(X
2
i j)‖+

2c
3
(a−‖EHn‖)

�

≤ 2n exp

�

−
4∆ ln(2n/ε)

4∆

�
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= ε.

Thus, with probability at least 1− ε, we have that for all 1≤ i ≤ n,

|λi(Hn)| ≤ ‖Hn‖

≤ a

= ‖EHn‖+
p

4∆ ln(2n/ε).

This completes the proof of Theorem 6.5.

6.3 The spectrum of Ln

In this section, we study the spectrum of the normalized Hermitian Lapla-
cian matrix of general random mixed graphs. We assume that V (bGn(pi j)) =
{v1, v2, . . . , vn}, and we let Dn = diag(d1, d2, . . . , dn) denote the diagonal ma-
trix in which di is the degree of the vertex vi in the underlying graph of
bGn(pi j). We let EDn denote the coordinate-wise expectation of Dn. Re-
call that Ln = In − D−1/2

n HnD−1/2
n denotes the normalized Hermitian Lapla-

cian matrix of bGn(pi j), where In denotes the n× n identity matrix. We let
δ(Γ(bGn(pi j))) denote the minimum expected degree of the underlying graph
of bGn(pi j). Hence, δ(Γ(bGn(pi j))) = min1≤i≤n

∑n
j=1(pi j + p ji − pi j p ji). Our

result can be stated as follows.

Theorem 6.7. Let bGn(pi j), Hn, Dn and Ln be defined as above, and let δ =
δ(Γ(bGn(pi j))). Let ε > 0 be an arbitrarily small constant. Then there exists a
constant k = k(ε) such that if δ > k ln n, then with probability at least 1− ε,
the eigenvalues of Ln and ÝLn satisfy

|λi(Ln)−λi(ÝLn)| ≤ 7

r

ln(4n/ε)
δ

for all 1≤ i ≤ n, where ÝLn = In− (EDn)−1/2(EHn)(EDn)−1/2.

Let G = (V (G), E0(G), E1(G)) be a mixed graph of order n. For brevity, we
write D for D(G), L for L(G) and L for L (G). Hence, L = I −D−

1
2 HD−

1
2 =
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D−1/2 LD−1/2. We are first going to show that L is positive semidefinite, by
deriving an alternative expression for x∗L x

x∗x
for an arbitrary nonzero complex

n× 1 column vector x . After that, we are going to expand the alternative
expression in order to obtain an upper bound for the eigenvalues ofL , using
Lemma 4.3.

In the following expansion, y = D−1/2 x , N(vi) denotes the neighborhood
of vi in the underlying graph Γ(G), and

∑

e=vi v j
denotes the sum over all

unordered pairs {vi , v j} for which vi and v j are adjacent in Γ(G).

x∗L x

x∗x
=

x∗D−1/2 LD−1/2 x

x∗x

=
y∗Ly

(D1/2 y)∗(D1/2 y)

=
y∗Ly

y∗D y

=

(y∗1 , y∗2 , . . . , y∗n)















d1 −h12 · · · −h1n

−h21 d2 · · · −h2n
...

...
. . .

...
−hn1 −hn2 · · · dn





























y1

y2
...
yn















(y∗1 , y∗2 , . . . , y∗n)















d1

d2
. . .

dn





























y1

y2
...
yn















=

∑

vi∈V (G) di|yi|2−
∑

vi 6=v j
hi j y∗i y j

∑

vi∈V (G) di|yi|2

=

∑

vi

∑

v j∈N(vi)
|y j|2−

∑

vi 6=v j
hi j y∗i y j

∑

vi∈V (G) di|yi|2

=

∑

e=vi v j
(|yi|2+ |y j|2)−

∑

e=vi v j
(hi j y∗i y j + h ji yi y∗j )

∑

vi∈V (G) di|yi|2

=

∑

e=vi v j
(|yi|2+ |y j|2)−

∑

e=vi v j
(hi j y∗i y j + h∗i j yi y∗j )

∑

vi∈V (G) di|yi|2
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=

∑

e=vi v j
(yi − hi j y j)(y∗i − h∗i j y∗j )
∑

vi∈V (G) di|yi|2

=

∑

e=vi v j
(yi − hi j y j)(yi − hi j y j)∗
∑

vi∈V (G) di|yi|2

=

∑

e=vi v j
|yi − hi j y j|2

∑

vi∈V (G) di|yi|2
.

Before we continue our calculations, we note that the derived expres-
sion for x∗L x

x∗x
implies that L is positive semidefinite. Next, we are going to

expand the obtained expression for x∗L x
x∗x

, using the known fact that

| f (x)− f (y)|2 ≤ 2(| f (x)|2+ | f (y)|2), (6.16)

where equality holds if and only if f (x) =− f (y).

We split
∑

e=vi v j
in the above expression by distinguishing undirected

edges (or pairs of oppositely oriented arcs), denoted as vi ↔ v j , and arcs,
denoted as vi → v j if the orientation is from vi to v j , and as vi ← v j if the
orientation is from v j to vi . Adopting this notation, and using (6.16), we
obtain

∑

e=vi v j

|yi − hi j y j|2 =
∑

vi↔v j

|yi − y j|2+
∑

vi→v j or vi←v j

|yi − hi j y j|2

≤
∑

vi↔v j

2(|yi|2+ |y j|2) +
∑

vi→v j or vi←v j

2(|yi|2+ |hi j y j|2)

=
∑

vi↔v j

2(|yi|2+ |y j|2) +
∑

vi→v j or vi←v j

2(|yi|2+ |y j|2)

= 2

�

∑

vi↔v j

(|yi|2+ |y j|2) +
∑

vi→v j or vi←v j

(|yi|2+ |y j|2)
�

.

