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A B S T R A C T

The main goal of this study was to assess the potential of SAR backscatter signatures (RH and RV) retrieved from
hybrid-polarized RISAT-1 SAR data in providing relevant information about the wheat growth parameters (leaf
area index or LAI, plant water content or PWC, plant volume or PV and wet biomass or WB) over the entire
growing season. The study was carried out over the parts of Bharatpur and Mathura districts located in Rajasthan
and Uttar Pradesh (India), respectively. The three-date time series hybrid-polarized dataset was collected co-
incident to which a comprehensive ground truth campaign was organised. We propose that refining the total
backscatter (σtotal0) values after minimising the effect of underlying/background soil cover, would result in more
accurate retrieval of plant parameters since it is the vegetation backscatter, which ultimately has a direct cor-
relation with the crop biophysical parameters. It was achieved using a semi-empirical water cloud model (WCM)
based approach. The applicability of four different combinations of canopy descriptors, i.e. leaf area index (LAI),
plant water content (PWC), leaf water area index (LWAI) and interaction factor (IF that takes into consideration
the moisture distribution per unit volume) was tested on the RH and RV backscatter. We found that WCM based
on LAI and IF as the two canopy descriptors modelled the total backscatter with a significantly high coefficient of
determination (R2=0.90 and 0.85, respectively) and RMSE of 1.18 and 1.25 dB, respectively. Subsequently, this
set was used to retrieve the soil-corrected vegetation backscatter (σveg0) values. A comparative evaluation of the
retrieval accuracy between plant parameters estimated from σtotal0 (σT_RHo, σT_RVo) and σveg0 (σV_RHo, σV_RVo) was
performed using rigorously trained multi-layer perceptron (MLP) neural networks. The findings suggest that the
prediction accuracy considerably improved when the backscatter of underlying/background soil cover was
eliminated. The designed networks (with σtotal0 as input) retrieved plant water content and plant volume with the
highest accuracy of 0.82 and 0.80, respectively while it increased dramatically to 0.87 and 0.89 when the inputs
were substituted by σveg0. The present study is a first step towards retrieving crop parameters from hybrid-
polarized data and thus possesses the potential to serve as a reference for further research initiatives.

1. Introduction

Accurate retrieval of the crop biophysical parameters is of crucial
importance as they define the status of a crop at a particular time and
are essential inputs to the crop yield models (Moulin et al., 1998;
Doraiswamy et al., 2005; Patel et al., 2006b; Kogan et al., 2013). An
accurate mapping and quantification of these parameters can be done
on an extensive scale using remote sensing due to a high correlation
between the observations derived from satellites and biophysical
parameters (Ceccato et al., 2001; Colombo et al., 2003; Patel and
Srivastava, 2013b; Battude et al., 2016). The availability of synthetic
aperture (SAR) data, specifically at various polarizations, frequencies

and incidence angles have started an era with enormous possibilities
which have been exploited for various agricultural applications
(McNairn et al., 2014; El Hajj et al., 2016). Due to its unique sensitivity
towards crop moisture content, soil moisture, crop biomass, crop
height, plant density etc., SAR can play a significant role in studies
related to the monitoring of crop growth, soil moisture, crop dis-
crimination, crop phenology and crop biophysical parameter retrieval
(Patel et al., 2006a; Patel and Srivastava, 2007; Srivastava et al., 2006a,
2006b; Srivastava et al., 2009). However, due to its sensitivity to var-
ious target parameters, retrieval of a desired target parameter is always
a challenging task. For example, if a user is interested in soil moisture;
crop cover, surface roughness and soil texture act as noise parameters,
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whereas in case of crop biophysical parameter retrieval, the under-
lying/background soil moisture can interfere with the retrieval process.

Attempts have been made by many researchers to incorporate the
effect of these noise parameters in soil moisture retrieval (Srivastava
et al., 2002, 2003; Srivastava et al., 2006b). There is a substantial
heritage of studies that have documented the usability and sensitivity of
coherent dual (HH+VV or HH+HV or VV+VH)/quad-polarized
(HH, HV, VH, VV) data to wheat crop characteristics either through
ground-based experiments (Ulaby and Bush, 1976; Bouman, 1991), or
by the means of airborne and space-borne SAR campaigns (Ferrazzoli
et al., 1997; Saich and Borgeaud, 2000; Macelloni et al., 2001). How-
ever, the study reports that reduced swath width with increased pulse
repetition frequency (PRF) (by a factor of 2) and data rate (by a factor
of 4) in quad-pol satellite systems result in power and hardware com-
plexities (Raney, 2007), making them less appropriate for large-scale
routine coverage.

The compact polarimetry concept, first suggested in 1970 (Green,
1968) has been revived (Souyris et al., 2005; Raney, 2007) and is now
at the frontier of current research. Hybrid polarimetry, a particular case
of compact polarimetry, transmits circular (right/left) and receives dual
linear (horizontal & vertical) polarized waves (RH, RV or LH, LV). In
comparison to other dual/quad-pol systems, it can lead systems with
less radio-frequency (RF) hardware and reduced mass (Raney, 2011).
Souyris et al. (2005) showed that compact SAR is capable of providing
similar information as that of fully polarimetric SAR for targets ex-
hibiting azimuthally symmetric scattering. Raney (2007) also promoted
the use of hybrid SAR owing to its simpler architecture and increased
swath coverage in contrast to the traditional circularly polarized SAR
(Green, 1968) and other polarimetric modes. Patel and Srivastava
(2013b) carried out a comparative analysis and concluded that hybrid
polarimetric mode with circular transmit linear receive is superior to
quad-pol SAR backscatter alone for vegetation parameter retrieval. On
the other hand, a probabilistic approach to soil moisture retrieval using
RISAT-1 SAR data was found to be useful for improved soil moisture
estimation for bare soil conditions as well as moderately vegetated
terrain (Pal et al., 2017).

So far, the use of hybrid polarimetry has been realised only through
the synthetic simulation of hybrid-polarized data from the quad-pol
data (Charbonneau et al., 2010; Patel and Srivastava, 2013b). Indeed,
the launch of ISRO's first indigenous space-borne hybrid-polarimetric
SAR sensor onboard RISAT-1, operating in several spatial resolution/
polarimetric modes has paved the way for researchers to exploit en-
tirely new dimension of radar polarimetry (Misra et al., 2005). Cali-
bration of the RISAT-1 SAR data is also a challenging task as it is first of
its kind. Mishra et al. (2014) detail the outcome of the RISAT-1 SAR
hybrid polarized FRS beam mode SAR data calibration using point
target response. Very few studies have made use of RISAT-1 hybrid
polarized SAR data to explore crop characteristics. Among the few,
Uppala et al. (2016) successfully delineated a maize crop using a single
date hybrid dual-polarimetric RISAT-1 SAR data with a spatial agree-
ment of 91%. Sivasankar et al. (2015) analysed the sensitivity of dif-
ferent hybrid polarimetric parameters from RISAT-1 data for various
land cover targets and found that the depolarization effect was very
sensitive to the vegetation. Overall, the major focus of such studies has
been on limited application areas like feature identification and clas-
sification accuracy assessment (Kumar et al., 2016). While few attempts
have been made for wheat crop parameter retrieval using simulated
hybrid-polarized SAR data (Patel and Srivastava, 2013b), an under-
standing of the sensitivity of hybrid-polarized data to the crop para-
meters, especially in the context of wheat has not been developed yet
using RISAT-1 SAR; the first earth observing SAR that is providing
hybrid polarized data. Thus, the primary objective of this investigation
was to retrieve leaf area index (LAI), plant volume (PV), plant water
content (PWC) and wet biomass (WB) of the wheat crop using hybrid-
polarized RISAT-1 SAR data.

