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Abstract Indexing documents with controlled vocab-

ularies enables a wealth of semantic applications for

digital libraries. Due to the rapid growth of scientific

publications, machine learning based methods are re-

quired that assign subject descriptors automatically.

While stability of generative processes behind the un-

derlying data is often assumed tacitly, it is being vi-

olated in practice. Addressing this problem, this arti-

cle studies explicit and implicit concept drift, that is,

settings with new descriptor terms and new types of

documents, respectively. First, the existence of concept

drift in automatic subject indexing is discussed in detail

and demonstrated by example. Subsequently, architec-

tures for automatic indexing are analysed in this regard,

highlighting individual strengths and weaknesses. The

results of the theoretical analysis justify research on fu-

sion of different indexing approaches with special con-

sideration on information sharing among descriptors.

Experimental results on titles and author keywords in

the domain of economics underline the relevance of the

fusion methodology, especially under concept drift. Fu-

sion approaches outperformed non-fusion strategies on

the tested data sets, which comprised shifts in priors

of descriptors as well as covariates. These findings can

help researchers and practitioners in digital libraries to
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choose appropriate methods for automatic subject in-

dexing, as is finally shown by a recent case study.

Keywords automatic subject indexing · concept

drift · meta-learning · multi-label classification · short

texts

1 Introduction

Access to literature is best supported by subject indexes

constructed using domain-specific controlled vocabular-

ies and thesauri. Such structured representations enable

semantic queries and discovery even across language

barriers, and they provide features for services like liter-

ature recommendation systems. Due to the rapid growth

of scientific publications [2], scalability of the indexing

process has become essential, making automatic subject

indexing a key technology for digital libraries.

Compared to manual indexing, automatic indexing

faces several challenges: First, legal restrictions might

prevent the usage of publication full-text and/or ab-

stracts, which leads to little information available to the

indexing approach and thus decreases performance [6].

Second, the distribution of concepts in the training data

set can be very skewed and some concepts might not ap-

pear at all [25]. This is particularly likely for thesauri

containing several thousands of concepts, as for exam-

ple, the EuroVoc vocabulary1, Medical Subject Head-

ings (MeSH)2, AGROVOC3 in the agricultural domain,

or the STW Thesaurus for Economics (STW)4. Con-

cepts with little or no document coverage have to be

1 www.eurovoc.europa.eu, accessed 28.11.2017
2 www.nlm.nih.gov/mesh, accessed 28.11.2017
3 www.fao.org/agrovoc, accessed 28.11.2017
4 www.zbw.eu/en/stw-info, accessed 28.11.2017

www.eurovoc.europa.eu
www.nlm.nih.gov/mesh
www.fao.org/agrovoc
www.zbw.eu/en/stw-info
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either excluded [25] or require carefully designed fea-

ture spaces and concept representations for so-called

zero-shot learning approaches [24]. Third, terminology

in documents and controlled vocabularies might differ

from each other, or they may change over time. For

instance, the STW is permanently updated to reflect

changes in economics literature [9]. Consider phrases

like “online advertising” or “smartphone” that emerged

since 1990 [22], just to give an example. Thus, index-

ing approaches must be capable of adapting to concept

drift [8], i.e. to vanishing or emerging concepts and new

types of documents containing unseen terms.

Research in the field of automatic indexing can be

broadly categorized into lexical approaches and asso-

ciative approaches. Lexical approaches like, for exam-

ple, KEA++ [20] build upon knowledge provided by

thesauri to find candidate concepts. Subsequently can-

didates are ranked and selected according to their rel-

evance. As pointed out by Medelyan and Witten [20],

this procedure requires only hundreds of training ex-

amples in total. But it comes at a cost. Lexical ap-

proaches will fail on missing candidates and incomplete

vocabulary. In terms of Pouliquen et al. [25], a natu-

ral language thesaurus is required which nearly exhaus-

tively covers the terminology of the domain. Construc-

tion and maintenance of such lexical resources is costly,

thus many thesauri provide concepts but lack vocab-

ulary entry terms, especially if multiple languages are

involved. In this case, associative approaches may be

more appropriate. They rely on associations between

terms and concepts that are derived from large intel-

lectually indexed document collections [25]. Especially,

a multitude of supervised learning approaches has been

proposed driven by advances in artificial intelligence

and machine learning where indexing has been regarded

as a multi-label learning task [10]. In essence, these ap-

proaches involve training classifiers for each concept of

a thesaurus. Encouraging results have been reported

in different domains, for instance, in medicine [13, 36],

agriculture [17], legal texts [18], or economics [11]. Such

approaches enable automatic indexing with conceptual

thesauri [25] when a lot of professionally indexed ex-

amples are available, however, they do not scale well

in terms of necessary training data [20]. Researchers

attempted to combine elements from associative and

lexical approaches aiming to alleviate their disadvan-

tages (e.g., [13, 5, 23, 28]) with fusion architectures,

meta-learning, or zero-shot learning techniques. Never-

theless, fusion architectures are still an exception rather

than the rule, no thorough analysis of single and fusion

architectures has been performed yet, and fusion can

be realized in different ways. In this paper, we aim for

a detailed analysis of associative, lexical and fusion ar-

chitectures supported by an empirical study of a new

fusion approach in the domain of economics that espe-

cially considers dynamics in terms and concepts.

Performance of automatic subject indexing systems

is influenced by several factors, raising questions about

generalizability. Attempts to conduct large-scale experi-

mentation and to empirically determine successful con-

figurations [11] provide important feedback for prac-

titioners and researchers, but they should be supple-

mented by analytical justifications if possible. Recently,

there have also been concerns about just concentrat-

ing on better results on standard benchmark data and

how techniques like deep learning have been applied

in the field of computational linguistics. For instance,

Manning wanted to “encourage everyone to think about

problems, architectures, cognitive science, and the de-

tails of human language, how it is learned, processed,

and how it changes, rather than just chasing state-of-

the-art numbers on a benchmark task” [19, p. 706]. Fol-

lowing this advice, we aim to gather knowledge about

reasonable architectures for automatic subject index-

ing systems, understanding their success and pitfalls.

In particular regarding zero-shot learning, humans can

still outperform data-demanding applications of deep

learning [16]. For further investigation of these topics,

this article especially considers learning and classifica-

tion performance with respect to events that are caused

by differences in distributions between training and test

data.

In this article we address the following research ques-

tions, regarding documents in economics:

RQ1: How can implicit and explicit concept drift be

determined in a data set and how can both be visu-

alized?

RQ2: What are advantages and disadvantages of cur-

rent indexing approaches? Which combinations could

potentially improve indexing performance?

RQ3: Does combination of statistical associative and

lexical approaches improve indexing performance, es-

pecially for settings with concept drift?

This article is an extended version of previous work [32].5

Among others, it adds the detailed discussion on con-

cept drift (answering RQ1), and additionally provides

results of a case study in which professional indexers

rated the results of fusion approaches (answering RQ3).

Although our work and the used data sets focuses on

5 c© 2017 IEEE. All rights reserved. Reprinted, with
permission, from Martin Toepfer and Christin Seifert:
Descriptor-invariant Fusion Architectures for Automatic Sub-
ject Indexing, 2017 ACM IEEE Joint Conference on Digital
Libraries (JCDL). Personal use of this material is permitted.
However, permission to reuse this material for any other pur-
pose must be obtained from the IEEE.
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economic literature, we provide detailed theoretical dis-

cussions, that may help researchers and practitioners in

other domains.

After a recap of related work (Section 2) and the

subject indexing task (Section 3), we focus on con-

cept drift (Section 4), introduce basic terminology and

demonstrate its appearance in a practical setting. Sub-

sequently we analyse existing indexing architectures in

detail in Section 5. Based on the theoretical analysis we

then describe our approach to a fusion architecture that

combines lexical and associative characteristics in Sec-

tion 6. Results of experiments on documents from the

economic science domain are presented in Section 7.

Section 8 reports on recent experience with bringing a

fusion system to practice, which directs to future work

(Section 9). Finally, Section 10 concludes the work.

2 Related Work

We review related work in automatic subject indexing

with respect to statistical associative and lexical index-

ing approaches and subject indexing in the economic

domain. Further, we discuss different ensemble and fu-

sion approaches as well as zero-shot learning scenarios

and concept drift.

2.1 Statistical Associative Approaches

Ferber [6] developed a system with a linear associa-

tive model that was based on titles (short text) and

co-occurrence data between words and descriptors. He

reported encouraging results but noted that titles were

sometimes insufficient and that it was unclear if the co-

occurrence approach generalizes to different domains.