We also obtain

∑

vi∈V (G)

di|yi|2 =
∑

vi

∑

v j∈N(vi)

|y j|2



114 Chapter 6. The spectra of Hn and Ln for general random mixed graphs

=
∑

e=vi v j

(|yi|2+ |y j|2)

=
∑

vi↔v j

(|yi|2+ |y j|2) +
∑

vi→v j or vi←v j

(|yi|2+ |y j|2).

Therefore, using the latter two expressions and applying Lemma 4.3, we get
the following upper bound on the eigenvalues of L .

λi(L )≤ sup
x

∑

e=vi v j
|yi − hi j y j|2

∑

vi∈V (G) di|yi|2
≤ 2.

This shows that the normalized Hermitian Laplacian spectrum is in [0, 2],
and hence that ‖I −L‖ ≤ 1. We will use this conclusion near the end of the
proof of Theorem 6.7. We now have all the ingredients to present our proof
of Theorem 6.7.

Proof of Theorem 6.7. Let bGn(pi j) and Hn = (hi j) be defined as in Section
1.3, and let δ = δ(Γ(bGn(pi j))) =min1≤i≤n

∑n
j=1(pi j + p ji − pi j p ji).

For each vertex vi of bGn(pi j), we let di denote the degree of vi in the
underlying graph Γ(bGn(pi j)), and we use t i = E(di) to denote the expected
degree of vi , so EDn = diag(E(d1), . . . ,E(dn)) = diag(t1, . . . , tn). This means
that the matrix ÝLn = In− (EDn)−1/2(EHn)(EDn)−1/2 can be seen as the “ex-
pected Laplacian matrix” of bGn(pi j). Let Cn = In − (EDn)−1/2Hn(EDn)−1/2.
Then, clearly

‖Ln−ÝLn‖ ≤ ‖Cn−ÝLn‖+ ‖Ln− Cn‖= ‖ÝLn− Cn‖+ ‖Cn−Ln‖.

In the next stages, we derive bounds for each of the last two terms separately.

We first consider ÝLn− Cn = (EDn)−1/2(Hn−EHn)(EDn)−1/2. Let

Yi j = (EDn)
−1/2[(hi j −Ehi j)H

i j + (h ji −Eh ji)H
ji](EDn)

−1/2

=
(hi j −Ehi j)H i j + (hi j −Ehi j)H ji

p

t i t j
.

Then, ÝLn− Cn =
∑

1≤i< j≤n Yi j . We are going to apply Theorem 6.2 to obtain
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an upper bound for ‖ÝLn − Cn‖. Before we can do so, we have to perform
some preliminary calculations in order to obtain an upper bound c0 for ‖Yi j−
E(Yi j)‖, and a suitable upper bound for ‖

∑

1≤i< j≤n Var(Yi j)‖. First of all, note
that for all 1≤ i < j ≤ n,

E(Yi j) = E
�

(hi j −Ehi j)H i j + (hi j −Ehi j)H ji

p

t i t j

�

= 0.

We set E(Yii) = 0. Then,

‖Yi j −E(Yi j)‖= ‖Yi j‖

=
‖(hi j −Ehi j)H i j + (hi j −Ehi j)H ji‖

p

t i t j

=
‖(hi j −Ehi j)H i j + (hi j −Ehi j)H ji‖

p

t i t j

=
|hi j −Ehi j|
p

t i t j

=
|hi j − [pi j p ji + i(pi j − p ji)]|

p

t i t j

=































p

(1−pi j p ji)2+(pi j−p ji)2p
t i t j

, for hi j = 1,
p

(pi j p ji)2+(1−(pi j−p ji))2p
t i t j

, for hi j = i,
p

(pi j p ji)2+(1+(pi j−p ji))2p
t i t j

, for hi j =−i,
p

(pi j p ji)2+(pi j−p ji)2p
t i t j

, for hi j = 0.

≤























p
2p

t i t j
, for hi j = 1,

p
4p

t i t j
, for hi j = i,

p
4p

t i t j
, for hi j =−i,

1p
t i t j

, for hi j = 0.

≤
2

p

t i t j
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≤
2

δ
.

So, we are going to use c0 =
2
δ

. Next, we consider Var(Yi j) for all 1≤ i < j ≤
n, and obtain

Var(Yi j) = E((Yi j −E(Yi j))
2

= EY 2
i j

=
E[(hi j −Ehi j)H i j + (hi j −Ehi j)H ji]2

t i t j

=
E[(hi j −Ehi j)(hi j −Ehi j)](H ii +H j j)

t i t j

=
E[(hi j −Ehi j)(hi j −Ehi j)](H ii +H j j)

t i t j

=
Var(hi j)(H ii +H j j)

t i t j

=
(pi j + p ji + pi j p ji − p2

i j − p2
ji − p2

i j p
2
ji)(H

ii +H j j)

t i t j
.