Over the past few years, studies by Taconet et al. (1994), Brown

et al. (2003), Cookmartin et al. (2000) and Mattia et al. (2003) have
illustrated the temporal variation of backscatter from the wheat crop,
particularly at C-band. In particular, these studies have argued that the
contribution of underlying/background soil surface attenuated by the
canopy above dominate the backscatter response from such narrow leaf
crops with a vertical structure, predominantly in the early growth
stages. It is particularly the case in the range of incidence angles 20° to
40°. Even in the subsequent stages, the effect of soil cover cannot be
entirely ignored. Thus, in the present study, an approach has been de-
monstrated to refine the total backscatter coefficient (σtotal0) by elim-
inating the contribution from underlying/background soil cover (σsoil0).

In parallel, several modelling approaches have facilitated the un-
derstanding of interactions of the radar signal with vegetation and
underlying/background soil cover. These models have evolved from
simple process based Water Cloud Model or WCM proposed by Attema
and Ulaby (1978) to more sophisticated Michigan Microwave Canopy
Scattering or MIMICS model proposed by Ulaby et al. (1990) and have
been validated on various crops like wheat, corn, rice, etc. using multi-
parametric SAR data (Toure et al., 1994; Dabrowska-Zielinska et al.,
2007). At the same time, radiative transfer and analytic wave models
with different approximations have also been used (Tsang et al., 1995;
Del Frate et al., 2004). Although these physically based models may be
theoretically sound in interpreting the measured data, the retrieval of
crop biophysical variables with their inversion is still difficult due to the
inherent complexity and intensive input requirements (Wang et al.,
2009). To circumvent these limitations, a simpler semi-empirical WCM
approach has been used in this study to model and refine σtotal0.

The intensity of the received σtotal0 is primarily dependent on the
strength of coupling that takes place between the signal and the scat-
terers. This, in turn, is related to the sensor parameters (frequency,
incidence angle or polarization) as well as the target characteristics
(structure, dimension, orientation or dielectric properties). For in-
stance, Macelloni et al. (2001) showed that the contribution from
“broad-leaf” crops (corn or sorghum) could be conveniently modelled
using the L-band data while lower wavelength (C-band) is more suitable
for studying “narrow-leaf” crops (wheat or alfalfa). In C-band, the crop
canopy behaves as an inhomogeneous medium with different plant
constituents responding differently to the incident energy (Patel et al.,
2006a). To facilitate the understanding of such complex interaction
mechanisms, a robust model with adequate parameterisation needs to
be generated (Ulaby et al., 1986). The assumptions made in WCM
simplify the scattering processes in accordance with some physical ca-
nopy parameters/descriptors. However, the key element of considera-
tion here is to differentiate and to correlate the most important crop
parameters that would satisfactorily describe a crop canopy. Several
WCM parametrization procedures have been tested to date (Prevot
et al., 1993; Dabrowska-Zielinska et al., 2007; Said et al., 2012),
however, none of them account for the structural inhomogeneity of a
crop canopy solely in terms of a canopy descriptor. To this end, a po-
tential combination of canopy descriptors have been suggested in this
study and their effect on the σtotal0 simulation have been evaluated.

The dependence of the σtotal0 on multiple soil and vegetation para-
meters makes the inversion process quite cumbersome. Modelling of
such non-linear processes based on simple relationships between σtotal0
and crop biophysical parameters tends to be unreliable (Del Frate et al.,
2004). A more advanced approach based on neural networks has shown
promising results in modelling such non-linear processes and has been
found to be particularly relevant for inversion with multi-dimensional
inputs and outputs (Wang and Dong, 1997; Del Frate and Wang, 2001;
Jia et al., 2013). Therefore, in this study, neural networks were adopted
for the retrieval of wheat biophysical parameters. The networks were
trained and validated using ground measurements, following which a
comparative evaluation of the retrieval accuracy of crop parameters
was done for the total as well as refined backscatter coefficients. In-
evitably, the procedure does have some limitations, which have been
critically examined in the paper. Nonetheless, it has the capability of
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fully utilising the potential of the multi-temporal datasets for wheat
biophysical parameter retrieval.

2. Materials and methods

2.1. Study site

The study was carried out over the parts of Bharatpur and Mathura
districts located in Rajasthan and Uttar Pradesh (India), respectively
(Fig. 1). The land is relatively flat, and wheat crop management prac-
tices are consistent throughout the area. Wheat is cultivated once a year
during the December–April season. At the time of data acquisition, the
weather conditions over the study area were quite stable. Wheat and
mustard constituted the major crops while other minor crops like
chickpea and potato were also planted in a few fields. The official time
for full tillering (early-vegetative), booting/heading (late-vegetative)
and milking/grain filling (mid-maturing) stages in the study site is late-
January, mid-February and mid-March, respectively (Fig. 2). The ma-
jority of wheat fields in the region were greater than 600m2 in the area,
but the row direction was not identical. Apart from this, there were
abundant bare fields too (Fig. 3), making the site feasible to attain the
specified objectives. A total of 220 (140 crop and 80 soil) samples were
collected from wheat and bare fields over the period of January–March.

January is the coldest month of the year with average temperature of
15.7°. The precipitation is minimum in December at an average of
4mm.

2.2. Experimental datasets

2.2.1. Remote sensing data
We used hybrid-polarized RISAT-1 SAR (SLC) images for the month

of January, February and March 2015 in fine resolution stripmap (FRS-
1) mode, spanning the crucial growth stages of wheat crop (Table 1).
Indeed, the quantification of the parameters at these stages is of utmost
importance for crop growth diagnosis and yield assessment studies.
Three-date time-series data in the required hybrid polarized mode, at
RH and RV polarizations was acquired with the revisit interval of
24 days and swath of 25 km. The images were acquired at a spatial
resolution of 3×3m on the ground. Selection of optimum SAR sensor
parameters is essential for studies that aim at target parameter retrieval
using SAR. Srivastava et al. (2008) have demonstrated that high in-
cidence angle, SAR is more suitable for studies related to crop due to its
longer path length and higher slant height inside the vegetation canopy.
Accordingly, we chose an incidence angle of ~38°.

Fig. 1. Location map of the study site.

Fig. 2. Illustration of wheat canopies at (a) early-vegetative, (b) late-vegetative, and (c) mid-maturing stages, respectively.
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2.2.2. Design of experimental setup and field data collection
A statistical approach was utilised to obtain the minimum number

of pixels (m) that need to be averaged from the SAR image and
minimum size of the sampling unit (in m2) that should be considered
while doing the ground measurements. This approach takes the phe-
nomenon of fading into account, due to which the random fluctuations
in the return signal, coming from a specific scene location produces
speckle on the image. By considering the error of 10% on the signal
amplitude with 95% confidence interval, the value of m was estimated
to be 105 while the minimum field size of 630m2 was considered for
the ground measurements. Further details of this approach can be found
in Patel and Srivastava (2013a).