Pouliquen et al. [25] investigated indexing with Eu-

roVoc and found that only approximately one third

of all training documents contained labels of the cor-

responding descriptors verbatim. For this reason, they

distinguished between conceptual thesauri like EuroVoc

and natural language thesauri. Because the former lack

vocabulary terms for dictionary matching approaches,

they proposed to determine associate terms, that is, sta-

tistically related terms, for descriptors with a statistical

system similar to Ferber. Pouliquen et al. determined

these associate lists by log-likelihood and then assigned

descriptors by a linear combination of three similarity

measures. They were able to apply the approach suc-

cessfully to different languages, however, it frequently

assigned descriptors that were semantically similar but

wrong. Loza and Fürnkranz [18] automatically indexed

legal documents of the EU using three different multi-

label classification approaches based on perceptrons: bi-

nary relevance, multiclass multi-label perceptrons, and

multi-label pairwise perceptrons. Pairwise classification

into almost 4,000 classes of the EuroVoc vocabulary re-

quired almost 8,000,000 perceptrons. As a consequence,

they had to solve severe scalability issues. Wilbur et

al. [36] showed on a subset of MeSH headings that train-

ing with stochastic gradient descent (SGD) applied to

support vector machines (SVM) performed well with

a fixed number of iterations for ranking and predic-

tion. SGD-SVM produced better results than several

methods, including MTI, kNN-based systems, and a

learning-to-rank approach. Lauser and Hotho [17] in-

dexed full-text documents in the agricultural domain

with binary SVMs. They explored different modes (add,

replace, only) to encode background knowledge from

an ontology. These modes modified the feature vectors

by adding, replacing or restricting features to ontology

concepts, respectively. Relations between concepts were

used up to a maximum concept integration depth. Some

configurations yielded slight increases in precision, how-

ever, they were not significant. The rationale behind

their approach was to represent documents of the same

subject areas more similarly. Section 5 includes a com-

parison of lexical approaches to strategies that combine

term features with concept features in statistical asso-

ciative systems in the aforementioned way.

2.2 Lexical Approaches

Lexical automatic indexing approaches try to recognize

the terms that are stored for each concept in the con-

trolled vocabulary. Subsequently, matches are ranked.

Just to give an example, automatic subject indexing can

be realized as a variant of keyphrase extraction, which

aims to determine the most relevant phrases of full-

texts to describe their contents. As shown by Medelyan

et al. [20], slight modifications to a supervised keyphrase

extraction system [7], can be used for subject indexing

when a thesaurus with appropriate labels is available.

Their system, named KEA++, filters the full-text by

matching of pseudo-phrases, that is, conflated versions

of the documents’ terms and a controlled vocabulary’s

labels. Candidates are subsequently ranked and selected

by a classifier. They especially pointed out that opposed

to text categorization approaches, it already performs

well with little training data.

2.3 Indexing in the Domain of Economics

Große-Bölting et al. [11] evaluated several configura-

tions for semantic document annotation of documents
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on three data sets. Different annotation candidate ex-

traction and activation methods were combined with

one of two kinds of selection approaches: top-k and

k-nearest-neighbors (kNN). While top-k only assigns

phrases that are part of the controlled vocabulary, kNN

can only assign concepts for which training instances

exist. Their best results on a data set in economics with

62,924 documents (full-text) were produced by kNN

(k = 1; micro-averaged F1 value of .39). By contrast

to the implementations compared by Große-Bölting et

al., the fusion approach investigated in this article com-

bines lexical as well as statistical associative knowledge,

while still maintaining the capability to assign precise

concepts for which no training instances are available.

2.4 Ensembles and Fusion

Erbs et al. [5] pointed out differences between keyphrase

extraction and multi-label classification (MLC), under-

lined certain advantages of MLC like detecting hidden

synonyms and keyphrase extraction, and presented an

approach which combines them, adding keyphrase ex-

traction results to the list of terms returned by MLC.

SVMs and decision trees were used for MLC and dif-

ferent configurations with TF-IDF for keyphrase ex-

traction. They focused on full-text representations of

German documents in the educational domain in their

evaluation. The combined system reached 20% preci-

sion and 17.9% recall. Different from our approach, they

investigated keyphrase extraction, that is, index terms

were part of the documents’ terms (uncontrolled vocab-

ulary).

Nam et al. [23] aimed to predict previously unseen

non-terminal concepts in concept hierarchies. They pro-

posed a joint space of instances and concepts, using hi-

erarchical information and concept co-occurrence pat-

terns. Experiments were conducted on two data sets.

The authors stated that the regularization approach

was effective to predict previously unseen classes when

the tree-structure of classes is known and not complex.

A pre-training strategy was proposed that empirically

improved results even on large sets of classes. Recently,

Sappadla et al. [28] proposed an approach in order to

exploit similarities between concept labels and docu-

ment terms. To predict known concepts, they used a su-

pervised method (binary relevance), whereas unknown

concepts were predicted using label word similarity by

word embeddings based on Wikipedia. They evaluated

their system on three fulltext data sets. The number of

classes to predict were 90 (Reuters), 45 (MEDICAL),

and 201 (EURLEX). The average sizes of assigned la-

bels were 1.23, 1.24, and 2.21, respectively. These fig-

ures are close to 1, hence, close to single-label multi-

class classification. Experimentally, they were able to

show advantages of their approach against a supervised

baseline. When labels were removed by their frequency

from the evaluation, using similarity knowledge led to

higher macro-averaged metrics.

Research on automatic subject indexing has been

very active in the (bio-)medical domain. Notably, the

work of Jimeno-Yepes et al. [13] combined different

subsystems to index MEDLINE citations with medical

subject headings (MeSH). Their baseline system was

the Medical Text Indexer (MTI) which was compared

to several machine learning approaches (Näıve Bayes,

Rocchio, AdaBoostM1, Voting) and dictionary match-

ing on titles and titles and abstracts. They learned a

mapping-table that determined which method is to be

used for each MeSH heading (MH). In order to select

the best method, they applied significance tests. They

found that more than 23,000 MHs were best indexed

by MTI, while machine learning approaches were cho-

sen for 2,712 MHs. Combinations of machine learning

methods have also been applied for categorization of

genomics documents by Aronson et al. [1] who used the

term fusion in the sense of ensemble or stacking [37, 31].

Please note that this notion differs from fusion archi-

tectures as understood in this paper (cf. Section 6).

Ensemble methods like voting have often been applied

only on top of several statistical associative approaches

(e.g. [1]). Approaches that have applied statistical as

well as lexically based methods have typically chosen

one method per concept [13, 28]. In the remainder of

this article, we apply fusion approaches that aim to

unite individual skills. Our rationale is that if methods

predict concepts differently but reliably, the union of

them fully leverages their complementarity.

2.5 Zero-shot Learning

The problem of predicting previously unseen classes has

been studied in other domains before, in so-called zero-

shot learning settings. For instance, Palatucci et al. [24]

presented an approach that uses a knowledge base to

decode neural activity. As they pointed out, it is de-

sirable to treat classes not separately from each other,

but to create representations that apply to many, also

unseen classes. Regarding one-shot classification and

generation of visual concepts, Lake et al. [16] demon-

strated improvements over deep learning approaches.

How automatic subject indexing can be best realized

in this regard is a current research question. Recently,

some aspects have been targeted, like the aforemen-

tioned prediction of non-terminals [23] or using label

embeddings for settings that are close to single-label

classification [28].
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2.6 Concept Drift

In general, automatic subject indexing under concept

drift has not been been studied comprehensively, al-

though some authors have referred to it. Tsoumakas et

al. [35], for example, reported that they aimed to mini-

mize differences between training and test data for their

system when participating in an indexing challenge. For

adaptation, they created focused data sets, restricting

training data to the journals tested in the challenge,

and the most recent documents. Different topics that

are associated with concept drift in automatic subject

indexing have been studied [26, 15, 12, 8, 14, 30], as

explained in Section 4 in detail.

3 Subject Indexing

Subject indexing is a traditional task for libraries. It

denotes the process of describing the contents of docu-

ments with appropriate concepts from a controlled vo-

cabulary in accordance with certain criteria. It aims to

cover the main topics exhaustively and describe them

as precisely as possible, while seeking a condensed rep-

resentation of the content that contains, for instance,

roughly 5 to 8 concepts on average6 [25, 20, 18, 11].

Automatic subject indexing attempts to implement this

task algorithmically.

According to the Simple Knowledge Organization

System (SKOS)7, concepts represent abstract units of

thought, and natural language expressions referring to

concepts are called labels8. In this article, concepts of

the controlled vocabulary will be referred to as de-

scriptors9. SKOS vocabularies can provide additional

information, for instance, links between concepts that

encode hierarchical (broader/narrower) or associative

(related-to) semantic relations.

The STW Thesaurus for Economics4 is an example

of such a controlled vocabulary in SKOS format. It is a

wide-coverage bilingual resource (German and English)

for economics, business studies and closely related sub-

6 The number of indexing terms depends on the particular
content of a document and several other factors, such as in-
dividual institutional guidelines. As a consequence, averages
reported in related work vary considerably. Some data sets are
actually very similar to single-label document classification,
as mentioned in Section 2.
7 www.w3.org/2004/02/skos, accessed 10.11.2017
8 In related work, especially in the domain of machine

learning, the term “label” is often used for classes, which in
turn represent concepts.
9 This meaning of descriptors has been used in related

work, but please note that descriptors denote special labels
in SKOS.

ject areas. Version 9.02 of the STW10 has more than

6,000 subject headings, more than 20,000 synonyms,

and links broader, narrower, and semantically related

concepts. Regarding broader and narrower concepts,

the topology of the STW is a poly-hierarchy, that is,

each descriptor can be linked to multiple broader de-

scriptors. In addition, descriptors are categorized. They

can be assigned to multiple subject groups (thsys), which

are called categories in the remainder of this article. In

contrast to descriptors, categories are linked with at

most one broader category. Hence, the topology of sub-

ject groups is a mono-hierarchy.

4 Concept Drift

Concept drift has been studied in different contexts and

there is a variety of terms in the literature for such phe-

nomena. For clarification, we give a brief introduction

to terminology and theory in the following subsection.