We also have Var(Yii) = EY 2
ii = 0 as pii = 0. Therefore,
















∑

1≤i< j≤n

Var(Yi j)
















=
















∑

1≤i< j≤n

EY 2
i j
















=
















n
∑

i=1

n
∑

j=1

(pi j + p ji + pi j p ji − p2
i j − p2

ji − p2
i j p

2
ji)H

ii

t i t j
















= max
i=1,...,n

n
∑

j=1

pi j + p ji + pi j p ji − p2
i j − p2

ji − p2
i j p

2
ji

t i t j

= max
i=1,...,n

n
∑

j=1

pi j + p ji − pi j p ji + 2pi j p ji − p2
i j − p2

ji − p2
i j p

2
ji

t i t j

= max
i=1,...,n

n
∑

j=1

pi j + p ji − pi j p ji − (pi j − p ji)2− p2
i j p

2
ji

t i t j
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≤ max
i=1,...,n

n
∑

j=1

pi j + p ji − pi j p ji

t i t j

≤ max
i=1,...,n

1

δ

n
∑

j=1

pi j + p ji − pi j p ji

t i

=
1

δ
.

For the final equality, note that di =
∑n

j=1 |hi j|, so t i = E(di) =
∑n

j=1E|hi j|=
∑n

j=1[pi j p ji + pi j(1 − p ji) + (1 − pi j)p ji] =
∑n

j=1(pi j + p ji − pi j p ji). Now,

in order to apply Theorem 6.2, we take a =
q

4 ln(4n/ε)
δ

, and we let k be
large enough so that δ > k ln n implies a < 1 (in particular, choosing k >
4(1 + ln(4/ε)) is sufficient). Now, noting that E(ÝLn − Cn) = 0, applying
Theorem 6.2, we obtain

Pr(‖ÝLn− Cn‖ ≥ a)≤ 2n exp

�

−
a2

2‖
∑

1≤i< j≤n Var(Yi j)‖+ 2c0a/3

�

≤ 2n exp

�

−
4 ln(4n/ε)

δ

2/δ+ 4a/3δ

�

= 2n exp

�

−
4 ln(4n/ε)
2+ 4a/3

�

≤ 2n exp

�

−
4 ln(4n/ε)

4

�

=
ε

2
.

So, with probability at least 1− ε
2
, ‖ÝLn − Cn‖ ≤ a. For the second term, we

first rewrite Cn−Ln, as follows.

Cn−Ln

=In− (EDn)
−1/2Hn(EDn)

−1/2− In+ D−1/2
n HnD−1/2

n

=D−1/2
n HnD−1/2

n − (EDn)
−1/2D1/2

n D−1/2
n HnD−1/2

n D1/2
n (EDn)

−1/2

=In−Ln− (EDn)
−1/2D1/2

n (In−Ln)D
1/2
n (EDn)

−1/2

=(In−Ln)− (In−Ln)D
1/2
n (EDn)

−1/2
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− (EDn)
−1/2D1/2

n (In−Ln)D
1/2
n (EDn)

−1/2+ (In−Ln)D
1/2
n (EDn)

−1/2

=(In−Ln)[In− D1/2
n (EDn)

−1/2]+

+ [In− (EDn)
−1/2D1/2

n ](In−Ln)D
1/2
n (EDn)

−1/2.

Recalling that ‖In −Ln‖ ≤ 1, we obtain the following expression for ‖Cn −
Ln‖.

‖Cn−Ln‖ ≤‖In−Ln‖‖In− D1/2
n (EDn)

−1/2‖

+ ‖In− (EDn)
−1/2D1/2

n ‖‖In−Ln‖‖D1/2
n (EDn)

−1/2‖

≤‖In− D1/2
n (EDn)

−1/2‖+ ‖In− (EDn)
−1/2D1/2

n ‖‖D
1/2
n (EDn)

−1/2‖.

Next, we are going to obtain an upper bound for ‖In − D1/2
n (EDn)−1/2‖. For

this, we will apply Lemma 5.4 to the random variables |hi j| (in the role of X i),
and using the observations that di =

∑n
j=1 |hi j|, and t i = E(di) =

∑n
j=1E|hi j|.

We first need some preparation in order to obtain upper bounds for |hi j| and
∑n

j=1 Var(|hi j|).
Obviously, |hi j| ≤ 1, so we can take c = 1, and

n
∑

j=1

Var(|hi j|) =
n
∑

j=1

[E(|hi j|2)− (E(|hi j|))2]

=
n
∑

j=1

[pi j + p ji − pi j p ji − (pi j + p ji − pi j p ji)
2]

≤
n
∑

j=1

(pi j + p ji − pi j p ji)

=
n
∑

j=1

E|hi j|

= t i .

Since we already used a above, with a =
q

4 ln(4n/ε)
δ

< 1, we are going to use

a b instead of an a when applying Lemma 5.4. We choose b =
p

3t i ln(4n/ε).

Then, since a =
q

4 ln(4n/ε)
δ

< 1 , t i ≥ δ > 4 ln(4n/ε), implying that b =
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p

3t i ln(4n/ε)< t i . Applying Lemma 5.4, we have for all i,

Pr(|di − t i| ≥ b)≤ e
− b2

2(ti+b/3) < e
− 3ti ln(4n/ε)

3ti =
ε

4n
.

This implies that with probability at least 1−o(1), for all 1≤ i ≤ n, |di− t i| ≤
b =

p

3t i ln(4n/ε).

Next, we use the known fact that |
p

x − 1| ≤ |x − 1| for any real number
x > 0. Taking x = di

t i
> 0, we obtain that with probability at least 1− ε

2
,

�

�

�

�

�

È

di

t i
− 1

�

�

�

�

�

≤
�

�

�

�

di

t i
− 1

�

�

�

�

=
|di − t i|

t i
≤

p

3t i ln(4n/ε)

t i
≤

r

3 ln(4n/ε)
δ

=

p
3

2
a.

