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ABSTRACT 
 
Uncertainty of roughness parameters has effect on soil 
moisture retrievals with backscatter models from Synthetic 
Aperture Radar observations. The uncertainty of soil 
moisture retrievals is important information for the usability 
of these estimates. In this paper we introduce a methodology 
to estimate the uncertainty of effective roughness parameters 
in the Integral Equation Method surface backscatter model, 
using a Bayesian Markov Chain Monte Carlo approach. 
Using Sentinel-1 imagery we demonstrate the methodology 
for a selected field, showing the posterior uncertainty 
distributions of the roughness parameters, and the effect on 
the backscatter model simulations and soil moisture 
inversions. The estimated total uncertainty of the soil 
moisture retrievals with the optimum parameter set is 
0.043 m3/m3, which is slightly higher than the root mean 
square error of 0.040 m3/m3 of the retrievals compared to in 
situ soil moisture measurements.  
 

Index Terms— Effective roughness parameters, 
uncertainty, soil moisture, Sentinel-1. 
 

1. INTRODUCTION 
 
Soil moisture is a central hydrological state variable. 
Estimates of surface soil moisture are interesting for various 
applications, for example weather and climate predictions, 
flood forecasting and water management, and agriculture [1], 
[2]. Besides, soil moisture information has potential to 
improve land process models via data assimilation [1]. 
Synthetic Aperture Radar (SAR) satellite observations can be 
used to retrieve soil moisture information at field scale [2], 
[3]. 

Previous studies have acquired better results by viewing 
the roughness parameters in backscatter models as ‘effective 
roughness parameters’ obtained by model calibration, rather 
than obtained by field estimates [3]–[5]. Generally, the 
effective roughness parameters are considered as 
deterministic parameters. However, this does not 
acknowledge the uncertainty as a result of calibration with a 
limited number of observations, radiometric uncertainty in 
backscatter observations and uncertainty in reference soil 
moisture measurements, variations in space and time, and 

deficiencies of the backscatter model. An estimate of the 
uncertainty of the model parameters can be used to quantify 
the uncertainty of soil moisture retrievals [6], which is 
important information to assess the reliability and usability of 
the soil moisture retrievals. In addition, this information can 
benefit the assimilation of soil moisture information into land 
process models [3], [6]. For this reason, Lievens et al. [3] 
argued that more research is required on the quantification of 
soil moisture retrieval uncertainty. De Lannoy et al. [6] used 
a Bayesian Markov Chain Monte Carlo approach to estimate 
the uncertainty of parameters in a radiative transfer model 
reproducing SMOS L-band passive microwave observations. 

In this paper we introduce application of the DiffeRential 
Evolution Adaptive Metropolis (DREAM) toolbox to 
calibrate the Integral Equation Method (IEM) and estimate 
the uncertainty of the effective roughness parameters at field 
scale. We show results of this methodology with Sentinel-1 
SAR imagery for a selected field with bare soil conditions in 
autumn and winter. 
 

2. CALIBRATION OF IEM 
 

To model the bare soil backscatter we employed the 
frequently used physically-based surface backscatter model 
IEM [7]. Surface roughness is parameterized by the root mean 
square surface height (s), the autocorrelation length (cl), and 
the autocorrelation function. We used the exponential 
autocorrelation function, which is generally viewed as most 
applicable to smooth (agricultural) surfaces [4], [8].  

The effective roughness approach, as introduced by [5], 
uses backscatter observations and soil moisture 
measurements to calibrate one or both of the roughness 
parameters. Subsequently, the calibrated roughness 
parameters are used to retrieve soil moisture from other 
observations and/or on other fields. It is often assumed that 
the roughness parameters are time-invariant [4]. For the 
calibration we used the Matlab package DREAM, developed 
by [9]. By implementing a Bayesian Markov Chain Monte 
Carlo simulation method, DREAM finds an optimum 
parameter set (the ‘maximum a posteriori’, MAP), and 
posterior uncertainty distributions of the roughness 
parameters and the error model parameters. To obtain the 
posterior parameter distributions, the Bayesian approach 
combines the prior probability of a parameter set (adopted 
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from expectations about the parameters prior to calibration) 
and the likelihood of a parameter set based on the model 
performance with respect to observations. If the Bayesian 
calibration is statistically valid, the estimated residual errors 
are of similar magnitude as the actual errors of model 
simulations [6]. We applied DREAM with a Gaussian 
likelihood function and a homoscedastic error model without 
autocorrelation. We set the number of chains at 10, and used 
2000 generations with a burn-in period of 50% (in total 20000 
model runs). The validity of these assumptions is examined 
in section 4.  
 