Subsequently, we illustrate concept drift by analysing

term-frequencies of documents at the German National

Library of Economics in a practical setting.

4.1 Terminology

Concept drift has been formally defined for prediction

tasks. This article primarily follows Gama et al. [8], but

also borrows general terms which have been introduced

for dataset shift [26]. In the following, let x be an input

vector of features to predict the output y. Let Dtrain be

the training data, where correct values of y are known

for each instance according to a specification of the task,

and Dtest data where the corresponding output vectors

are assumed to be unknown. In this section, x may be

interpreted as a term frequency vector of a document11

and y as a vector that indicates which concepts belong

to the document.

A basic principle behind typical applications of ma-

chine learning is the assumption that the training and

test data sets have similar joint probability distribu-

tions, i.e.,

ptrain(x,y) ≈ ptest(x,y) (1)

holds for the joint distributions of x and y on Dtrain

and Dtest, respectively. Concept drift, however, breaks

10 At the time of the experiments (Section 7), release 9.02
was the latest version. Version 9.04 of the STW has been
released on June 21st, 2017.
11 Different meanings of x will be used in other sections, for
instance, in Section 5.

www.w3.org/2004/02/skos
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this assumption, and allows that the joint probability

distribution of the training and test data set differ, i.e.,

ptrain(x,y) 6= ptest(x,y) (2)

which may be caused by hidden external factors. In

contrast to Gama et al.’s concept drift definition [8],

which emphasizes temporal aspects, the more general

notion given above is closer to dataset shift [26], but

this distinction is rather subtle.

Further categorizations of concept drift have been

introduced, especially according to factorizations into

conditional distributions p(y|x), p(x|y) and prior distri-

butions p(y), p(x). Real concept drift refers to changes

ptrain(y|x) 6= ptest(y|x), i.e., conditional probability dis-

tributions, while virtual drift refers to changes in the co-

variates, i.e., ptrain(x) 6= ptest(x), hence, we will prefer

to use the term covariate shift. Notably, both phenom-

ena may and often do appear in parallel [26].

In the context of subject indexing, related notions

have been used by Tsoumakas et al. [35], who referred

to “addition, deletion, merging of concepts” (explicit

concept drift) and “altered semantics of concepts” (im-

plicit concept drift), respectively. In this article, these

terms should be interpreted as particularly linked to

experimental settings. We use the term explicit concept

drift for settings where documents concerning specific

topics have been excluded from the training data. As a

consequence, the concepts belonging to these topics are

completely new in the test data. We will refer to set-

tings where specific series or journals are excluded from

the training data as settings with implicit concept drift.

In such settings, different topics may be present as well

as similar topics with different term distribution. Such

settings may, however, also comprise data sets where

the test documents are very similar to training docu-

ments. The intended primary effects of explicit and im-

plicit concept drift settings therefore regard differences

in prior distributions p(y) and conditional distributions

p(y|x) (real concept drift), respectively. Both types of

concept drift are assumed to induce shifts in the distri-

butions of covariates x. Nevertheless, other side effects

may be induced as well.

4.1.1 Visualization of Covariate Shift

In order to get an impression of concept drift between

data sets, differences in their observed term frequencies,

that is, covariate distributions ptrain(x) and ptest(x),

can be investigated. In this regard, terms, which are

frequent in one corpus but infrequent in the other, are

in the focus of interest, because they indicate concept

drift. For finding such characteristic terms and reveal-

ing differences between corpora, a number of approaches

have been proposed. Just to give a concrete example,

Kessler [14] contributed a tool12 which offers different

options for term-weighting and scaling to create scatter-

plots. In particular, it includes a strategy that is based

on the ranks of term frequencies.

In the remainder of this article, we utilize simple yet

effective plots based on scaled term frequencies, which

can be created similarly with the program provided by

Kessler [14]. In the beginning, documents are sampled

from both corpora. The contents (title and author key-

words) are then tokenized and preprocessed, for exam-

ple, changing title case to lower case. All further com-

putation is based on the counts nKt of each term t in

corpus K ∈ {A,B}, respectively. After scaling nKt to a

virtual count mK
t with respect to T ∗ = 10, 000 tokens

mK
t = nKt ·

T ∗

TK
(3)

with the total number of tokens TK =
∑

t n
K
t in K, the

position of the point representing term t is given by

xKt = log(mK
t + c) (4)

with Laplace smoothing by c and K ∈ {A,B} repre-

senting the x-axis and y-axis, respectively. Jitter was

finally added to circumvent overlapping positions. Col-

ors are assigned based on the difference ∆t = xAt − xBt
and alpha values for color are derived from the distance

to the origin of the coordinate system.

As a consequence, the number and degree to which

terms are plotted away from the diagonal can be inter-

preted as a measure of concept drift. For instance, in

Figure 1, the terms “loyalty” and “brand” are relevant

to capture the contents of the test documents, however,

they occurred rarely in the training documents. By con-

trast, the frequencies of function words like “the” and

“and” remain almost stable.

A certain degree of difference in distributions must

be considered as expected noise. Because term frequen-

cies are typically distributed by a power law (Zipf’s

law), many terms are infrequent, hence, new terms are

a natural effect of randomly sampling training and test

documents. For this reason, our experiments in Sec-

tion 7 will compare concept drift settings to random

sampling settings.

4.2 Concept Drift in Subject Indexing

At digital libraries, subject indexing datasets where

training data and test data differ may occur for dif-

ferent reasons, such as

12 https://github.com/JasonKessler/scattertext, ac-
cessed 24.08.2017

https://github.com/JasonKessler/scattertext
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Fig. 1: Visualizing drift of covariates. Terms in titles and author keywords in practice. Professionally indexed

documents (training, y-axis) vs. documents not yet indexed with STW descriptors (new data, x-axis).

1. externally caused temporal drift,

2. latent sample selection bias, or

3. revised outcome specifications.

Changes over time (temporal drift) are known prop-

erties of publication practice. For instance, temporal

trends in economics publications have been studied by

Kosnik [15]. According to her results, publications in

economics have increasingly dealt with mathematical

methods. Therefore, shifts in research attention involve

even high-levels of abstraction, in this case, high-level

categories of the JEL classification system13. In ad-

dition to varying interest in research topics, language

evolves over time, which comprises changes in word

meanings, their surface forms, and syntax. Such changes

have been studied, for instance, in the context of digital

humanities [12, 30], where differences can be detected

and tracked over long time spans. While these phenom-

ena obviously can affect subject indexing, they are not

in the focus of this article. Contrary to digital human-

ities, we consider data from shorter spans of time, that

is, decades rather than centuries, here.

Sample selection bias can be caused, for instance,

by indexing preferences. Libraries may be specialized to

certain subjects or have indexing preferences regarding

particular topics, journals, geographical regions, time

spans, authors, or genres, just to name a few. Such an

institutional focus can influence the selection of docu-

ments that are indexed by humans, hence, potentially

introducing a bias on priors p(y) against the library’s

complete catalog. Assumptions on independent and iden-

tically distributed data can therefore be violated.

In addition, revised outcome specifications, such as

altered indexing rules and guidelines, or controlled vo-

13 Journal of Economic Literature (JEL) codes: https://

www.aeaweb.org/econlit/jelCodes.php, accessed 10.11.2017

cabulary changes (addition, removal, alteration of con-

cepts) are actions that consciously control how docu-

ments with the exact same words are indexed. This

certainly implies modifications of p(y|x) (real concept

drift). Different from the latent externally induced tem-

poral drift that was mentioned before, these shifts are

caused deliberately, thus, related change events may be

reconstructed and regarded for historic data, for in-

stance, by creating subsets of documents by date ac-

cording to releases of the controlled vocabulary and

indexing rules, and training different classifiers accord-

ingly. This concept drift adaptation approach decreases,

however, the number of training examples for each de-

scriptor. Since typically many descriptors are rare, this

type of drift may be completely neglected instead, in

favor of larger sets of training documents. In the ex-

treme case, at the moment when a new version of the

controlled vocabulary or new guidelines are released, no

corresponding training examples are available. In this

case it may be reasonable to assume that for most of

the descriptors, the data of the outdated guidelines will

be a sufficient substitute until more appropriate data

has been produced by professional human indexers. Al-

though optimal adaptation cannot be reached with this

strategy, it may, however, be an appropriate interim so-

lution. Further investigation of this topic will be subject

of future work.

Furthermore, it should be noted that the structure

of the controlled vocabulary and knowledge represen-

tation in general can have substantial influence on the

appearance of concept drift. For instance, while it is

difficult to make clear distinctions between named enti-

ties, concepts, and even theories or genres, their aspects

appear in controlled vocabularies. Similar to language

in general, where closed classes of part-of-speech are

https://www.aeaweb.org/econlit/jelCodes.php
https://www.aeaweb.org/econlit/jelCodes.php
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opposed to open classes, some parts of thesauri may

change more rapidly than others.

Since temporal drift is an inherent and thus timeless

aspect of research, publishing and its indexing, we argue

that effects of concept drift should gain more attention.

Covariate Drift in Practice

By example, we now turn to data of the German Na-

tional Library of Economics (ZBW) and a special sub-

set of documents where keywords are available which

have not been specified by a known controlled vocabu-

lary. Some of these documents in the catalog have been

indexed additionally by professional staff, hence, they

may be used as training data. The other documents will

be named new data here. In this study, we focus only

on documents with meta-data in English.