Thus, we obtain

‖In− D1/2
n (EDn)

−1/2‖= max
i=1,2,...,n

�

�

�

�

�

È

di

t i
− 1

�

�

�

�

�

≤
p

3

2
a

with probability at least 1− ε
2
. So, with probability at least 1− ε

2
,

‖Cn−Ln‖ ≤ ‖In− D1/2
n (EDn)

−1/2‖+ ‖In− (EDn)
−1/2D1/2

n ‖‖D
1/2
n (EDn)

−1/2‖

≤
p

3

2
a+

p
3

2
a
�

p
3

2
a+ 1

�

=
3

4
a2+

p
3a.

Combining the above bound with the bound we obtained for ‖Cn−ÝLn‖, and
using that a < 1, we conclude that with probability at least 1− ε,

‖Ln−ÝLn‖ ≤ ‖Cn−ÝLn‖+ ‖Cn−Ln‖

≤ a+
3

4
a2+

p
3a

≤
7

2
a

=
7

2

r

4 ln(4n/ε)
δ
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= 7

r

ln(4n/ε)
δ

.

For the final step in our proof, we use Lemma 2.7, which states that for
Hermitian matrices M and N , maxk |λk(M)−λk(N)| ≤ ‖M −N‖. Thus, with
probability at least 1− ε, we have that for all 1≤ i ≤ n,

|λi(Ln)−λi(ÝLn)| ≤ ‖Ln−ÝLn‖ ≤ 7

r

ln(4n/ε)
δ

.

This completes the proof of Theorem 6.7.



Chapter 7

The spectra of Sn and RS for
random oriented graphs

In this chapter we study the spectra of the skew adjacency matrix and the
skew Randić matrix for random oriented graphs. In particular, we apply a
probability inequality to deduce upper bounds for the skew spectral radius
and skew Randić spectral radius of random oriented graphs.

7.1 Preliminaries

Previously, various matrix concentration inequalities for random matrices
have been derived by Tropp [113]. Here, we only need to recall the fol-
lowing inequality in order to prove our main theorems.

Theorem 7.1 (Tropp [113]). Let {Zk}mk=1 be a finite sequence of independent,
random matrices with dimensions n1 × n2. Assume that each random matrix
satisfies

E(Zk) = 0 and ‖Zk‖ ≤ c almost surely.

Define

ω2 =max

¨












∑

k

E(ZkZ∗k)













,













∑

k

E(Z∗k Zk)













«

.
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Then for any a ≥ 0,

Pr
�









∑

k

Zk








≥ a
�

≤ (n1+ n2) · exp
�

−
ω2

c2 · h
� ac

ω2

��

≤ (n1+ n2) · exp
�

−
a2/2

ω2+ ac/3

�

≤







(n1+ n2) · exp
�

− 3a2

8ω2

�

, for a ≤ω2/c;

(n1+ n2) · exp
�

− 3a
8c

�

, for a ≥ω2/c.

Here, the function h(u) := (1+ u) ln(1+ u)− u for u≥ 0.

7.2 The spectrum of Sn

In this section we study the spectrum of the skew adjacency matrix for ran-
dom oriented graphs. In particular, we derive an upper bound for their skew
spectral radius.

Let Gσn (pi j) be a random oriented graph of order n, and let Sn = (si j)n×n

be the skew adjacency matrix of Gσn (pi j) as described in Section 1.4, where
pi j is a function of n such that 0 < pi j < 1. We use ∆(Γ(Gσn (pi j))) to de-
note the maximum expected degree of the underlying graph Γ(Gσn (pi j)) of
Gσn (pi j), Hence, by straightforward calculations, we obtain the following ex-
pression: ∆(Γ(Gσn (pi j))) = maxi=1,...,n

∑n
j=1 pi j . We can apply Theorem 7.1

to obtain the following result.

Theorem 7.2. Let Gσn (pi j) and Sn = (si j) be defined as in Section 1.4, and let
∆ = ∆(Γ(Gσn (pi j))). Let ε > 0 be an arbitrarily small constant, chosen such
that for n sufficiently large, ∆ > 4

9
ln(2n/ε). Then with probability at least

1− ε, for n sufficiently large, the skew spectral radius of Gσn (pi j) satisfies

ρ(Sn)≤ 2
p

∆ ln(2n/ε).

Proof of Theorem 7.2. Let Gσn (pi j) and Sn = (si j) be defined as in Section
1.4, and let ∆=∆(Γ(Gσn (pi j))) =maxi=1,...,n

∑n
j=1 pi j .
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For the indices i and j with 1≤ i 6= j ≤ n, let S i j be the n× n matrix with
a 1 in the (i, j)-th position, a −1 in the ( j, i)-th position, and a 0 everywhere
else. Recall that si j takes value 1 with probability

pi j

2
, −1 with probability

pi j

2
,

and 0 with probability 1− pi j . Take X i j = si jS
i j . Then Sn =

∑

1≤i< j≤n X i j .
Note that X i j (1≤ i < j ≤ n) are independent random n× n matrices, with

E(X i j) = E(si j)S
i j = 0.