3. DATA 
 
3.1. Sentinel-1 imagery 
 
Copernicus Sentinel-1 satellite imagery over land are made at 
VV and VH polarization, C-band (5.405 GHz), with a pixel 
spacing of 10 m × 10 m and a radiometric accuracy (3σ) of 
1 dB [10]. Over the selected study area in the Netherlands 
(see section 3.2), images are acquired in the relative orbits 15, 
37, 88 and 139.  

We used the Sentinel Application Platform (SNAP) to 
pre-process Level-1 Ground Range Detected Sentinel-1 
images collected in the Interferometric Wide Swath (IW) 
mode: the pixel values were calibrated to radar backscatter, 
reprojected and corrected for distortions due to topographical 
variations and tilt of the satellite sensor using the SNAP 
Range Doppler Terrain Correction tool, and speckle noise 
was suppressed by a 5 × 5 median filter. Subsequently, the 
backscatter values were averaged over selected agricultural 
fields. Thereafter, we filtered the images for the presence of 
frozen soil, wet snow cover and a wetting front between the 
surface and 5 cm depth. 
  
3.2. Case study 
 
The selected field to demonstrate the application of DREAM 
to calibrate IEM is adjacent to a continuous soil moisture 
monitoring station that is part of the Twente network [11] and 
operational since 20 May 2016. This agricultural field has an 
area of 3.7 hectare. In 2016 and 2017 it was used for growing 
maize. Outside the growing season the field was bare. We 

calibrated the effective roughness parameters on the pre-
processed and filtered Sentinel-1 observations and the soil 
moisture measurements at 5 cm depth, for the bare soil 
conditions from 1 November 2016 (after harvesting) to 
23 March 2017 (before ploughing and sowing). Following 
i.a. [4], [12], [13], time-invariant roughness parameters can 
be assumed during this period, because no cultivation of the 
land has taken place and there has been an intense rain event 
of 45 mm after the harvesting (18-21 October 2016). The soil 
moisture content gradually increases from 0.21 m3/m3 to 
0.47 m3/m3, so the roughness parameters are calibrated over 
a wide range of soil moisture conditions.  
 

4. RESULTS AND DISCUSSION 
 
Table 1 lists the Spearman’s rank correlation coefficients 
between the Sentinel-1 observations and the soil moisture 
measurements at the selected field for the relative orbits of 
Sentinel-1. Generally, the filtering improves the correlation 
between the Sentinel-1 observations and the soil moisture 
measurements.  

In the ascending orbits the Sentinel-1 satellites measure 
with a look angle of 15° with respect to the row direction and 
in the descending orbits with a look angle of 5° w.r.t. row 
direction. Due to these different look angles on an anisotropic 
surface, the roughness will be different for the ascending and 
the descending orbits. The images made in the ascending 
orbits with VV polarization show the highest correlation with 
soil moisture. Therefore, we demonstrate the calibration 
procedure with the VV observations made in the ascending 
orbits. With the combination of orbits 15 and 88 we calibrated 
over varying incidence angles (34.6° and 42.9° respectively, 
see Table 1). Based on an initial calibration round, we filtered 
an additional 4 images which were unexpected outliers (29 
images left for calibration).  

Figure 1 shows that many combinations of s and cl lead to 
approximately the same model performance, as expressed by 
the root mean square error (RMSE). For bare and sparsely 
vegetated agricultural fields, effective roughness heights 
between 0.3 cm and 1.4 cm have been found by [3], [12]–
[14]. We defined the parameter search space (and the prior 
distributions) as uniform distributions with ranges  
𝑠𝑠 = [0.1, 2.5] and 𝑐𝑐𝑙𝑙 = [0.1, 50]. 

Table 1: Specifications for the relative orbits of Sentinel-1 for the selected field, including the Spearman’s rank correlation coefficient rs 
between Sentinel-1 observations and soil moisture measurements at 5 cm depth, for the period from 1 November 2016 to 23 March 2017. 