Figure 1 depicts the term frequencies in the train-

ing data versus the new data using the visualization

described above. As can be seen, the more frequent a

term occurs in a data set, the more likely it is that it

also appears in the other data set. Nevertheless, cer-

tain terms having a meaning relevant to subject index-

ing, like “supply chain” or “brand”, seem to be rare

in the training data, but frequent in the new data. We

will return to this plot with a possible interpretation in

Section 7.

5 Analysis of Indexing Systems

This section analyses architectures of indexing systems

and outlines strengths and weaknesses that can be de-

rived independently of specific implementations. It fo-

cuses on the way background knowledge is used and

how the approaches scale with respect to growth of

the controlled vocabulary. We will base our discussion

on the aspects depicted in Table 1, namely (A1) the

amount of training data required (low is better), (A2)

whether previously unseen concepts can be predicted

(desirable), (A3) whether synonyms can be predicted

(desirable), (A4) whether ambiguity can be resolved

(desirable), (A5) whether relations of concepts in the

thesaurus are used (desirable), and (A6) the applica-

bility for short texts. While (A1), (A2) and (A3) will

be discussed first for each type of approach, (A4), (A5)

and (A6) will be discussed separately in successive para-

graphs.

For the discussion we will use the following, small

example of a document with author keywords and pro-

fessional indexing terms:

Title: Analysis of the German gas price from 1970

to 1980. Author keywords: Germany ; energy pricing ;

gas ; 70s. Indexing terms: c:gas price ; c:Germany.

Table 1: Pros (+: advantage) and cons (-: disadvantage)

of lexical (L) and associative (A) system architectures

according to challenges in automatic subject indexing.

(Copyright c© IEEE, see footnote 5)

Aspect L A

A1 Amount of required training data ++ -
A2 Prediction of unseen concepts ++ - -
A3 Prediction of synonyms - - ++
A4 Ambiguity o +
A5 Exploitation of thesaurus relations + o
A6 Applicability to short texts o o

Different prefixes are used to refer to different types

of features: terms/word n-grams (t), dictionary matches

to labels of concepts (l), concepts, i.e., descriptors (c).

Figure 2a shows a prototypical associative index-

ing system for the example document. On the left,

we can see features like the term feature “t:gas” or a

match of a certain concept label “Germany” that en-

code the document. Typically, one feature is created for

each unique n-gram of the training documents result-

ing in a large number of features. On the right hand

side are class nodes that encode concepts that might

be assigned by the system, for instance, “c:gas price”.

Under this representation of documents and their con-

cepts, systems operate on sparse representations, that

is, most entries of the corresponding document-feature

matrices are zero. A variety of machine learning algo-

rithms may be used to determine how features and in-

dividual concepts relate to each other. Generally, co-

occurrence statistics are used to describe concepts and

discriminate them from other concepts. In this method-

ology, it is therefore possible to derive associations from

data, such as that the term “t:FRG” is a positive in-

dicator for the descriptor “c:Germany (Federal Repub-

lic)”. Broadly speaking, unknown synonym expressions

can be learned from the data (A3). Based on the com-

monly used binary relevance approach14 [29, 10], pa-

rameters that finally determine if a concept is assigned

are learned independently for each descriptor. In Fig-

ure 2a, parameters of a classifier (encoded by color) and

their weights (encoded by line thickness) are shown as

arrows between terms (nodes xi) and descriptors (nodes

yi). No weights have been learned for y3 (c:Canada)

because no training instance was available for this con-

cept. As a consequence, this concept can not be as-

signed to any document (A2). Even if we add concept

features for matches against the thesaurus to the fea-

ture vector [17, 11] to encode background knowledge,

descriptor-specific parameter learning makes it impos-

14 Links to approaches that relax this constraint are given
in the related work, see Section 2.
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(a) Associative indexing
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TF-IDF

length

first-occurence

node-degree

c:Canaday3
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(b) Lexical indexing

Fig. 2: Comparison of architectures by example. a) In associative indexing, the learning algorithm learns relations

between features, which are terms (t:) or dictionary matches (l:), and descriptors (c:) for each descriptor indepen-

dently. b) In lexical indexing, features are computed for concept candidates derived from the document’s terms.

Feature weights are shared among all descriptors for classification. (Copyright c© IEEE, see footnote 5)

sible to assign concept “c:Canada” when no training

example is available for this descriptor. For each de-

scriptor in the thesaurus, at least one training example

is required (A1). In fact, reliable estimates typically de-

mand more data.

A prototypical lexical indexing system is illus-

trated in Figure 2b using features from KEA++ [20]

as an example. Based on lexical knowledge from a the-

saurus, the system first extracts several concept can-

didates (c:gas price, c:Germany, c:Canada) from the

text by applying dictionary matching. Feature values

(xw, xlen, xpos, xnd) are then computed for each candi-

date, and decisions on the output are finally made by

repeated application of the same classifier, as shown

by duplicates (y1, y2, y3) of the same node template for

all concept candidates in Figure 2b on the right hand

side. Just for illustration, let us consider classification

based on the computation of real-valued scores by lin-

ear combinations yi = w1 · xtf-idf,i + w2 · xlen,i + w3 ·
xpos,i + w4 · xnd,i with weights w1 = 2, w2 = 1.2, w3 =

0.7, w4 = 0.34 (as an example). The final descriptor as-

signment is then based on this score and a threshold

τ , such that yi > τ triggers the assignment of the ith

concept. Please note that the weights and the threshold

are the same for all instantiations of the template. Put

in different words, the lexical system shares the same

feature weights (green arrows) for all possible descrip-

tors. As a consequence, the system learns weights that

are re-usable, even for previously unseen concepts, like

“c:Canada” in the example. This fact is one of the main

differences to associative approaches. Consider that we

apply the system to a new document that contains

the term “Canada” which is recognized during con-

cept candidate generation by dictionary matching. The

system then computes TF-IDF, length, first-occurrence

and node-degree features for this match. Subsequently,

the same parameters that have been optimized for other

descriptors are utilized to decide if the descriptor of

Canada should be assigned. It can successfully be added

to the output list of descriptors (A2). As can be seen,

there is only a small number of features, in this special

case four, thus only a limited number of parameters

have to be fit. Furthermore, the feature representation

will be rather dense because the four feature functions

in the example will often have non-vanishing values for

candidates. For these reasons, the conditions for reliable

parameter estimation are good. Only a few documents

are required for training [20] (A1). But it comes at a

cost. The approach is unable to learn synonymous ex-

pressions from data (A3). It is completely built upon

and restricted to the dictionary matches against the

controlled vocabulary.

Directly compared to each other regarding aspect

(A1), the associative system is supposed to scale at least

linearly in the number of required training examples

when the controlled vocabulary size is increased while

for the lexical systems this remains constant.

Natural language is inherently ambiguous (A4) and

word senses have to be determined in order to under-

stand a text. Associative approaches can learn to solve

this task using arbitrary words in context, but remain

limited to known concepts and words from training

data. Lexical approaches depend in their performance

on the controlled vocabulary. If enough candidates can

be extracted, features like node-degree or descriptor co-

occurrence expectations may enable to determine the

correct sense of a phrase.
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To underline further differences, let us consider the

use of relations between concepts retrieved from back-

ground knowledge (A5), like “c:price” is broader than

“c:gas price”. As shown in Figure 2b, it has been pro-

posed by Medelyan et al. [20] to compute a node-degree

feature that measures how strong a concept candidate

is connected to other candidates in the same document.

Parameters are shared among descriptors and learning

is therefore based on many examples. The importance

of this feature can be confidently estimated and gen-

erally applied. In associative systems, concept features

can be activated based on different schemes [17, 11].

Learning and prediction remain, however, restricted if

only concepts from the training data can be predicted

like in kNN classification or if individual classifiers are

learned for each descriptor.

In principle, both associative and lexical approaches

can be applied to short texts (A6), however, certain

phenomena might be more pronounced and should be

considered during configuration when only a few terms

are available. For instance, the node-degree feature of

lexical systems may not find enough related candidates

in very short text for meaningful operation.

In summary, we conclude, that lexical classification

and associative classification provide distinct capabili-

ties in order to achieve accuracy and scalability. A com-

prehensive overview of advantages and disadvantages of

both systems can be found in Table 1.

6 Fusion Architectures

In the last section, we have seen that approaches that

are solely lexical or solely associative fail on some chal-

lenges of automatic indexing but also have individual

strengths. Therefore it seems reasonable to attempt a

fusion of both approaches by combining the individ-

ual predictions. The interesting questions are, however,

how fusion is actually realized and which pitfalls have

to be avoided.

The top level simplified design of the proposed fu-

sion architecture is depicted in Figure 3. First, dif-

ferent candidate sets are produced: by an associative

component (center, left) that leverages a large set of

professionally indexed documents, and by a lexical sys-

tem (center, right) that relies on background knowl-

edge from a thesaurus. Then, the fusion layer (below) is

responsible for combining these predictions. The most

interesting property of this layer is the descriptor-in-

variant decision function [32], i.e., a function that al-

lows to perform predictions for all (also unseen) de-

scriptors. Optionally, the fusion module may addition-

ally consult the knowledge base or the professionally in-

Ground-truth 
Documents

Lexical 
Indexing 

Approaches

Fusion

descriptor-invariant 
decision function

descriptor-specific 
decision functions

post-processing

Associative 
Indexing 

Approaches

Document (Paper, Book, ..)