Now, we can apply Theorem 7.1 to Sn if we derive an upper bound c on ‖X i j‖.
With the choice c = 1,

‖X i j‖= ‖si jS
i j‖

= |si j|‖S i j‖

≤ ‖S i j‖

=
p

λmax((S i j)∗S i j)

=
p

λmax((S i j)T S i j)

=
p

λmax(E i + E j)

= 1

= c,

where (S i j)T is the transpose of S i j , and E i is the matrix with a 1 in the
(i, i)-th position, and a 0 everywhere else. Before applying Theorem 7.1, we
first perform some additional calculations in order to obtain upper bounds
for ‖

∑

1≤i< j≤nE[X i j(X i j)∗]‖ and ‖
∑

1≤i< j≤nE[X
∗
i j(X i j)]‖.

For all 1≤ i < j ≤ n, we have

E[(X i j)
∗X i j] = E[(si jS

i j)∗si jS
i j]

= E[s2
i j(S

i j)∗S i j]

= E[s2
i j(S

i j)T S i j]

= E(s2
i j) · (S

i j)T S i j

= pi j(E
i + E j).
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Similarly, we have
E[X i j(X i j)

∗] = pi j(E
i + E j).

We set pii = 0. Then,

ω2 =max
�












∑

1≤i< j≤n

E[(X i j)
∗X i j]













,













∑

1≤i< j≤n

E[X i j(X i j)
∗]













�

=













n
∑

i=1

� n
∑

j=1

pi j

�

E i













≤ max
i=1,...,n

n
∑

j=1

pi j

=∆.

Now, we take a =
p

4∆ ln(2n/ε). By the assumption that ∆ > 4
9

ln(2n/ε),

we obtain that a < 3∆. Applying Theorem 7.1, and using c = 1, we get

Pr(‖Sn‖ ≥ a)≤ 2n exp
�

−
a2

2∆+ 2a/3

�

≤ 2n exp
�

−
4∆ ln(2n/ε)

4∆

�

= ε.

Thus, with probability at least 1− ε, we have that for all 1≤ i ≤ n,

‖Sn‖ ≤ a = 2
p

∆ ln(2n/ε).

It is well known that all the eigenvalues of Sn are purely imaginary numbers.
Assume that λ1 = iµ1,λ2 = iµ2, . . . ,λn = iµn are all the eigenvalues of Sn,
where every µk (1 ≤ k ≤ n) is a real number and i is the imaginary unit.
Let eSn = (−i)Sn. Then eSn is an Hermitian matrix with eigenvalues exactly
µ1,µ2, . . . ,µn. Therefore,

‖Sn‖=‖ eSn‖

=ρ( eSn)
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= max
1≤i≤n

{|µi( eSn)|}

= max
1≤i≤n

{| − iλi(Sn)|}

= max
1≤i≤n

{|λi(Sn)|}

=ρ(Sn). (7.1)

Thus, with probability at least 1− ε, we have

ρ(Sn) = ‖Sn‖ ≤ 2
p

∆ ln(2n/ε).

This completes the proof.

7.3 The spectrum of RS

In this section we study the spectrum of the skew Randić matrix for random
oriented graphs. In particular, we derive an upper bound for their skew
Randić spectral radius.

Let V (Gσn (pi j)) = {v1, v2, . . . , vn}, and we let Dn = diag(d1, d2, . . . , dn) de-
note the diagonal matrix in which di is the degree of the vertex vi in the

underlying graph of Gσn (pi j). Recall that RS = D
− 1

2
n SnD

− 1
2

n denotes the skew
Randić matrix of Gσn (pi j). We let δ(Γ(Gσn (pi j))) denote the minimum ex-
pected degree of the underlying graph of Gσn (pi j). Hence, δ(Γ(Gσn (pi j))) =
mini=1,...,n

∑n
j=1 pi j . Our result is stated as follows.

Theorem 7.3. Let Gσn (pi j), Sn, Dn and RS be defined as above, and let δ =
δ(Γ(Gσn (pi j))). Let ε > 0 be an arbitrarily small constant. Then there exists a
constant k = k(ε) such that if δ > k ln n, then with probability at least 1− ε,
the skew Randíc spectral radius of RS satisfies

ρ(RS)≤
9

4

r

3 ln(4n/ε)
δ

.

Proof of Theorem 7.3. Let Gσn (pi j) and Sn = (si j) be defined as in Section
1.4, and let δ = δ(Γ(Gσn (pi j))) =mini=1,...,n

∑n
j=1 pi j .
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For each vertex vi of Gσn (pi j), we let di denote the degree of vi in the
underlying graph Γ(Gσn (pi j)), and we use t i = E(di) to denote the expected
degree of vi , so EDn = diag(E(d1),E(d2), . . . ,E(dn)) = diag(t1, t2, . . . , tn).
Let Bn = (EDn)−1/2Sn(EDn)−1/2. Then, clearly

‖RS‖= ‖RS − Bn+ Bn‖ ≤ ‖RS − Bn‖+ ‖Bn‖.

In the next stages, we derive bounds for each of the last two terms separately.

We first consider ‖Bn‖. Let

Yi j = (EDn)
−1/2(si jS

i j)(EDn)
−1/2

=
si jS

i j

p

t i t j
.