We made detailed field observations of the crop and soil parameters
simultaneous to the RISAT-1 satellite pass. We recorded the structural
parameters like plant height, plant volume, wet biomass, plant density
(per m2), and LAI for each field. Additionally, we also noted down the

morphological variables such as leaf size, stem diameter and other
observations related to the field condition, crop variety, growth stage,
and soil moisture status. Nearly homogenous fields were selected.
Within each field, we collected five crop and soil samples. We then
averaged the measured values for the five points and considered the
average value as representative for that field. The soil and crop samples
were weighed to get fresh soil weights (swf) and wet biomass (cwf). The
corresponding surface roughness was also measured.

The LAI was measured with an AccuPAR LP-80 PAR/LAI
Ceptometer while a GPS based mobile mapping unit was used to trace
the field vector boundaries. A core sampler method was employed to
get the bulk density of the soil samples (up to 5 cm). The crop and soil
samples were dried (at Central Analytical Laboratory, Indian Institute
of Remote Sensing) at 70 °C and 105 °C, respectively for 24 h in an
electrically fitted oven with the digital temperature controller (Fig. 4b,
d). The dried crop (dry biomass or cwd) and soil (swd) samples were
weighed again to get the volumetric soil moisture (Mv) and plant water
content (PWC) using the following equations:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

∗M
sw sw

sw
(%) 100gravi

f d

d (1)

= ∗M M(%) (%) Bulk Densityv gravi (2)

= −PWC cw cw(kg/m ) ( )f d
2 (3)

where Mgravi is the gravimetric soil moisture.
Additionally, we immersed the plant samples into the water-filled

graduated measuring cylinders and measured the amount of water
displaced to compute the volume of each plant component (Fig. 4a).
The field measurements and the subsequent laboratory analysis,
therefore, resulted in two categories of collected variables: the non-
destructive variables such as the plant density (plants/m2), LAI (m2/
m2), plant height (m) and the destructive variables such as wet biomass

Fig. 3. Bare fields during wheat crop growing season.

Table 1
RISAT-1 data acquisition date, sensor characteristics and the wheat growth
stage captured.

RISAT-1 data
acquisition
date

Wheat
growth
stage

Sensor characteristics

Scene
centre
lat/long

Pass Incidence
angle

Time of
acquisition

27 January
2015

Full
tillering

27.168/
77.457

Ascending 38.90274° 12:50:39.872

21 February
2015

Booting/
heading

27.139/
77.407

Ascending 38.16588° 12:50:20.714

18 March
2015

Milking/
grain
filling

27.185/
77.408

Ascending 38.18430° 12:50:19.648
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(kg/m2), dry biomass (kg/m2), plant water content (kg/m2), plant vo-
lume (cm3/m2) and volumetric soil moisture (%).

Fig. 5 depicts the overall methodological flowchart adopted in this
study. The main steps comprise of (a) model development, and (b) re-
trieval and validation. The primary inputs and outputs (illustrated as
parallelograms) have been colour-coded as yellow and green,

respectively.

2.3. Pre-processing of RISAT-1 Synthetic Aperture Radar images

The acquired SAR data was radiometrically calibrated into the σo
images (RH and RV) using Eq. (4). The RH and RV backscatter images

Fig. 4. Laboratory analysis of (a) plant volume, (b) dry biomass, (c) fresh biomass and (d) soil moisture.

Fig. 5. The methodology adopted for wheat biophysical parameters retrieval using water cloud model (WCM) and neural networks (NN).
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have been illustrated in Fig. 6.

= − +σ DN K i i(dB) 20log ( ) 10log (sin( )/sin( ))p p cal sigma p center
0

10 0,dB 10 (4)

where, σp0 (dB) is the radar backscatter coefficient (Sigma0) in dB for
the pixel p; DNp is the digital number for the pixel p; Kcal sigma0, dB is the
product calibration constant in dB; ip is the incidence angle for the pixel
p, and icenter is the incidence angle at the scene centre.

The temporal σo images were then geo-referenced & co-registered
using high-resolution satellite imagery of same resolution (3m). A
second order polynomial transformation with the nearest neighbour-
hood sampling approach was applied. Furthermore, to suppress the
speckle noise and preserve the edge information, an enhanced Lee filter
with the moving window of 3×3 was applied to the images using ENVI
5.0 software. After the necessary preprocessing, GPS vector layers of the
field boundaries traced during the field observations were overlaid on
the co-registered set of images and the signatures were extracted, both
for wheat fields as well as the bare field locations. As a measure of
precaution, we compared the extracted mean σo values from the filtered
image to those derived from the raw data, and we found that their
differences were negligible (< 0.05 dB).

2.4. Parameterisation of water cloud backscatter model

The water cloud model (WCM) developed by Attema and Ulaby
(1978) is a first-order approximation of the radiation transfer taking
place throughout the vegetation canopy and relies on the assumption
that a canopy can be modelled as a collection of uniformly distributed
water droplets held structurally in place by its dry matter. The general
expression for the total power backscattered (σtotalo) by the crop canopy
is given by following equations.

= + ∙σ σ L σ(dB)total
o

veg
o

soil
o2 (5)

= ∙ ∙ −σ A V θ Lwith, (dB) cos (1 )veg
o

1
2 (6)

= − ∙ ∙L B V θexp( 2 sec )2
2 (7)

= + ∙σ C D M(dB)soil
o

v (8)

where, σvego and σsoilo are the backscatter coefficients for vegetation and
soil in dB, respectively; L2 is the two-way attenuation factor (through
the canopy); θ is the incidence angle, V1 and V2 are the canopy de-
scriptors; A, B and C, D are the vegetation and soil specific coefficients,
respectively (Prevot et al., 1993). For a given level of roughness, the
σsoilo may be related to the volumetric soil moisture (Mv) by Eq. (8). This
linear relationship between σsoilo and Mv is based on the experimental
evidence, which suggests that for a given soil roughness and Mv, the
σsoilo may not follow a linear trend, but for agricultural-based applica-
tions where the soil moisture range is between 5 and 40%, a linear
trend can be fitted for broader area applications (Attema and Ulaby,
1978). The deviation between the values estimated by linear and non-
linear approximations may be quite high if theMv values are below 10%
(Ulaby et al., 1986). However, in the present study site, since the
minimum value of Mv was above this threshold, there was no scope of
possible error propagation through the model.