Background-
Knowledge

Descriptors

Fig. 3: Generic schema of a fusion system.

dexed documents for its decisions and use a descriptor-

specific fusion component.

Within the fusion layer, it is crucial how the predic-

tions are combined. On the one hand, one may learn

on a basis of descriptors (descriptor-specific fusion), for

example, learning mapping tables [13] using confidence

tests. In a similar but different manner, we can sim-

ply compute for each descriptor c and method m the

support (number of documents with c assigned by m)

and confidence (number of c correctly proposed by m

divided by its support) for each descriptor c based on

held-out data of the training set. Descriptors that sur-

pass a minimum support and a minimum confidence

may then be added by m to the final output in a pro-

duction setting (testing). This simple strategy, in the

following referred to as Rhack, is slightly different from

mapping tables that map descriptors to methods [13].

While the latter may learn that the concept “theory”

is better predicted by the associative component than

by the lexical component and therefore will choose to

always handle it by the associative system, Rhack will

simply join their predictions and assume that both are

reliable. We suggest that both kinds of behavior are not

optimal in general because they are again restricted to

the set of known descriptors from the training docu-

ments. They will not be able to determine a suitable

predictor for the term “Canada” if this term is not

present in the training documents. Even if dictionary

matching is used per default (cf. [13]), mapping tables

can leave benefits of complementarity aside because, de-

pending on the actual implementation, only one single

method is chosen per concept.

Therefore, a fusion decision function should be im-

plemented that is invariant to descriptors. In order to
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investigate the potential of the proposed design, we con-

struct a very straight-forward system. We study the

union of predictions per document. This strategy is

derived from the idea of setting the above-mentioned

minimum confidence and support to zero in the fusion

layer, but expands predictions to previously unknown

concepts. Each subsystem may, however, still filter its

predictions by an individual confidence threshold. This

is indeed essential to guarantee high precision in the

fusion system. The union approach is straightforward,

however, it has some interesting aspects and especially

enables us to explore if higher recall can be reached by

fusion. Following the discussion of existing architectures

in the previous section, we observe that:

– Associative systems may suffer from low recall, be-

cause the data they learn from is likely to be insuffi-

cient. Terms and concepts follow power laws, hence,

many concepts and terms are infrequent.

– Lexical systems may suffer from low recall, when

the knowledge base lacks synonymous expressions,

especially when texts are short and therefore less

candidates are generated per document.

For these reasons, gaining recall in the fusion layer

seems to be crucial and it may be a promising way to

join predictions for better overall performance.

Besides choosing between concept candidates from

the subsystems, we also investigate post-processing as-

pects of the fusion layer. During fusion, systematic er-

rors of individual modules might be corrected with su-

pervision that builds upon predictions, professionally

indexed documents, and background-knowledge from

the thesaurus. Inspired by ideas from transformation-
based error-driven learning [4], we investigate a trans-

formation-rule learning module. For each pair of cate-

gories (k1, k2) in the thesaurus, it counts cases on held-

out data of the training examples where a descriptor

c1 ∈ k1 was predicted erroneously while a related de-

scriptor c2 ∈ k2 was missed at the same time. It then

attempts to increase performance on the training data

with a transformation rule (switch every prediction of

c1 by c2). If it succeeds, this rule is added to a list of

rules that are used in production to index new docu-

ments. For instance, we may learn a rule that replaces

candidates c1 by c2 if c1 is a geographic adjective or

language (e.g. “German”), c1 and c2 are related con-

cepts as defined in the thesaurus, and c2 is a geographic

name (e.g. “Germany”). Interestingly, such transforma-

tion rules may predict previously unseen concepts when

they consider types of descriptors instead of descriptors

themselves; the example rule above applies to “Cana-

dian” even when “Canada” was not part of the training

data.

6.1 Concept Drift and Fusion

Before we turn to specific implementations of the fu-

sion framework, we would like to make a note on the

importance of fusion with respect to concept drift.

Recap Section 4, concept drift may in particular

comprise shifts in priors that may lead to a number

of vanishing and emerging descriptors, as well as dif-

ferences in co-occurrence statistics. Therefore, we hy-

pothesize that aspects (A1) and (A2) in Table 1 will

be particularly relevant under concept drift. As a con-

sequence, lexical approaches are supposed to handle

shift in priors, for example, caused by sample selec-

tion bias, better than associative approaches because

of descriptor-invariance of lexical systems. Similarly, we

expect that fusion systems are more robust to concept

drift than associative systems. The impact of these rela-

tions is, however, determined by several environmental

factors. For these reasons, experiments are conducted

and described in the remainder of this article.

6.2 Implementation

In the presented framework, associative predictions and

lexically-based prediction modules may be implemented

by different methods. In the following experiments, we

especially consider two state-of-the-art approaches for

each type: maui [21] to produce predictions with lexical

background knowledge and approaches related to SGD-

SVM [36] for prediction in an associative way.

Inside of the lexical layer, maui [21] provides a ma-

ture thesaurus-based system with a rich set of features

that goes beyond simple dictionary matching. In our

case, it can, however, be assumed that different features

are required to realize the full potential of short texts

like titles or author keywords. For instance, maui’s span

feature aims to weight terms higher that are mentioned

in the abstract and the conclusions, which are however

not accessible in this case. We leave the invention and

integration of new features for future work and suspect

that maui’s supervised learning method (bagged deci-

sion trees [3]) will still be able to create a robust pre-

diction component, even when applied to short texts.

7 Experiments

With the experiments we wanted to answer the follow-

ing three experimental questions:

i) How do fusion systems compare to associative and

lexical approaches in terms of overall accuracy?

ii) To which extent are the approaches robust to ex-

plicit concept drift?
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iii) To which extent are the approaches robust to im-

plicit concept drift?

Explicit concept drift is modelled by a test data set

containing descriptors from specific categories that are

not present in the training data set. To assess implicit

concept drift we evaluate the trained models on an un-

known series of documents, which may cover different

topics. We perform the experiments on short texts from

the economics domain and using the STW thesaurus

(cf. Section 3).

7.1 Data Set

Our data set consists of documents represented by their

titles and author keywords only. This information is

available even in indexing scenarios where abstracts or

full-texts are either missing (in the case of books) or not

accessible due to legal aspects. We represent the docu-

ments as described in Section 5. The complete sample

contains 20,195 documents, indexed by professional in-

dexers. Indexers assigned 5.85 (SD = 1.84) descriptors

per document on average. 94% (19,054) of the doc-

uments have a unique combination of descriptors as-

signed.

To compare i) the overall performance of the dif-

ferent approaches we split the data set randomly into

training and test sets using 5-fold cross-validation (data

set denoted by Dshuffle).

In order to measure the influence of ii) explicit con-

cept drift, we created data sets denoted Dcat, where

we split the documents according to certain subthe-

sauri (categories), that is, subject fields. We used sets of

classification scheme codes (“thsys” codes) of the STW

for which we ensured that they were not used during

training. For instance, one training set of Dcat does

not contain documents with descriptors from the field

“marketing” (thsys: B.07), but all test documents cover

some descriptors from this category, for instance, mar-

ket share, competition, or customers. Consequently, this

setting emphasizes the zero-shot learning task.

To investigate the influence of iii) implicit concept

drift, we split documents into sets Dseries according to

publication series. For example, one single working pa-

per series which covers subjects like “regional business

growth programmes” or “human capital” is omitted

from training. The corresponding test set includes only

documents from this series.

Table 2 provides an overview of the different data

sets. The average number of assigned concepts is the

same on training data and testing data for the random

splits Dshuffle, but it differs on Dcat and Dseries, respec-

tively. The explicit and implicit concept drift settings

Table 2: Properties of settings with respect to profes-

sional indexing. |{Di}|: number of partitions (folds).

|D̄|: average number of documents. |L̄|: average number

of unique descriptors. |Ȳ|: average number of descrip-

tors per document. (Copyright c© IEEE, see footnote 5)

Setting |{Di}| |D̄| |L̄| |Ȳ|

Dshuffle
(train) 5 16,156 3,848.8 5.85

Dshuffle
(test) 5 4,039 2,777.2 5.85

Dcat
(train) 5 17,490 3,812.8 5.78

Dcat
(test) 5 2,705 1,946.0 6.26

Dseries
(train) 5 18,860 3,950.0 5.82

Dseries
(test) 5 1,335 1,205.4 6.54

have larger training sets on average, but the size of the

corresponding test sets varies. For instance, the test

subsets of Dseries
(test) contain 4742, 748, 415, 385, and

385 documents.

Concept Drift

In order to get an impression of concept drift (none,

explicit, implicit) in the data, Figure 4 depicts term

frequency distributions as described in Section 4.1.1.

For each corresponding setting (shuffle, cat, series), we

created one diagram based on one partitioning, with

a maximum of 5000 randomly sampled documents per

partition. We set the minimum term frequency to n = 5

and the Laplace smoothing to c = 1. Sentence bound-

ary characters were removed. Tokens were converted to

lowercase, if they were title-cased and had at least two

characters.