Then, Bn =
∑

1≤i< j≤n Yi j . We are going to apply Theorem 7.1 to obtain an
upper bound for ‖Bn‖. Before we can do so, we have to perform some prelim-
inary calculations in order to obtain an upper bound c0 for ‖Yi j‖, and suitable

upper bounds for









∑

1≤i< j≤nE[(Yi j)∗Yi j]







 and









∑

1≤i< j≤nE[Yi j(Yi j)∗]







. First
of all, note that for all 1≤ i < j ≤ n,

EYi j = E[(EDn)
−1/2(si jS

i j)(EDn)
−1/2]

= (EDn)
−1/2E(si jS

i j)(EDn)
−1/2

= E(si j)(EDn)
−1/2S i j(EDn)

−1/2

= 0.

We set E(Yii) = 0. Then,

‖Yi j‖=
‖si jS

i j‖
p

t i t j

≤
1

p

t i t j

≤
1

δ
.
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So, we can use c0 =
1
δ

. Next, we consider E[(Yi j)∗Yi j] and E[Yi j(Yi j)∗] for

1≤ i < j ≤ n, and obtain

E[(Yi j)
∗Yi j] = E

��

si jS
i j

p

t i t j

�∗ si jS
i j

p

t i t j

�

= E
�

s2
i j

t i t j
(S i j)∗S i j

�

= E
�

s2
i j

t i t j
(S i j)T S i j

�

=
1

t i t j
E[s2

i j] · (S
i j)T S i j

=
pi j

t i t j
(E i + E j).

Similarly, we have

E[Yi j(Yi j)
∗] =

pi j

t i t j
(E i + E j).

We also have E[(Yii)∗Yii] = 0 and E[Yii(Yii)∗] = 0 as pii = 0. Therefore,

ω2 =max

¨












∑

1≤i< j≤n

E[(Yi j)
∗Yi j]













,













∑

1≤i< j≤n

E[Yi j(Yi j)
∗]













«

=
















n
∑

i=1

n
∑

j=1

pi j E
i

t i t j
















= max
i=1,...,n

n
∑

j=1

pi j

t i t j

≤ max
i=1,...,n

1

δ

n
∑

j=1

pi j

t i

=
1

δ
.

For the final equality, we used that di =
∑n

j=1 |si j|, so t i = E(di) =
∑n

j=1E|si j|=
∑n

j=1 pi j . Now, in order to apply Theorem 7.1, we take a =
q

3 ln(4n/ε)
δ

and
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we let k be large enough so that δ > k ln n implies a < 1 (in particular, choos-
ing k > 3(1+ ln(4/ε)) is sufficient). Now, noting that E(Bn) = 0, applying
Theorem 7.1, we obtain

Pr(‖Bn‖> a)≤ 2n exp

�

−
3 ln(4n/ε)

δ
2
δ
+ 2a/(3δ)

�

≤ 2n exp

�

−3 ln(4n/ε)
3

�

=
ε

2
.

So, with probability at least ≥ 1− ε
2
,

‖Bn‖ ≤ a =

r

3 ln(4n/ε)
δ

.

For the second term, we first rewrite RS − Bn, as follows.

RS − Bn =D−1/2
n SnD−1/2

n − (EDn)
−1/2Sn(EDn)

−1/2

=D−1/2
n (EDn)

1/2(EDn)
−1/2Sn(EDn)

−1/2(EDn)
1/2D−1/2

n − Bn

=D−1/2
n (EDn)

1/2Bn(EDn)
1/2D−1/2

n − Bn

=D−1/2
n (EDn)

1/2Bn(EDn)
1/2D−1/2

n − Bn(EDn)
1/2D−1/2

n − Bn

+ Bn(EDn)
1/2D−1/2

n

=[D−1/2
n (EDn)

1/2− In]Bn(EDn)
1/2D−1/2

n + Bn[(EDn)
1/2D−1/2

n − In].

Then we have

‖RS − Bn‖ ≤‖D−1/2
n (EDn)

1/2− In‖‖Bn‖‖(EDn)
1/2D−1/2

n ‖+

+ ‖Bn‖‖(EDn)
1/2D−1/2

n − In‖.

Next, we are going to obtain an upper bound for ‖(EDn)1/2D−1/2
n − In‖. For

this, we will apply Lemma 5.4 to the random variables |si j| (in the role of X i),
and using the observation that di =

∑n
j=1 |si j|, so t i = E(di) =

∑n
j=1E|si j|.

We first need some preparation in order to obtain upper bounds for |si j| and
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∑n
j=1 Var(|si j|).
Obviously, |si j| ≤ 1, so we take c = 1, and

n
∑

j=1

Var(|si j|) =
n
∑

j=1

[E(|si j|2)− (E(|si j|))2]

=
n
∑

j=1

pi j(1− pi j)

≤
n
∑

j=1

pi j

= t i .

Since we already used a above, with a =
q

3 ln(4n/ε)
δ

< 1, we are going to use

a b instead of an a when applying Lemma 5.4. We choose b =
p

3t i ln(4n/ε).

Then, since a =
q

3 ln(4n/ε)
δ

< 1, t i ≥ δ > 3 ln(4n/ε)), implying that b =
p

3t i ln(4n/ε)< t i . Applying Lemma 5.4, we have for all i,

Pr(|di − t i| ≥ b)≤ e
− b2

2(ti+b/3) < e
− 3ti ln(4n/ε)

3ti =
ε

4n
.

This implies that with probability at least 1− o(1), for all 1≤ i ≤ n,

|di − t i| ≤ b =
p

3t i ln(4n/ε).

Next, we choose 0< a0 =
q

3 ln(4n/ε)
t i

< 1 such that 1
1−a0

< 1+ ε.