Polarization VV VH 
Relative orbit 15 37 88 139 15 37 88 139 
Pass direction Ascending Desc. Ascending Desc. Ascending Desc. Ascending Desc. 
Projected incidence 
angle 

34.6° 35.5° 42.9° 43.6° 34.6° 35.5° 42.9° 43.6° 

Correlation rs with soil 
moisture, before filtering 

0.85 0.69 0.84 0.41 0.17 0.50 0.19 0.27 

Correlation rs with soil 
moisture, after filtering 

0.85 0.70 0.86 0.44 0.17 0.49 0.15 0.30 

Number of images after 
filtering 

16 13 17 14 16 13 17 14 
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After 500 generations the Gelman-Rubin convergence 
diagnostic 𝑅𝑅�  is below 1.2, which is the threshold that indicates 
convergence of the chains [9]. Thus, the number of 
generations and the burn-in period are sufficient. The 
diagnostic test in figure 2a shows that the residual variance is 
not dependent on the magnitude of the simulated backscatter, 
meaning that the homoscedastic error model appropriately 
describes the residual variance. In figure 2b the residuals 
follow the line that is expected for a Gaussian distribution. 
Figure 2c shows that the autocorrelation of residuals remains 
within the 95% significance interval, confirming that the 
residuals are uncorrelated.  

Figure 3 shows that the posterior parameter distributions 
follow the area of good performance in figure 1, which 
indicates that DREAM is able to reproduce this spectrum. 
Figure 4 shows the resulting total simulation uncertainty 
(parameter unc. + additive error), the simulation uncertainty 
as a result of parameter uncertainty and simulations with the 
MAP parameter set, also see [9]. The RMSE of both the MAP 
simulations and the median of the simulations is 0.30 dB. The 
observation coverage of the total simulation uncertainty 
confidence interval is 96.6%, which is close to the expected 
95%. The parameter uncertainty is relatively small compared 
to the total uncertainty. Although the posterior parameter 
distributions in Figure 3 seem rather wide, the uncertainty as 
a result of parameter uncertainty is limited because the 
posterior parameter distributions are highly correlated and the 
parameter combinations result in approximately the same 
outcomes. The ratio 𝑠𝑠2/𝑐𝑐𝑙𝑙, as introduced by [15], is 
approximately 0.1 among all the posterior parameter 
combinations (figure 3). 

The RMSE of soil moisture retrievals with the MAP 
parameter set is 0.040 m3/m3. The estimated residual standard 
deviation (0.31 dB) of the MAP parameter set converts into 
an average total retrieval uncertainty of 0.043 m3/m3 
(standard deviation). The retrieval uncertainty as a result of 

parameter uncertainty is on average 0.0086 m3/m3. The 
uncertainty is larger at higher soil moisture conditions, 
because of the lower sensitivity of backscatter to soil moisture 
at higher soil moisture conditions. 

 
Figure 2: Residual analysis of the median of the simulations after 
Bayesian calibration with a Gaussian likelihood function and a 
homoscedastic and uncorrelated error model. (a) Residuals against 
simulations, (b) quantile-quantile plot of the residuals, (c) 
autocorrelation coefficients of the residuals with 95% significance 
levels. 
 

 
Figure 3: (a) Posterior distributions of the roughness parameters 
(Spearman’s rank correlation is 0.99) and (b) Posterior distribution 
of Zs (𝑠𝑠2/𝑐𝑐𝑙𝑙). 

 
Figure 1: RMSE [dB] between simulated and observed backscatter 
for combinations of s and cl. The optimums are within the dark blue 
band, having a RMSE of ~0.30 dB. 
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5. CONCLUSION AND FUTURE WORK 
 

The presented Bayesian calibration methodology enables to 
estimate the uncertainty of the effective roughness parameters 
and the total uncertainty of model simulations. The validity 
of the underlying assumptions is demonstrated for a selected 
field with bare soil conditions. The RMSE of soil moisture 
retrievals with the optimum parameter set is 0.040 m3/m3, 
while the standard deviation of the estimated total retrieval 
uncertainty is 0.043 m3/m3. Thus, the estimated total 
uncertainty slightly overestimates the RMSE.  

The ultimate objective is a method that can produce 
region-wide soil moisture maps accompanied with retrieval 
uncertainty. Future work may focus on:  
• A further investigation of the assumptions made 

regarding the likelihood function and error model.  
• Generating parameter sets for both the ascending and 

descending orbits to account for the effect of look angle 
on roughness.  

• Validating for other periods and other fields with similar 
land cover. 

• Use of a radiative transfer model that describes 
vegetation, extending the model’s applicability to the 
growing season.  

• Multi-temporal field measurements of roughness that 
could be used to further investigate the assumption of 
time-invariant roughness.  
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Figure 4: IEM MAP simulations and confidence intervals as a result 
of parameter uncertainty and total simulation uncertainty. 
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