The impact of soil roughness was undermined to develop an op-
erational model and was thus taken as more or less constant during the
multi-temporal observations. This assumption is based on the fact that
it produces only a vertical shift in the σsoilo, without influencing the
overall trend, thus making soil moisture variability a sole factor for the
change in signal (Quesney et al., 2000; Hégarat-Mascle et al., 2002).
Furthermore, even the estimated parameter B is unaffected by this
offset value. On substituting Eqs. (6), (7) and (8) in Eq. (5), it gives:

= ∙ ∙ − − ∙ ∙ + − ∙ ∙

∙ + ∙

σ A V θ B V θ B V θ

C D M

(dB) { cos [1 exp( 2 sec )]} exp( 2 sec )

( )
total
o

i i i

v

1 2 2

(9)

Fig. 6. (a) RV and (b) RH backscatter images.
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The variation in the canopy descriptors is mainly due to the com-
plexity of the canopy structure and relative simplicity of the model
being used to account for the total canopy backscatter (Dabrowska-
Zielinska et al., 2007). Due to the dependence of σtotalo on geometrical
and dielectric plant properties along with the unavailability of any pre-
defined theoretical basis for the selection of the best set of descriptors, a
set of cases (Table 2) were framed to testify their performance in
modelling the σtotalo.

The LAI or leaf area index (m2/m2) is one of the most well-known
and widely used descriptors. PWC or Plant Water Content (kg/m2) is the
amount of water present in the crop sample and was obtained using Eq.
(3). The LWAI or leaf water area index (unitless) (Dabrowska-Zielinska
et al., 2007) refers to the quantity of water extended in the leaf area and
is defined as:

= ∙LWAI LAI W (10)

with,

=
−

W
cw cw

cw
f d

d (11)

Apart from these, the IF or interaction factor (conceptualised by
Patel et al., 2006a) was tested as a potential descriptor to account for
the vertical inhomogeneity of the crop canopy. In a crop field, the SAR
backscatter is influenced by the density, moisture content, plant
structure and volume of each of the plant components (namely head,
stem and leaf), in addition to the soil moisture (Ulaby and Wilson,
1985; Bouman and van Kasteren, 1990). The distribution of moisture
and volume varies heterogeneously along each component, and this
determines the depth of penetration of SAR signal into the crop (which
in turn affects the resultant backscatter). Patel et al. (2006a) experi-
mentally incorporated these factors into a unique plant parameter
called interaction factor (IF), the formulation of which is as follows:

=
∗ ∗

=
∗ ∗

IF
Plant moisture Volume of plant Plant density

Plant height
PWC V N

h

( )

( )

whole plant

p

(12)

We tested these four approaches for evaluating the performance of
WCM. The coefficients C and D were estimated by regressing the in situ
Mv measurements with the RH and RV backscatter coefficients sepa-
rately while for the estimation of A and B coefficients, iterative para-
meterisation was applied by minimising the following objective func-
tion:

∑= −
=

SSE σ σ( )
i

n

i obs
o

i est
o

1
, ,

2

(13)

Here, SSE is the sum of squared errors; n refers to the total number
of observations; σi, obs

o and σi, est
o refers to the observed (from SAR

image) and estimated (from WCM) backscatter coefficients for each
observation i. The WCM Eq. (9) was passed as a fitness function f to the
Matlab nonlinear least-squares solver lsqnonlin while the algorithm was
set to Levenberg-Marquardt (LM). LM algorithm combines the ad-
vantages of steepest descent and Gauss-Newton method and has been
recommended for optimizing multivariate non-linear problems due to
its operating stability and accelerated convergence (Marquardt, 1963;
Lourakis, 2005). The parameterisation that modelled the σtotalo with
highest overall accuracy was used to refine the backscatter values by
eliminating the contribution of underlying/background soil (σsoilo). It is
proposed that the soil corrected vegetation backscatter coefficient
(σvego) has a better correlation with the crop biophysical parameters
than the total backscatter (σtotalo).

2.5. Training and configuring neural networks

A neural network (NN) is a complex adaptive system that is com-
posed of simple processing units called neurons, which work in parallel
and try to learn the underlying patterns between the input-output pairs
by constantly adjusting the synaptic weights. The inputs are fed into a
hidden layer (where the real transformation and computation takes
place), which may even be fed into layers of more hidden neurons and
then eventually to the output layer. Each node in the hidden layer
possesses a transfer function, which acts upon the net input it receives
and estimates the layer's output, making it suitable to address non-
linear problems, whose analytical solution might not be available (Jia
et al., 2013).

Table 2
Canopy descriptors tested in WCM.

V1 V2

Scenario I LAI LAI
Scenario II LAI PWC
Scenario III LWAI LWAI
Scenario IV LAI IF

Fig. 7. The NN structure configured in the study.
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We configured a total of eight standard multi-layer perceptron
(MLP) NN architectures (Fig. 7) to retrieve four biophysical parameters
of wheat crop, i.e. leaf area index (LAI), plant volume (PV), plant water
content (PWC) and wet biomass (WB), from the total (σT_RHo, σT_RVo) as
well as vegetation (σV_RHo, σV_RVo) backscatter coefficients, respectively.
Following the basic preprocessing of the data points, we rigorously
trained the networks in batch mode. To do so, detailed ground mea-
surements constituted the training subset (90%), whereby n sets of
backscatter coefficients [(σT_RHio,σT_RVio) or (σV_RHio, σV_RVio) with (i=1,
2, 3…n)] were fed as input while the corresponding n crop parameters
[WLAIi or WPVi or WPWCi or WWBi] were supplied as desired output va-
lues. We again sub-divided the training subset into 80%-10%-10%
ratio, respectively for training, testing and validation process. Thus,
each network comprised of two nodes in the input layer while one node
depicted the output layer. Table 3 shows the algorithms, topology and
the RMSE threshold that was set for each architecture.

Additionally, we evaluated the performance graphs in each case to

see if any overfitting had occurred. We also analysed the test and va-
lidation curves to check if the test curve had witnessed a substantial
increase before the validation curve did. If this was the case, then it
meant that some overfitting might have occurred and therefore, the
training process had to be repeated.

We determined the number of hidden layers/nodes and the training
algorithm to be utilised by a trial and error method (Table 3). A single
hidden layer in all the architectures provided reasonable results with
the manageable computational load. Since the network may not be able
to extrapolate beyond the input range that is supplied to it while
training, we made sure that the training dataset spanned across the
entire input range for which the network ultimately had to be used, so
that the network could generalize well. Moreover, the entire dataset
was iteratively randomised (~5–6 times) while repeatedly training the
network for each set so that any inherent dependency of the retrieved
results on the sampling procedure could be circumvented. We assessed
the validity of trained networks using an independent validation (10%)

Table 3
Training algorithms, neural network (NN) topology and RMSE threshold defined for different neural network architectures.

Crop parameters σtotal0 (σT_RHo, σT_RVo) σveg0 (σV_RHo, σV_RVo) RMSE threshold

Training algorithm NN topology Training algorithm NN topology

LAI Resilient backpropagation (RB) 2× 23×1 Levenberg-Marquardt (LM) 2× 18×1 1m2/m2

PV Levenberg-Marquardt (LM) 2× 20×1 Levenberg-Marquardt (LM) 2× 22×1 1.50 cm3/m2

PWC Levenberg-Marquardt (LM) 2× 23×1 Bayesian regularization (BR) 2× 18×1 0.5 kg/m2

WB Levenberg-Marquardt (LM) 2× 24×1 Bayesian regularization (BR) 2× 18×1 0.5 kg/m2

Fig. 8. Temporal variation of the plant variables; (a) wet biomass, (b) plant water content, (c) plant volume, and (d) LAI, over the growing season (number of samples
N=140).
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set across the season. The NN was implemented in the Matlab software
(http://www.mathworks.com/) by the combined use of the NN toolbox
and manual scripting capabilities.