As can be seen, the shapes of the diagrams differ
considerably. Following our expectations, plot b), which

refers to explicit concept drift, has more characteristic

terms than the shuffle setting (no concept drift), shown

in a). Interestingly, this also holds for the comparison

between the folds shown in c) (implicit concept drift)

and a), hence, concept drift on new series may be sim-

ilar to explicit concept drift in particular settings.

Comparing all three of these plots visually with Fig-

ure 1, it seems that the term frequencies of the prac-

tical setting, shown in Figure 1, are spread away from

the diagonal more similar to explicit concept drift 4b)

and implicit concept drift 4c) than to the shuffle setting

4a). This indicates that the drift in the practical setting

is irregular and unlikely to be noise, hence, underlining

the relevance of this study.

Opposed to Section 4.2, availability of suitable de-

scriptors is given for all folds. Consequently, we can de-

pict changes between prior probabilities ptrain(y) and

ptest(y) in a similar way, as shown in Figure 5. For

these plots, we set the minimum concept frequency to
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Fig. 4: Visualisation of concept drift. a) Random data set splits (shuffle), no concept drift, example data sets

Dshuffle
(train,1) vs. Dshuffle

(test,1). b) Explicit concept drift on data sets Dcat
(train,1) vs. Dcat

(test,1), c) Implicit concept

drift on data sets Dseries
(train,1) vs. Dseries

(test,1).

n = 1. It can be seen that the concept drift settings b)

to d) differ considerably from the shuffle setting a). In

particular, the explicit concept drift setting shown in b)

poses a hard challenge with descriptors that are miss-

ing in the training data. Nevertheless, also implicitly

induced concept drift has clearly shifted the concept

prior distributions in the shown data sets c) and d).

7.2 Evaluation Metrics

We use common metrics [29] which can be computed in

total (micro-average), per concept (macro-average), or

per document (sample-based average): precision (cor-

rectly predicted descriptor assignments divided by all

predicted descriptor assignments), recall (correctly pre-

dicted descriptor assignments divided by all descriptors
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Fig. 5: Visualisation of shift in priors of concepts: a) Random data set splits (shuffle), no concept drift, example data

sets Dshuffle
(train,1) vs. Dshuffle

(test,1). b) Explicit concept drift on data sets Dcat
(train,1) vs. Dcat

(test,1), c) Implicit

concept drift on data sets Dseries
(train,1) vs. Dseries

(test,1). d) Implicit concept drift on data sets Dseries
(train,3) vs.

Dseries
(test,3). For instance, concept 10831-0 (“tax haven”, see zbw.eu/stw/descriptor/10831-0) occurred more

frequently in the test set Dseries
(test,1) than in the training set Dseries

(train,1).

assigned by professional indexers), F1 score (harmonic

mean of precision and recall). Since macro-averaging

metrics are not weighted by concept counts, they show

if concepts are recognized accurately independently of

their frequencies in the test sets.

Whether precision is more relevant than recall or

vice versa depends on individual application require-

ments. For this reason, we provide details regarding

both metrics. For the sake of simplicity, F1 values are

employed to summarize the results, considering preci-

sion and recall as being equally important.

7.3 Configurations

As two basic lexical systems, we implemented dic-

tionary matching approaches: a simple matching algo-

rithm that only considers phrases between stop words,

denoted DICT, and MONQ which accesses a dictionary

matching library15 that considers morphological vari-

ants of terms and which was used in related work [13].

As a strong lexical baseline, we chose MAUI16 [21].

The maximum number of concepts to assign was set to

k = 15 and the minimum confidence was set to c = 0.1.

Please note, however, that MAUI is typically applied to

full text rather than short text.

Associative systems were realized by binary rel-

evance (BR) approaches. We chose to use BRLR (lo-

gistic regression classifier) and BRSVM (support vec-

tor machines) trained by stochastic gradient descent

(cf. Wilbur et al. [36]). Both, BRLR and BRSVM, were

15 https://github.com/HaraldKi/monqjfa, accessed
10.11.2017
16 https://github.com/zelandiya/maui, accessed
10.11.2017

zbw.eu/stw/descriptor/10831-0
https://github.com/HaraldKi/monqjfa
https://github.com/zelandiya/maui
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configured with word n-gram features between stop-

words.

RHACK (cf. Section 6) is a meta-learning approach

which is similar in mind to [13]. We configured it to

enrich predictions made by BRLR with the dictionary

matching of DICT, adding only confident DICT predic-

tions to the list of descriptors created by BRLR. On the

training data, it therefore determines all concepts with

minimum support (min.sup = 20) and minimum con-

fidence (min.conf = 50%). These estimates for DICT

predictions per concept rely on training data and im-

plicitly measure a degree of association between terms

and descriptors. As a consequence, it belongs to the

associative system architectures.

Fusion approaches combining lexical and associa-

tive characteristics have been realized by combining the

predictions of BRLR and DICT (short form: D) as well

as of BRLR and BRSVM with MAUI using the union

strategy described in Section 6. The names of these fu-

sion systems are given by BRLR+D, BRLR+MAUI,

and BRSVM+MAUI, respectively.

For DICT, BRLR+MAUI and BRSVM+MAUI, we

additionally applied the transformation described in

Section 6 which led to systems in the following denoted

by the suffix T or transform. Due to the runtime of the

quickly realized implementation of transformation rule

learning17, transformations were only determined based

on the DICT method on the first fold and restricted

to high-level categories of the thesaurus. Because the

number of examples per category is expected to be high,

we suspected that these rules are representative for all

data sets and settings.

For the experiments we used python and the scikit-

learn library18 which support BRLR and BRSVM. For

RHACK, we additionally used a script written for the

R statistics package. MAUI and MONQ were applied

with Java.

7.4 Results

Figure 6 compares distributions of the number of pre-

dicted concepts per document for each setting. For the

purpose of illustration, only one method (BRLR, MAUI,

BRLR+MAUI.T) is shown for each type of architecture

(L, A, F). It can be seen, that all automatic methods

(L, A, F) predicted less concepts than human indexers

(truth). Especially the binary relevance approach (A)

produces a considerable amount of documents which

only consist of a few concepts. Fusion of predictions

17 several hours on several thousand documents
18 www.scikit-learn.org, accessed 10.11.2017

(F) lead to more human-like indexing in terms of the

plain number of concepts per document.

Table 3 lists the results for all data sets and ap-

proaches, supplemented by Figure 7 which focuses on

sample-based averages and gives a visual impression of

how systems perform, with the focus on BRLR, MAUI,

BRLR+MAUI, and BRLR+MAUI.T for the sake of

readability.

Best values are marked bold in the table, showing

that fusion approaches (arch.: F) that combine binary

relevance approaches and MAUI were superior to lexical

(arch.: L) and associative approaches (arch.: A) on all

settings in terms of sample-based F1 score and concept-

based F1 score. In almost all cases19 this difference is

statistically significant (paired t-test to the best per-

forming algorithm), as indicated by arrows in the ta-

ble. Across all settings, associative approaches (binary

relevance methods and RHACK) achieved often signif-

icantly higher precision than other methods, however,

they only predicted less than 3 descriptors per docu-

ment on average. Recall of fusion systems outperformed

associative as well as lexical approaches. These differ-

ences can also be recognized in Figure 7.

When training and test data were selected to re-

flect explicit concept drift (experimental question ii),

the associative systems deteriorated considerably while

MAUI was more stable (compare Figure 7). To high-

light specific details, Figure 8 depicts results of two

explicit concept drift settings, that is, category G.01

(Europe)20 on the top and B.07 (marketing)21 on the

bottom, where evaluation has been constrained to con-

cepts belonging to these specific categories only (left:

B.07, right: G.01). Consequently, zero-shot learning set-

tings can be found in the panels at the top-right and the

bottom-left. For the sake of clarity, only four character-

istic methods (listed on the left) have been regarded.

Notably, it can be seen that (1) F1 measure of the as-

sociative approach (A: BRLR) vanished for the zero-

shot learning tasks, (2) the fusion approaches (prefix

“F”, combinations of A and L) improved the perfor-

mance, and (3) modifications by transformation rules

lead to improvements under special circumstances, for

instance, with regard to category G.01 (Europe) and

the zero-shot learning setting (top right panel).

Concerning experimental question iii), the implicit

concept drift setting showed results that are similar to

Dshuffle, however, they seem to be more diverse, as can

be seen in Figure 7.

19 In some cases, the data was not shown to be normally dis-
tributed (Shapiro-Wilk test, p < 0.05), thus the assumptions
for t-tests were not met.
20 http://zbw.eu/stw/thsys/70002, accessed 10.11.2017
21 http://zbw.eu/stw/thsys/70041, accessed 10.11.2017

www.scikit-learn.org
http://zbw.eu/stw/thsys/70002
http://zbw.eu/stw/thsys/70041
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Fig. 6: Comparisons of distributions regarding the number of assigned concepts per document for random data set

splits (left), explicit concept drift (center), and implicit concept drift (right).

As mentioned in Section 4.2, we expected that the

type of descriptors may have impact on system perfor-

mance. Therefore, we looked into detailed aspects of

predictions for some folds. We observed that particu-

larly concepts like “theory” or “estimation”, which are

amongst the most frequently assigned descriptors by

human indexers, and which are rarely mentioned liter-

ally in the title of documents, have a very poor perfor-

mance according to approaches that are based on dic-

tionary matching. Detection of these concepts is espe-

cially improved by statistical approaches. If descriptors
are infrequent but used literally and unambiguously by

authors in the title, lexical methods outperformed sta-

tistical approaches. An example of such a descriptor

was “elasticity of substitution”.