Pr
� t i

di
> (1+ ε)

�

=Pr
�

{
t i

di
> (1+ ε)} ∩ {|di − t i|< a0 t i}

�

+

+ Pr
�

{
t i

di
> (1+ ε)} ∩ {|di − t i| ≥ a0 t i}

�

≤Pr
�

{
t i

di
> (1+ ε)} ∩ {|di − t i|< a0 t i}

�

+ Pr
�

|di − t i| ≥ a0 t i

�
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=0+ Pr
�

|di − t i| ≥ a0 t i

�

=0+ Pr
�

|di − t i| ≥ b
�

≤
ε

4n
.

Hence, with probability at least 1− o(1), for all 1≤ i ≤ n, t i

di
≤ 1. Then

�

�

�

�

�

r

t i

di
− 1

�

�

�

�

�

≤

�

�

�

�

�

t i − di
p

di(
p

t i +
p

di)

�

�

�

�

�

≤
1

2

È

3 ln(4n/ε)
t i

≤
1

2

r

3 ln(4n/ε)
δ

=
a

2
.

Thus, we obtain

‖D−1/2
n (EDn)

1/2− In‖= max
i=1,2,...,n

�

�

�

�

�

r

t i

di
− 1

�

�

�

�

�

≤
a

2

with probability at least 1− ε
2
. So, with probability at least 1− ε

2
,

‖RS − Bn‖

≤‖D−1/2
n (EDn)

1/2− In‖‖Bn‖‖(EDn)
1/2D−1/2

n ‖+ ‖Bn‖‖(EDn)
1/2D−1/2

n − In‖

≤
a2

2

�

a

2
+ 1

�

+
a2

2

≤
5

4
a.

Combining the above bound with the bound we obtained for ‖Bn‖, and using
that a < 1, we conclude that with probability at least 1− ε,

‖RS‖ ≤ ‖RS − Bn‖+ ‖Bn‖
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≤
5

4
a+ a

=
9

4
a.

Since RS = D−1/2
n SnD−1/2

n is a skew matrix, by similar arguments as those
that led to (7.1), we have ‖RS‖= ρ(RS). Then we have

ρ(RS) = ‖RS‖ ≤
9

4
a =

9

4

r

3 ln(4n/ε)
δ

.

This completes the proof.





Summary

This thesis contains a number of results on the spectra and related spectral
properties of several random graph models.

In Chapter 1, we briefly present the background, some history as well
as the main ideas behind our work. Apart from the introduction in Chapter
1, the first part of the main body of the thesis is Chapter 2. In this part
we estimate the eigenvalues of the Laplacian matrix of random multipartite
graphs. We also investigate some spectral properties of random multipartite
graphs, such as the Laplacian energy, the Laplacian Estrada index, and the
von Neumann entropy.

The second part consists of Chapters 3, 4, 5 and 6. In [67], Guo and
Mohar showed that mixed graphs are equivalent to digraphs if we regard
(replace) each undirected edge as (by) two oppositely directed arcs. Moti-
vated by the work of Guo and Mohar, we initially propose a new random
graph model – the random mixed graph. Each arc is determined by an in-
dependent random variable. The main themes of the second part are the
spectra and related spectral properties of random mixed graphs.

In Chapter 3, we prove that the empirical distribution of the eigenvalues
of the Hermitian adjacency matrix converges to Wigner’s semicircle law. As
an application of the LSD of Hermitian adjacency matrices, we estimate the
Hermitian energy of a random mixed graph.

In Chapter 4, we deal with the asymptotic behaviour of the spectrum of
the Hermitian adjacency matrix of random mixed graphs. We derive a sep-
aration result between the first and the remaining eigenvalues of Hn. As an
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application of the asymptotic behaviour of the spectrum of the Hermitian ad-
jacency matrix, we estimate the spectral moments of random mixed graphs.

In Chapter 5, we prove that the empirical distribution of the eigenvalues
of the normalized Hermitian Laplacian matrix converges to Wigner’s semicir-
cle law.

Moreover, in Chapter 6, we provide several results on the spectra of gen-
eral random mixed graphs. In particular, we present a new probability in-
equality for sums of independent, random, self-adjoint matrices, and then
apply this probability inequality to matrices arising from the study of ran-
dom mixed graphs. We prove a concentration result involving the spectral
norm of a random matrix and that of its expectation. Assuming that the
probabilities of all the arcs of the mixed graph are mutually independent, we
write the Hermitian adjacency matrix as a sum of random self-adjoint matri-
ces. Using this, we estimate the spectrum of the Hermitian adjacency matrix,
and prove a concentration result involving the spectrum of the normalized
Hermitian Laplacian matrix and its expectation.

Finally, in Chapter 7, we estimate upper bounds for the spectral radii
of the skew adjacency matrix and skew Randić matrix of random oriented
graphs.



Samenvatting

Dit proefschrift bevat een aantal resultaten op het gebied van de spectra
van verschillende typen randomgrafen en daarmee verwante spectrale eigen-
schappen.

In Hoofdstuk 1 wordt de achtergrond van het onderzoek geschetst, met
een historische perspectief, alsmede de belangrijkste ideeën die ten grondslag
liggen aan het gepresenteerde werk in dit proefschrift.

Naast de inleiding in Hoofdstuk 1, bestaat het eerste deel van de tech-
nische inhoud van dit proefschrift uit de resultaten uit Hoofdstuk 2. In
dit gedeelte worden benaderingen gegeven voor de eigenwaarden van de
Laplacian matrix van random multipartiete grafen. Tevens worden enkele
spectrale eigenschappen van deze random multipartiete grafen bestudeerd,
waaronder de Laplacian energie, de Laplacian Estrada index, en de von Neu-
mann entropie.