The performance of WCM and NN was evaluated using the con-
ventional RMSE, Mean Absolute Percentage Error (MAPE) and Index of
Agreement (IA) statistical measures. The formulation is as follows:
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where ai and pi is the actual and predicted values, respectively while
amean is the mean of the actual observations.

3. Results

3.1. Multi-temporal trends of crop biophysical parameters over the growing
season

We collected the crop and soil samples from crop covered and bare
fields coincident to the acquisition of satellite imageries on different
dates. The availability of multi-temporal datasets enabled the mon-
itoring of wheat crop cycle. Fig. 8 shows the box plots depicting the
temporal variation of the critical crop parameters over the growing
season.

We witnessed some key trends concerning the temporal behaviour
of the crop variables collected over the fields. Since only a three-date
dataset was available spanning across the tillering to milking/initial
maturation stage of the wheat crop, subsequent interpretations re-
garding the crop variables would be made considering this point. As is

evident from Fig. 8a, the wet biomass values showed an overall in-
creasing trend over the season. In January, the mean WB was as close to
~1.5 kg/m2 but steadily moved upwards to the mean value of almost
~4.7 kg/m2 as the crop progressed towards the milking/grain filling
stage. It is primarily due to the modifications that the crop undergoes as
it grows, considering the growth in the number of stalks and leaves. The
flag leaves and ears start to appear at a later stage, and once the crop
reaches its final maturity (by the end of March), it starts to dry up,
causing the stem and leaf biomass to drop while the ear biomass may
remain constant or increase slightly (Mattia et al., 2003). The plant
volume showed an increasing trend in the initial months, i.e. till mid-
February whereby it rose from the mean value of ~5.8 to 12 cm3/m2,
after which it got saturated. It could have been due to the combined
effect of the increase in biomass and crop density per unit area.

The variation in the LAI values (Fig. 8d) depicted that LAI of wheat
crop developed to almost 2m2/m2 from emergence to tillering stage,
after which a fast growth was witnessed, causing the LAI values to surge
to the maximum of ~4.7–6.1 m2/m2 at the booting stage (in February).
The emergence of first awns from the flag leaf sheath with the head
enforcing the sheath to open markedly ended this stage. After that until
the milking stage, the LAI values dipped to the mean value of 2.5 m2/
m2. Post-field analysis revealed that apart from different phenological
stages, secondary environmental factors and agronomic treatments
given to the fields had induced such broad range distribution of the LAI
values. We observed a similar trend in case of plant water content
(PWC). The PWC values first increased from 0.5–1.5 kg/m2 in January
end to almost 2–4 kg/m2 during mid-Feb before finally dropping in the
mid-March (Fig. 8b). The phenological stage of a crop extensively
governs the plant water content, and thus its dielectric properties.
Studies reveal that a good correlation exists between PWC and LAI
(Ferrazzoli et al., 1992) causing a similar variation. The above trends in
the crop variables are in close agreement with the studies carried out by

Fig. 9. Scatter plot showing a relative correlation between leaf area index (LAI), plant water content (PWC), plant volume (PV), interaction factor (IF) and wet
biomass (WB).
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researchers like Macelloni et al. (2001), Mattia et al. (2003), Del Frate
et al. (2004) and Jia et al. (2013).

Since measured field variables such as LAI, PWC, PV, WB and LAI
along with parameters like LWAI and IF derived from them are used
heavily to calibrate the WCM and the neural network inversion model,
the relationship of these parameters with each other is shown in Fig. 9.

3.2. Impact of different calibration methodologies on water cloud model
performance

We regressed the in situ volumetric soil moisture measurements
(Mv) with RH and RV backscatter coefficients separately to estimate the
WCM soil parameters C and D. The gravimetric soil moisture values
(Mgravi) in the area ranged from 6.9% to the maximum of 30% while the
bulk density values ranged from 1.1 to 1.35 g/cm3. Reasonably good
coefficient of determination (R2) was observed between RH
(R2=0.71), RV (R2=0.70) backscatter coefficients (σsoil0) and volu-
metric soil moisture values (Mv) for all the fields (Fig. 10), which cor-
roborated the fact that σo RH and σo RV are more or less equally sensitive
to Mv.

The coefficients D and C in the model (Fig. 10, Eq. (8)) determine
the effect of soil moisture and its roughness on the σo, respectively. The
empirical relation was calibrated for the given soil type and the specific
sensor configuration (C-band, incidence angle θ=38.9). The soil
moisture sensitivity factor D was estimated as 0.285 and 0.278 for RH
and RV, respectively, while the parameter C came out to be −19.914
and −23.168, respectively. A similar range of C (−11.93) and D (0.23)
values have been reported by Srivastava et al. (2011), using RADAR-
SAT-1 SAR data at HH polarization. Zribi and Dechambre (2003) also
calculated the given parameters in a comparable range (−13.82 and
0.22, respectively) at 39° HH polarization. The estimated C and D
coefficient values thus fall within a permissible range and are in line
with the previous experiments. The difference can be attributed to
different polarization used in this study.

Apart from this, determination of the best set of canopy descriptors
(V1 and V2) is the most crucial step and decides the ultimate success
with which the model is executed. Therefore, the next section will il-
lustrate four different combinations of V1 and V2 that were tested in the
model and the resulting accuracies with which they estimated σtotal0.
The most suitable combination along with the optimized coefficient
values (A, B, C, D) was then used to determine σveg0. Table 4 indicates
the statistical indices used to evaluate the model performance for dif-
ferent scenarios. The number of observations used for model calibration
and model validation has been depicted as Nobs,cal and Nobs,val, while
the degree of model fitting between observed and estimated σtotal0
(σT_RHo, σT_RVo) values have been indicated with the coefficient of de-
termination (R2). Furthermore, RMSE, MAPE and IA measures have
been used to validate the model prediction accuracy.

In the scenario I, LAI variable was used (as V1 and V2) to represent
the effect of vegetation on the backscatter signal. Prevot et al. (1993)
and Moran et al. (1998) implemented the WCM for crops like wheat,

alfalfa, and cotton. In these works, the value of parameter A was set as 0
(for C-band), which is equivalent to considering the vegetation con-
tribution as negligible. The parameter B that is known to characterise
the attenuation of backscatter signal by the canopy was set as 0.089 and
0.09, respectively. However, in the context of this study, the non-zero
value of parameter A (0.0378, 0.0254 for RH and RV, respectively)
while a slightly lower value of parameter B (0.0255, 0.0147 for RH and
RV, respectively) indicated that the contribution from the vegetation
was quite significant and thus could not be neglected. The R2 between
observed and estimated RH backscatter values was 0.55 while for RV it
was relatively on the lower side (Table 4). Unfortunately, the model did
not perform well, since the RH and RV backscatter values were highly
overestimated with high RMSE and MAPE values as is evident from
Fig. 11a and b.