7.5 Discussion

Considering the questions i)-iii) posed in the beginning

of Section 7, results showed the following:

The proposed descriptor-invariant fusion is i) supe-

rior to the associative and lexical systems in terms of

F1, which is foremost attributed to changes in recall.

The union of individually proposed descriptors per doc-

ument substantially increased the overall recall. Hence,

concepts proposed by the systems are at least partly

non-overlapping. With the union strategy, the average

number of assigned descriptors comes closer to how pro-

fessional indexers act. Secondly, the union also retains

high precision assignments, especially from the associa-

tive component.

With regard to question ii) and iii), fusion makes

predictions more robust against concept drift as can be

seen in Figure 7, supported by the details highlighted

in Figure 8. Fusion is backed up by MAUI [21], which

seems to be a robust choice for the lexical component

of the system. Implicit and explicit concept drift were

handled with lower variance by MAUI (F1 ≈ 0.3 on

Dshuffle, Dcat, Dseries) compared to associative systems.

The category setting Dcat (explicit concept drift) was

expected to be challenging, in particular for statistical

approaches like binary relevance, because concepts had

to be predicted without corresponding training data

(cf. Table 1). Hence, a drop in performance was antic-

ipated for these methods on this data. Indeed, BRLR

and BRSVM were considerably deteriorated (F1 < 0.28

on Dcat). Thankfully, fusion allowed to absorb a certain

amount of this decrease while it could not be prevented

completely by the current systems.

Among the different fusion configurations, it seems

that BRLR+MAUI and BRSVM+MAUI are on par

with each other, and outperformed BRLR+D. The ef-

fect of post-processing by transformation rules appeared

to be small, although positive effects are indicated in

Figure 8. We assume that the approach has further po-

tential. Maybe the restrictions on rules to high-level

categories were too strict.

Introspection of frequent errors is in line with pre-

vious studies: in particular frequently appearing con-
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Table 3: Comparison of approaches (averaged over 5 test sets). Architecture: L=lexical, A=associative, F=fusion.

Bold type: highest values per setting and metric. Superscript ↓: significantly smaller than maximum (bold) value

(paired t-test, p < .05). [32] (Copyright c© IEEE, see footnote 5)

Method sample-based avg. concept-based avg.

Data Name Arch. F1 prec. rec. F1 prec. rec. |Ypred|

Dshuffle DICT L 0.277↓ 0.329↓ 0.273↓ 0.222↓ 0.451↓ 0.265↓ 4.92
Dshuffle DICT.T L 0.286↓ 0.334↓ 0.285↓ 0.223↓ 0.450↓ 0.267↓ 5.07
Dshuffle MONQ L 0.307↓ 0.381↓ 0.285↓ 0.245↓ 0.475↓ 0.285↓ 4.41
Dshuffle MAUI L 0.332↓ 0.486↓ 0.280↓ 0.256↓ 0.459↓ 0.291↓ 3.28
Dshuffle BRLR A 0.391↓ 0.632 0.318↓ 0.206↓ 0.558 0.181↓ 2.69
Dshuffle BRSVM A 0.394↓ 0.617↓ 0.326↓ 0.208↓ 0.510↓ 0.187↓ 2.90
Dshuffle RHACK A 0.413↓ 0.633 0.342↓ 0.211↓ 0.553↓ 0.190↓ 2.98
Dshuffle BRLR+D F 0.392↓ 0.395↓ 0.436↓ 0.279 0.426↓ 0.351↓ 6.55
Dshuffle BRLR+MAUI F 0.449↓ 0.521↓ 0.439↓ 0.303 0.433↓ 0.366↓ 4.91
Dshuffle BRLR+MAUI.T F 0.449 0.521↓ 0.439↓ 0.303 0.433↓ 0.367↓ 4.91
Dshuffle BRSVM+MAUI F 0.449 0.512↓ 0.444↓ 0.300↓ 0.417↓ 0.369↓ 5.08
Dshuffle BRSVM+MAUI.T F 0.449 0.512↓ 0.445 0.300↓ 0.416↓ 0.370 5.09

Dcat DICT L 0.292 0.344 0.285↓ 0.206↓ 0.420 0.261↓ 5.29
Dcat DICT.T L 0.300↓ 0.349↓ 0.298↓ 0.208 0.418 0.263↓ 5.47
Dcat MONQ L 0.320↓ 0.393↓ 0.295↓ 0.225↓ 0.441 0.279↓ 4.76
Dcat MAUI L 0.300↓ 0.466↓ 0.245↓ 0.233↓ 0.436 0.279↓ 3.26
Dcat BRLR A 0.273↓ 0.524↓ 0.202↓ 0.150↓ 0.467 0.139↓ 2.21
Dcat BRSVM A 0.277↓ 0.510↓ 0.210↓ 0.151↓ 0.425↓ 0.146↓ 2.42
Dcat RHACK A 0.298↓ 0.536 0.226↓ 0.159↓ 0.465 0.154↓ 2.50
Dcat BRLR+D F 0.350↓ 0.365↓ 0.374 0.235↓ 0.377↓ 0.316↓ 6.57
Dcat BRLR+MAUI F 0.366 0.469↓ 0.332↓ 0.253↓ 0.388↓ 0.326 4.56
Dcat BRLR+MAUI.T F 0.371 0.472↓ 0.339↓ 0.253 0.388↓ 0.326 4.60
Dcat BRSVM+MAUI F 0.366 0.458↓ 0.338↓ 0.249↓ 0.371↓ 0.328 4.75
Dcat BRSVM+MAUI.T F 0.371 0.461↓ 0.344↓ 0.249↓ 0.371↓ 0.328 4.79

Dseries DICT L 0.268↓ 0.338↓ 0.247 0.189 0.417↓ 0.241↓ 4.89
Dseries DICT.T L 0.277↓ 0.343↓ 0.259↓ 0.191 0.417↓ 0.245↓ 5.05
Dseries MONQ L 0.293 0.390↓ 0.255 0.206↓ 0.445↓ 0.256↓ 4.32
Dseries MAUI L 0.308 0.500↓ 0.244 0.222↓ 0.464↓ 0.264↓ 3.11
Dseries BRLR A 0.387↓ 0.663 0.304↓ 0.218↓ 0.639 0.205↓ 2.70
Dseries BRSVM A 0.389↓ 0.645↓ 0.312↓ 0.224↓ 0.598↓ 0.217↓ 2.87
Dseries RHACK A 0.409↓ 0.665 0.327↓ 0.229↓ 0.628↓ 0.223↓ 2.99
Dseries BRLR+D F 0.394↓ 0.416↓ 0.413 0.259↓ 0.435↓ 0.344↓ 6.54
Dseries BRLR+MAUI F 0.448 0.556↓ 0.413↓ 0.284 0.467↓ 0.354↓ 4.79
Dseries BRLR+MAUI.T F 0.449 0.556↓ 0.414↓ 0.284 0.467↓ 0.355↓ 4.80
Dseries BRSVM+MAUI F 0.447 0.544↓ 0.418↓ 0.285 0.454↓ 0.362↓ 4.95
Dseries BRSVM+MAUI.T F 0.447 0.544↓ 0.419 0.285 0.454↓ 0.363 4.96

ceptual descriptors are detected better by statistical

methods than by lexical approaches. Hence, applica-

tion of statistical methods may seem to be preferable

at first sight, when only looking at micro-averaged F1

values. In general, certain applications like information

retrieval, however, especially require that also rare con-

cepts are detected in order to improve subject access,

since infrequent descriptors often represent more dis-

tinctive aspects of the content of the document, and

therefore have stronger discriminative power. Our re-

sults indicate that detection of rare concepts can be ac-

complished by careful combinations of associative meth-

ods with lexical approaches, following the fusion ratio-

nale.

Our experiments gave an impression on how the ap-

proaches may behave in practical settings when meth-

ods are applied to new domains. They are in line with

our expectations from the analysis of system architec-

tures. Similar to results from Jimeno-Yepes et al. [13],

we also found improvements by meta-learning accord-

ing to specific concepts (RHACK). In our setting, it

was, however, considerably affected by concept drift.

A direct comparison to figures reported on full-texts

in the economics domain [11] (micro-avg. F1 = .39,

based on random order) is difficult because our results

base on less training data (ours:≈ 20k vs. theirs:> 60k)

and short text (titles and author-keywords). In general,

multiple factors influence the absolute performance in-

cluding data set characteristics and the calculation of
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Fig. 7: Sample-based average precision and recall for random data set splits (left), explicit concept drift (center),

implicit concept drift (right). Colors encode architectures (Lexical = red, Associative = blue, Fusion = green),

symbols encode individual systems – Figure is best viewed in color.
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Fig. 8: Constrained evaluation on two folds (top: G.01,

bottom: B.07) of Dcat (explicit concept drift) restricted

to concepts of the corresponding categories (left, right)

showing effects of system architecture and transforma-

tion rules. (Copyright c© IEEE, see footnote 5)

F1 scores (i.e., the type of averaging). Finally, please

note that even professional indexers, which are com-

monly used as ground-truth [17, 13, 36, 11], do not agree

on all indexing terms. For instance, Medelyan and Wit-

ten [20] reported an inter-indexer agreement of 39%.