Het tweede deel van het proefschrift bestaat uit de Hoofdstukken 3, 4,
5 en 6. In [67] tonen Guo and Mohar aan dat gemengde grafen equivalent
zijn aan gerichte grafen, als de ongerichte lijnen worden opgevat als paren
van twee tegengesteld gerichte pijlen. Gemotiveerd door het werk van Guo
and Mohar beschouwen we een nieuw randomgraaf model, te weten het
model van de random gemengde graaf. Hierin is elke pijl aanwezig met een
zekere waarschijnlijkheid, onafhankelijk van de andere pijlen. De belang-
rijkste thema’s in dit tweede gedeelte van het proefschrift zijn de spectra en
gerelateerde spectrale eigenschappen van deze random gemengde grafen.

In Hoofdstuk 3 wordt bewezen dat de empirische verdeling van de eigen-
waarden van de Hermitische buurmatrix van deze grafen convergeert naar
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een verdeling die bekend staat als Wigner’s semicircle law. Als een toepas-
sing geven we een benadering voor de Hermitische energie van een random
gemengde graaf.

In Hoofdstuk 4 wordt ingegaan op het asymptotische gedrag van het
spectrum van de Hermitische buurmatrix van random gemengde grafen. Er
wordt een resultaat afgeleid voor de scheiding van de eerste en de overige
eigenwaarden. Als een toepassing van het asymptotische gedrag van het
spectrum van de Hermitische buurmatrix geven we een benadering voor de
spectrale momenten van random gemengde grafen.

In Hoofdstuk 5 wordt bewezen dat de empirische verdeling van de eigen-
waarden van de genormaliseerde Hermitische Laplacian matrix van deze
grafen ook convergeert naar Wigner’s semicircle law.

Meer aanvullende resultaten met betrekking tot het spectrum van ran-
dom gemengde grafen worden beschreven in Hoofdstuk 6. Allereerst pre-
senteren we daar een nieuwe ongelijkheid voor de waarschijnlijkheid van de
som van onafhankelijke, random, zelf-adjuncte matrices. Die ongelijkheid
passen we vervolgens toe op matrices die gerelateerd zijn aan de studie
naar random gemengde grafen. We bewijzen een concentratieresultaat met
betrekking tot de spectrale norm van een random matrix en die van zijn
verwachtingswaarde. We schrijven vervolgens de Hermitische buurmatrix
als een som van random zelf-adjuncte matrices en geven een benadering
voor het spectrum van de Hermitische buurmatrix. Bovendien bewijzen we
nog een concentratieresultaat met betrekking tot het spectrum van de genor-
maliseerde Hermitische Laplacian matrix en zijn verwachtingswaarde.

Tenslotte geven we in Hoofdstuk 7 benaderingen van bovengrenzen voor
de spectrale radius van de scheve buurmatrix en de scheve Randić matrix van
random georiënteerde grafen.
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and Randić Energy, MATCH Commun. Math. Comput. Chem., 64 (2010),
239–250.

[24] S.L. Braunstein, S. Ghosh and S. Severini, The Laplacian of a graph
as a density matrix: a basic combinatorial approach to separability of
mixed states, Ann. Comb., 10(3) (2006), 291–317.

[25] A.E. Brouwer and W.H. Haemers, Spectra of Graphs. Springer, 2012,
available online at http://homepages.cwi.nl/ aeb/math/ipm/.

[26] W. Bryc, A. Dembo and T. Jiang, Spectral measure of large random
Hankel, Markov and Toeplitz matrices, Ann. Probab., 34 (2006) 1–38.

[27] A. Chang and B. Deng, On the Laplacian energy of trees with perfect
matchings, MATCH Commun. Math. Comput. Chem., 68 (2012), 767–
776.

[28] Z. Chen, Y. Fan and W. Du, Spectral moment of random graphs, Math.
Appl., 24 (2011), 851–857.

[29] X. Chen, X. Li and H. Lian, The skew energy of random oriented graphs,
Linear Algebra Appl., 438 (2013), 4547–4556.

[30] H. Chernoff, A note on an inequality involving the normal distribution,
Ann. Probab., 9 (1981), 533–535.

[31] F. Chung, Spectral graph theory, AMS publications, 1997.

[32] F. Chung, L. Lu and V.H. Vu, Eigenvalues of random power law graphs,
Ann. Combin., 7 (2003), 21–33.

[33] F. Chung, L. Lu and V.H. Vu, Spectra of random graphs with given ex-
pected degrees, Proc. Nat. Acad. Sci. USA, 100(11) (2003), 6313–6318.

[34] F. Chung and M. Radcliffe, On the Spectra of General Random Graphs,
Electron. J. Combin., 18 (2011), P215, 14 pp.

[35] A. Coja-Oghlan, On the Laplacian eigenvalues of G(n, p), Combin.
Probab. Comput., 16 (2007), 923–946.



140 BIBLIOGRAPHY

[36] A. Coja-Oghlan and A. Lanka, The spectral gap of random graphs with
given expected degrees, Electron. J. Combin., 16 (2009), R138.

[37] D. Cristofides and K. Markström, Expansion properties of random Cay-
ley graphs and vertex transitive graphs via matrix martingales, Random
Struct. Alg., 32 (2008), 88–100.
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