In scenario II, we used the crop variables LAI (V1) and PWC (V2) as a
test case. In contrast to the previous model, incorporating these para-
meters together in the parameterisation of the backscatter resulted in a
notable increase in the R2 (0.67 and 0.69) between the observed and
model-estimated σoRH and σoRV values, respectively (Table 4, Fig. 11c, d).
Although the overall prediction accuracy increased, RMSE and MAPE
values declined by merely 5% and 1.25% in the case of σoRH. Relatively,
the decline was quite significant in the case of σoRV whereby the values
markedly reduced by 42.7% and 8.3%, respectively while IA increased
sharply by 34%.

In the third approach, we used LWAI as a potential canopy de-
scriptor. Since this variable encompasses both leaf area and dielectric
properties into one factor, we observed that it influenced the total σ0
more effectively. As is evident from Table 4, the model performance
marginally improved with the R2 of 0.72 for both σoRH and σoRV. Simi-
larly, the RMSE gradually lowered by 0.4 and 0.3 dB in contrast to the
scenario I and II for σoRH, while for σoRV, it steeply dropped by 1.6 dB
with respect to scenario I. On the contrary, the relative decline in RMSE
with respect to scenario II was non-significant (0.09 dB). This is further
illustrated in Fig. 11e and f. Even the study done by Dabrowska-
Zielinska et al. (2007) have led to similar findings. We also tested the

Fig. 10. The relationship between observed (a) σoRH, (b) σoRV and volumetric soil moisture (%) for bare field locations (number of samples N=80).

Table 4
Model fitting parameters for different canopy descriptors.

Canopy descriptors Nobs, cal Nobs, val R2 RMSE (dB) MAPE (%) IA

V1 V2

C 38.9°RH
LAI LAI 100 20 0.55 2.21 18.25 0.60
LAI PWC 100 20 0.67 2.10 17.00 0.61
LWAI LWAI 100 20 0.72 1.81 15.12 0.68
LAI IF 100 20 0.90 1.18 9.61 0.80

C 38.9°RV
LAI LAI 100 20 0.40 3.53 19.12 0.55
LAI PWC 100 20 0.69 2.02 10.75 0.74
LWAI LWAI 100 20 0.72 1.93 10.01 0.79
LAI IF 100 20 0.85 1.25 5.44 0.86
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model performance with LAI and LWAI as a potential combination, but
the improvement was non-significant. Thus, we did not discuss this
model in further detail.

Finally, the applicability of LAI and IF as the canopy descriptors was
tested. Table 4 reveals that with the use of LAI and IF, R2 increased up
to 0.90 with almost 46, 43.8 and 34.8% reduction in RMSE as compared
to scenarios I, II and III, respectively for σ0RH while for σ0RV, the com-
parative decline was 64.5, 38 and 35.2% with highest R2 of 0.85. The
lowest MAPE and RMSE values testified that this model could be used
further to retrieve the vegetation backscatter (σvego) values for the same
fields. For illustration purposes, the model validation results have been
presented in Fig. 11g and h for σoRH and σoRV. The model slightly over-
estimated the backscatter values, but the error in comparison to pre-
viously tested models was considerably lower.

3.3. Crop parameter retrieval accuracy from total and vegetation
backscatter coefficients

A preliminary analysis of the relationships between field-measured
crop parameters, and satellite/WCM derived measurements confirmed
the sensitivity of the parameters to the C-band hybrid-polarized back-
scatter data. As discussed previously, we rigorously trained the neural
networks to have a proper mapping between input (RH, RV) backscatter
coefficients and crop biophysical parameters. The key to successful
utilisation of neural network approach is to identify a comprehensive
and explanatory set of input elements that, when taken compositely,
give fine segregation in the mapping of the output variables. Thus, the

combined effect of multi-polarized RH and RV data has been tested.
Table 5 outlines the R2 and error statistics (i.e. RMSE, MAPE, and IA

indicators) for each parameter. Ideally, the RMSE values are expected
to be close to zero, meaning that on an average, the model estimated
values would be equal to the observed ones. But given the complexity of
estimating these crop parameters based on SAR data, owing to high
degree of non-linearity associated with the crop and satellite-derived
parameters and also the inherent dynamicity of the variability that
exists among the crop biophysical parameters over the growing season,
it can be concluded that the above RMSE values are fairly close to zero.
Since the SAR signal is known to interact with the crop at an oblique
angle, the impact of incidence & azimuth angle relative to the field
orientation may result in some secondary errors. Nonetheless, the
flexibility provided by SAR sensors regarding the control that can be
exercised on the sensor parameters compensates for this problem and
may be worked upon to achieve higher accuracy.

3.3.1. Leaf area index (LAI)
While retrieving LAI by taking σtotal0 (σT_RHo,σT_RVo) as input, the

number of nodes in the hidden layer was kept as 23 since it was found
that the network performance saturated beyond 23 nodes. Thus, the
neural network with 2-23-1 (#neurons in input-hidden-output) con-
figuration was selected for the LAI retrieval (Table 3). However, the
overall R2 of the selected network was quite low (R2= 0.70) (Table 5),
even though the RMSE in training phase was as low as 0.72m2/m2. On
validating the network performance with an independent dataset of 12
points taken across the season, the RMSE came out to be 0.77m2/m2

Fig. 11. Comparison of measured and WCM-estimated σoRH (a, c, e, g) and σoRV. (b, d, f, h) for (a), (b) V1= LAI, V2= LAI; (c), (d) V1= LAI, V2= PWC; (e), (f)
V1= LWAI, V2= LWAI; and (g), (h) V1= LAI, V2= IF.

Table 5
Parameter wise R2 and error statistics (RMSE, MAPE, and IA) for σtotal0 and σveg0.

Crop parameters σtotal0 (σT_RHo, σT_RVo) σveg0 (σV_RHo, σV_RVo)

R2 RMSE MAPE (%) IA R2 RMSE MAPE (%) IA

LAI 0.70 0.77m2/m2 23.77 0.71 0.76 0.41m2/m2 11.31 0.92
PV 0.80 1.51 cm3/m2 17.82 0.94 0.89 0.85 cm3/m2 10.31 0.98
PWC 0.82 0.38 kg/m2 22.60 0.81 0.87 0.17 kg/m2 10.00 0.95
WB 0.63 0.45 kg/m2 16.32 0.46 0.74 0.25 kg/m2 8.45 0.90
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(Table 5) with quite a low IA (0.71). The comparable RMSE values of
calibration and validation dataset shows that the model was able to
train and generalize well, but only 70% of the variance in LAI could be
explained by using σtotal0 as the input. Fig. 12a and b shows a scatter
plot and multi-temporal variation between the observed and estimated
LAI at three different stages with σtotal0 as input (Jan: full tillering; Feb:
booting/heading; Mar: milking/grain filling).

Interestingly, the model performance considerably improved when
σveg0 (σV_RHo, σV_RVo) was used as an input for the LAI retrieval (i.e. after
removing the effect of underlying/background soil cover using WCM).
The 2-18-1 topology gave the optimum results while the overall R2

increased to 0.76 (Table 5). The RMSE of the validation dataset dropped
by almost 46.7% in comparison to the previous case while IA for vali-
dation dataset surged to 0.92 (Table 5), indicating the superiority of
this model in LAI retrieval over the other one. This is evident from the
Fig. 12c where the horizontal axis represents the observed LAI values
while the vertical axis is the LAI estimated by the NN. Except for a few
points, the majority of them fall in the vicinity of 1:1 line while those in
Fig. 12a are more scattered.