Albeit their values are not directly comparable to our

work because of differences in data sets, thesauri, and

indexing rules, they provide a rough overall impression.

Determining upper bounds for indexing settings as per-

formed by Medelyan and Witten is valuable but com-

plex and costly, because it requires human indexing.

Besides comparing professionally indexed documents

to automatically created results, collecting graded feed-

back with weights for individual concepts has been rec-

ognized as valuable for quality assessment of subject

indexing [27]. The following section reports on recent

efforts regarding such an evaluation of a fusion system.

8 Case Study with Graded Quality Assessment

Based on the experimental results and theoretical con-

siderations reported in the previous sections, ZBW’s au-

tomatic subject indexing group decided to pursue work-

ing with the fusion methodology. This section provides

insights into ongoing efforts and results in this project.

At first it should be noted that weighting precision

versus recall depends on application specific considera-

tions. For the sake of generality, Table 3 listed results

regarding precision, recall and their harmonic mean.

In the special case of subject indexing, the relevancy

of index terms can be measured in more detail using

weights [27]. In the project regarding this case study, it

has been specified that especially harmful descriptor as-

signments, that is, extremely irrelevant concepts, have

to be avoided, which implicates that precision should

be preferred to recall. As described in Section 4.2 and

Section 7, it should be assumed that concept drift will
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be present, which may disturb operations. In order to

increase robustness, implementing a voting scheme in

the fusion layer seemed reasonable, hence, the number

and type of algorithms as well as the fusion function

have been adjusted.

On the basis of our results, some of the implemen-

tations that performed worse than others having the

same type of architecture have been discarded (for ex-

ample, DICT and DICT.T). A simple kNN (k-nearest-

neighbor with k = 1) based system has been added,

which was expected to perform well when document ti-

tles are very similar. This method should, however, be

handled carefully because harmful descriptors may also

be retrieved, especially since it operates on titles and

author keywords only. Consequently, additional filters

have been applied. Based on the insights from our anal-

ysis reported in Section 5, special attention has been

paid to the types of architectures available for the fusion

layer and descriptor-invariance of the fusion function.

In total, four individual systems were combined: two

lexical (MAUI and STWFSA, which is an extension22

of MONQ) and two statistical approaches (kNN and

BRLR trained on titles). Their predictions have been

merged by consecutive application of the following two

fusion rules, R1 and R2, aiming at balancing precision

and recall:

R1: Each concept proposed by fusion has to be sup-

ported by at least two individual methods. (voting

scheme)

R2: Furthermore, documents are only considered when

the number of concepts belonging to the union of cat-

egories economics (code: V) and business economics

(code: B) is at least two.

The first rule addresses confidence in each assigned con-

cept. The second rule aims to increase recall at the doc-

ument level.

Mainly, the study was performed to assess the qual-

ity of the results produced by the fusion system which

uses R1 and R2. Moreover, we were interested in the

contributions of the four individual systems, which may

enable improved fusion functions, hence all concepts

suggested by at least one of them were examined. All

systems were applied on the aforementioned new data

(cf. Section 4.2), which has not been indexed by humans

with STW concepts before. Detailed quality judgements

have been collected using a web-based tool [33]. A group

of 6 human indexers rated samples at the document

level on a 3-point scale (reject, fair, good) and at the

22 In STWFSA, we added special processing routines. For
instance, it distinguishes upper and lower case words in cer-
tain cases, which in particular enables disambiguation of
acronyms like SALT (Strategic Arms Limitation Talks) vs.
salt (mineral) or AIDS (virus) vs. aids (plural of aid).

harmful fair helpful really helpful

concept−level grade
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un
t

0
50

0
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00
15

00
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00
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kNN
SGDLR
fusion: union
fusion: R1 & R2

Fig. 9: Aggregated graded quality assessments on sug-

gested concepts, showing how fusion with rules R1 and

R2 exploits individual systems and balances precision

and recall.

Table 4: Origin of concepts graded as really helpful.

Freq support kNN MAUI SGDLR STWFSA

409 2 X X
335 1 X
254 4 X X X X
249 3 X X X
216 2 X X
185 1 X
107 1 X
97 3 X X X
93 1 X
34 2 X X
28 2 X X
25 3 X X X
20 2 X X
17 2 X X
12 3 X X X

concept level on a 4-point scale (harmful, fair, helpful

and really helpful). In total, 503 document reviews (on

454 distinct documents) have been entered.

Regarding the document level, the sets of index terms

of the fusion system using R1 and R2 have been ac-

cepted (grades “good” and “fair”) on more than three

quarters of the documents. When documents were re-

jected, they did not contain more than one harmful de-

scriptor in most cases.
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Figure 9 depicts how often each grade23 has been as-

signed to concepts for each method. Providing more de-

tail, Table 4 itemizes how many really helpful concepts

were found by distinct method combinations, where

support denotes the number of systems that suggested

these concepts. The majority of harmful and irrelevant

concepts could be excluded by application of rules R1

and R2, while many helpful subject terms have been

kept. Moreover, fusion proves to be highly relevant. As

can be seen in the first row of Table 4, lexical sys-

tems (MAUI + STWFSA) triggered the assignment of

409 highly relevant concepts that none of the statis-

tical associative systems detected, and they proposed

more really helpful concepts than the statistical asso-

ciative approaches (cf. Fig. 9). Comparison of both fu-

sion functions (union vs. R1 & R2) on “really helpful”

concept assignments in Figure 9 as well as detailed anal-

ysis of the potential (rows with support < 2) included

in Table 4, it can be seen that there is still room for

improvement by investigating techniques that leverage

these already recognized relevant concepts and exclude

harmful concepts at the same time.

In summary, the case study confirmed the value of

fusion for automatic subject indexing. The additional

filtering rules R1 and R2 yielded conservative assign-

ments and allowed to favor precision over recall.

9 Limitations and Future Work

Open research questions arise in different fields, encom-

passing temporal effects, the extent of available meta-

data, quality control, as well as inference and learning

algorithms.

This article put emphasis on general differences be-

tween training data and test data regarding topics and

subject areas rather than considering language evolu-

tion explicitly. Further analysis and experiments on tem-

poral phenomena like word sense changes (cf. [12, 30])

and their effects in the context of automatic subject in-

dexing and scientific publications in economics remain

open issues for future work.

In this article, we applied the approach to short

texts (title + author keywords). It would be interest-

ing to conduct more detailed experiments on the fusion

methodology that compare different levels of extent of

available text about the documents. In particular, we

plan to investigate integration of abstracts, while still

maintaining special consideration of titles, extending

the approach of Jimeno-Yepes et al. [13].

23 49 documents have been rated by two indexers. Corre-
sponding concept-level ratings have been averaged, using the
floor function in order to resolve odd values.

Quality control is an ongoing issue which should be

addressed continually in order to guarantee high quality

subject terms for use in productive information retrieval

systems. Measuring quality of automatic subject index-

ing appropriately is complex and can involve consider-

able costs (cf. Section 7, Section 8 and [27]). Notably,

we are currently working on methods to estimate the

quality of results automatically. Similar to evaluation

based on document layout analysis for information ex-

traction [34], we are planning to exploit different types

of features and meta information such as membership

in series and journals for automatic subject indexing.

As we have pointed out, descriptor-invariant learn-

ing is essential for subject indexing with respect to

many aspects such as zero-shot learning, hence further

research on this topic is worthwhile. Regarding lexical

systems, further development may incorporate contex-

tual markers and segmentation rules, which have been

successfully applied in other domains, for instance, in

terminology-driven clinical information extraction [34].

With respect to this, distributed word representations

may be further explored to provide context for disam-

biguation, however, substantially new integration ap-

proaches may be necessary to reach more human-like

concept learning [16], which we believe will be neces-

sary for automatic subject indexing in the long term.

Leveraging transformation-based learning as presented

in Section 6 can be regarded as a step in this direction,

adding a semantic learning and processing layer that

generalizes across groups of concepts to the overall ar-

chitecture. In agreement with discussions in the com-

putational linguistics community [19], thinking about

problems, architectures, and settings has to accompany

exploration of different techniques and configurations.

10 Conclusion

In this article, we studied concept drift as a relevant

and challenging issue in subject indexing for digital li-

braries. Based on an analysis of related work, we dis-

tinguish explicit and implicit concept drift, which in

automatic subject indexing translates to settings with

new descriptor terms and new types of documents, re-

spectively. A theoretical analysis underlines that the

system architecture is essential for the success of auto-

matic subject indexing systems in settings with concept

drift. Therefore, we proposed descriptor-invariant fu-

sion of associative and lexical indexing approaches. Ex-

periments in the domain of economics on texts, shorter

than abstracts, showed that our fusion approach is su-

perior to state-of-the-art methods for lexically-based

and associative indexing. Fusion improved F1 scores, in

particular, when explicit or implicit concept drift was
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induced by design of the training and testing data sets.

In line with our initial considerations, superior F1 val-

ues can be mainly attributed to substantial increases of

recall. We also found positive effects of fusion in a case

study, which supported the German National Library

of Economics (ZBW) – Leibniz Information Centre for

Economics to find suitable solutions for their practical

setting.

Copyright. This article is an extended version of the au-

thors’ previous work [32] c© 2017 IEEE, see Footnote 5.
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