3.3.2. Plant volume (PV)
The feed-forward neural network trained by LM algorithm with

σtotal0 (σT_RHo,σT_RVo) as input retrieved the PV with highest overall R2 of
0.80 (Table 5). Quite satisfactory results were obtained when this net-
work was applied on the validation dataset, as it estimated the PV va-
lues with the RMSE of 1.51 cm3/m2 while the MAPE was 17.82%
(Table 5, Fig. 13a, b). The results dramatically improved by substituting
the total backscatter with vegetation backscatter values (Fig. 13c, d).
The practical feasibility of the network for PV retrieval is supported by
the fact that the model simulated the independent validation dataset
with the RMSE of only 0.85 cm3/m2 and MAPE of 10.31% (Table 5).

3.3.3. Plant water content (PWC)
To study the combined effect of total RH and RV polarized back-

scatter on PWC, we created a feed-forward network to yield the RMSE
below the specified threshold of 0.5 kg/m2 (Table 3). The estimated
PWC values were found to be quite close to the observed ones with the

overall R2 of 0.82 (Table 5). The model satisfactorily inverted the PWC
values with the RMSE of 0.38 kg/m2 (Fig. 14a). PWC retrieval was se-
quentially optimized by incorporating solely the vegetation effect, al-
though it accounted for only 6% of the unexplained variance of the
inversion process that was carried out using the total backscatter va-
lues. While the R2 reached up to 0.87, the RMSE of the validation da-
taset plunged by almost 55% in comparison to the previous model
(Table 5). At the same time, the scatter plot for the validated results of
PWC values (Fig. 14c) indicates that the estimated values were in close
agreement with the observed ones with considerably low MAPE of 10%.

3.3.4. Wet biomass (WB)
For WB retrieval with σtotal0 (σTRH

o,σTRV

o) as input, we trained the
network until the error requirement of< 0.50 kg/m2 was satisfied. The
model simulated the WB values with the overall R2 of 0.63 (Table 5).
The network, when applied on the independent dataset, gave a higher
RMSE of 0.45 kg/m2. Moreover, the IA was extremely low (0.46)
showing the inability of the network to learn the underlying functional
relationship well (Table 5). This is emphasized by the scatter plot be-
tween the observed and estimated WB values (Fig. 15a), whereby the
points are completely off the 1:1 line.

Surprisingly, the model performance improved drastically in the
latter case. A comparison of the respective R2 reveals that roughly
17.5% of the unexplained variance of the previous model was ac-
counted for by this inversion approach. The RMSE reduced by ~44% in
comparison to the previous model (Table 5). However, the values were
slightly underestimated throughout the season even though the scatter
of the points was along the 1:1 line (Fig. 15c).

4. Discussion

Our literature review unveiled a vast diversity in the canopy de-
scriptors (in WCM) that are used to model the backscatter from remote
sensing data, with no clear agreement on which of them perform best.
In addition, there is a lack of prior knowledge about the correlation of
crop biophysical parameters with hybrid-polarized backscatter. We,
therefore, set up four scenarios, in which we analysed the effect of the

Fig. 12. Scatter plot (a, c) & multi-temporal (b, d) variation of the observed and estimated LAI across the season (number of samples N=12). a, b correspond to the
crop parameters retrieved from σtotal0 (σT_RHo,σT_RVo) and c, d correspond to those retrieved from σveg0 (σV_RHo, σV_RVo).
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combination of different canopy descriptors on the accuracy of the total
(and henceforth vegetation) backscatter coefficient estimates from
RISAT-1 data. This study also demonstrates the feasibility of retrieving
wheat biophysical parameters from soil-corrected vegetation back-
scatter coefficients and the potential to estimate these coefficients using
a simple water cloud model-based approach. This capability is ex-
amined by comparative evaluation of different canopy descriptors and
henceforth, the retrieval accuracy of the crop parameters from total and
vegetation backscatter coefficients. Good agreements are obtained

between all the crop parameters and vegetation backscatter coefficients
(as shown in Table 5).

4.1. Performance of different canopy descriptors in water cloud model

LAI characterises the density of a canopy cover in relation to its leaf
size and thus, plays an active role in attenuating the σ0 from canopy
cover. Ground-based LAI (as the two canopy descriptors) had the least
agreement with RISAT-1 derived total backscatter coefficients. A high

Fig. 13. Scatter plot (a, c) & multi-temporal (b, d) variation of the observed and estimated PV across the season (number of samples N=12). a, b correspond to the
crop parameters retrieved from σtotal0 (σT_RHo,σT_RVo) and c, d correspond to those retrieved from σveg0 (σV_RHo, σV_RVo).

Fig. 14. Scatter plot (a, c) & multi-temporal (b, d) variation of the observed and estimated PWC across the season (number of samples N=12). a, b correspond to the
crop parameters retrieved from σtotal0 (σT_RHo,σT_RVo) and c, d correspond to those retrieved from σveg0 (σV_RHo, σV_RVo).
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degree of overestimation of total backscatter was observed in compar-
ison to the other cases. The primary cause of this discrepancy is likely
attributable to the fact that LAI accounts only for the area of vegetation
leaves and models the backscatter signal interacting with this area
while neglecting the dielectric properties, which also have a substantial
impact on the attenuation of backscatter signal. As a result, we ob-
served that the retrieval accuracy of total backscatter values derived
using LAI-PWC and LWAI-LWAI as the canopy descriptors was slightly
higher than in the previous case. The results were, however, still not
encouraging as the model again overestimated the σoRH and σoRV with a
high RMSE. This discrepancy can be attributed to the heterogeneous
nature of the crop canopy. The interaction of the SAR signal with crop
canopy is not uniform throughout since the distribution of volume and
moisture in each component of the wheat crop (like head, leaf, and
stem) varies quite significantly in a heterogeneous manner.

Our results suggest that LAI and IF can accurately model the total
backscatter values derived from RISAT-1 data, with very low root mean
square error. As discussed earlier, the major setback of the previous
models is that neither of them accounts for density and dielectric het-
erogeneity of the plant cover precisely. The model using LAI and IF as
variables largely overcomes the flaws that exist in previous methodol-
ogies. In this scenario, LAI like in the other models characterises the
density of a vegetation cover with respect to the leaf size but more
importantly, IF is responsible for this improved performance. We know
that in C-band, the crop canopy functions distinctly as an in-
homogeneous medium with all the constituents responding discretely to
the incident EM wave thus causing anisotropic absorption and scat-
tering (Maity et al., 2004). Additionally, in case of a wheat plant, the
received SAR backscatter is a composite of its interaction with the head,
leaves, and stem (Patel et al., 2006a). The distribution of moisture, as
well as volume in each of these components, determines the way the
signal will interact and penetrate into the crop, and thus, neither of
them alone has the capability of fully describing the SAR backscatter.

With IF plant parameter, it is attempted to encompass the most
significant crop parameters that can efficiently characterise the back-
scatter response. The model primarily benefits from the incorporation
of crop water and volume information along the crop length (i.e.

height). The distribution of moisture within a confined volume varies
heterogeneously, and failure to incorporate this heterogeneity in the
previous models increases uncertainty, particularly over high LAI areas.

4.2. Comparative analysis of the retrieval of crop parameters from total and
vegetation backscatter coefficients

The inter-comparison of crop parameter values with respect to total
and vegetation backscatter coefficient values led to some interesting
findings. Crop parameter estimates considerably improved when σveg0
(σV_RHo, σV_RVo) was used as input in the ANN and had lower RMSE
values than σtotal0 (σT_RHo,σT_RVo). For instance, in case of LAI, the σveg0
based inversion results (Fig. 12d) were quite consistent with the general
LAI trend over the season (increased until heading and then decreased
until senescence), especially in the initial and later period of wheat
growth. A slight underestimation in the results was seen in the booting/
heading stage (LAI > 3) which could have been due to the saturation
of the backscatter values beyond this LAI range. The results were still
promising in comparison to σtotal0σtotal0 (σT_RHo,σT_RVo) based approach.
Even for PV and PWC, the elimination of the effect of background soil
effectively corrected the simulation trajectory (Figs. 13d and 14d, re-
spectively) especially regarding the shifts and underestimates that were
quite evident when the effect was not accounted for (Figs. 13b and 14b,
respectively). It is important to highlight here that the SAR backscatter
from a vegetated field is uniquely sensitive to the plant volume and its
dielectric properties, as has been confirmed by several studies (Kurosu
et al., 1995; Patel et al., 2006a), thus explaining the high R2 values in
both the cases.

On the other hand, highest bias was observed in WB values (re-
trieved from σtotal0) throughout the growing season, which resulted in
almost a steady trend (estimated values fluctuated between 1.96 and
2.71 kg/m2 only while the observed range was 1.6 to 3.5 kg/m2) as
shown in Fig. 15b. The disparity was still less in the earlier part of the
season while few discrepancies up to 0.7 kg/m2 were observed as the
biomass values increased. Like LAI, it can be interpreted as part of the
saturation effect, in which the resultant backscatter becomes insensitive
to the variability in biomass as the plant grows. The similar

Fig. 15. Scatter plot (a, c) & multi-temporal (b, d) variation of the observed and estimated WB across the season (number of samples N=12). a, b correspond to the
crop parameters retrieved from σtotal0 (σT_RHo,σT_RVo) and c, d correspond to those retrieved from σveg0 (σV_RHo, σV_RVo).
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disagreement has been discussed in several papers (Del Frate et al.,
2004; Jia et al., 2013; Satalino et al., 2015). The shift was significantly
reduced, once the input was substituted with σveg0 (Fig. 15d). This is in
line with earlier findings that report that at steep incidence angles (like
in this study), the relationship between σo and wet biomass is sub-
stantially affected by the soil characteristics, specifically by the soil
moisture content (Luciani et al., 1994).

We know that the vegetation canopy, which is itself a volume of
scattering constituents, is bounded by a scattering soil surface.
Particularly in C-band, the total backscatter that we obtain from SAR
data includes the contribution from both vegetation and background
soil cover. Furthermore, the studies have confirmed that the attenua-
tion in radar signal from soil increases with the incidence angle (Brown
et al., 2003). We conjecture that the mixed response from soil and crop
canopy hampers the retrieval of crop biophysical parameters and
therefore should be resolved. This is especially true in early growth
stages (LAI < 2) when the canopy cover is less dense with more soil
exposed and is evident in the results obtained. Our results suggest that
the retrieval of LAI, PV, PWC and WB can be significantly improved
once we eliminate the effect of background soil. They also testify the
relevance of applying a simple WCM based modelling approach, even if
the crop canopy is expressed as two layers (i.e. vegetation and soil) with
only two descriptors (LAI and IF) representing the complexity of the
vegetation cover. Few discrepancies that exist could be due to the ne-
gation of soil-stem scattering component whose effect is more pro-
nounced at later stages since there is an overall increase in crop volume.

5. Conclusions

The study aimed to explore the potential of hybrid-polarized RISAT-
1 SAR data for the retrieval of wheat crop biophysical parameters (LAI,
PV, PWC and WB) on a regional scale by using soil-corrected hybrid-
polarized vegetation backscatter or σveg0 (σV_RHo, σV_RVo). The total
backscatter or σtotal0 (σT_RHo,σT_RVo) received from a vegetated field is a
composite of the contribution from the vegetation as well as the un-
derlying soil surface. We hypothesized that refining the σtotal0 into a soil
corrected σveg0 would result in more accurate estimation of crop para-
meters. The rationale being that the underlying/background soil acts as
noise in such crop parameter retrieval applications and thus its effect
must be eliminated.

A semi-empirical water cloud model was used to refine σtotal0.
Several model parameterisation schemes (in the form of canopy de-
scriptors) were evaluated to account for the vertical heterogeneity of
the crop canopy. A comprehensive analysis of the measured and esti-
mated RH and RV backscatter revealed the very high sensitivity of the
combined effect of LAI (as V1) and interaction factor (as V2) on the
σtotal0. Our analytical results also revealed a clear and consistent re-
lationship between hybrid-polarized backscatter and wheat crop bio-
physical parameters over the growing season. The MLP neural networks
were applied to the dataset to evaluate and compare the effectiveness of
the two methods (σtotal0 and σveg0 as inputs) in the estimation of crop
parameters. The results revealed a high correlation of PV (R2=0.80)
and PWC (R2= 0.82) with σtotal0. However, the relationship improved
substantially when σtotal0 was substituted with σveg0 (R2 increased to
0.89 and 0.87, for PV and PWC respectively), especially in the initial
stages of the growing season, when the maximum soil is exposed. This
responsiveness is attributable to the unique sensitivity of SAR back-
scatter to dielectric properties of the crop volume and elimination of the
contribution from underlying soil. In the estimation of LAI and WB, the
predictive ability was relatively poorer with σtotal0 but improved sig-
nificantly with σveg0. The σtotal0 saturated at LAI of approximately 3m2/
m2 and WB of 2.7 kg/m2. In conclusion, the effect of underlying soil in
narrow leaf crops such as wheat is significant and hence should not be
disregarded.

The novelty of this study stems from the fact that it is a first step
towards the retrieval of crop biophysical parameters using RISAT-1 SAR

hybrid-polarized data. The analytical findings have a potential to serve
as a reference for further research initiatives that would attempt to
relate the crop biophysical parameters to hybrid-polarized backscatter
coefficients. Modelling the backscatter using LAI and IF as the canopy
descriptors in WCM and substituting σtotal0 with σveg0, can considerably
improve the accuracy of retrieving crop biophysical parameters with
hybrid-polarized datasets. Future research can be directed towards the
synergistic use of multi-polarimetric, multi-frequency or multi-sensor
data, in addition to the time series dataset used in this study. As the
insights about crop dynamics, their underlying processes and interac-
tions are improving, greater research prospects seem to be emerging in
the field of crop growth modelling and assimilating the remote sensing
data into models such as CERES-wheat. This will allow for a profound
understanding of different processes that govern crop growth.
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