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Calculating the transport properties of magnetic materials from first principles including thermal
and alloy disorder, noncollinearity, and spin-orbit coupling
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A density functional theory based two-terminal scattering formalism that includes spin-orbit coupling and spin
noncollinearity is described. An implementation using tight-binding muffin-tin orbitals combined with extensive
use of sparse matrix techniques allows a wide variety of inhomogeneous structures to be flexibly modelled
with various types of disorder including temperature induced lattice and spin disorder. The methodology is
illustrated with calculations of the temperature dependent resistivity and magnetization damping for the important
substitutional disordered magnetic alloy permalloy (Py), Ni80Fe20. Comparison of calculated results with recent
experimental measurements of the damping (including its temperature dependence) indicates that the scattering
approach captures the most important contributions to this important property.
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I. INTRODUCTION

As long as device dimensions were much larger than the
spin-flip diffusion length of the constituent materials, the effect
of the electron spin on transport properties went largely unde-
tected. When attention focused on magnetic materials in thin
film and multilayer form, new properties such as interface mag-
netic anisotropy and oscillatory exchange coupling emerged,
culminating in the discovery of giant magnetoresistance [1,2]
(GMR) almost 30 years ago [3]. This heralded the emergence of
the field of spintronics [4], which exploits the spin of electrons
in addition to the charge used in conventional electronics,
triggering a flood of new discoveries including tunneling
magnetoresistance (TMR) [5,6], spin-transfer torque (STT)
[7–9], the spin Hall effect [10,11], the spin Seebeck effect,
etc. [3,12] Spin-dependent electron transport manifests itself
on microscopic length scales in magnetically inhomogeneous
systems such as magnetic bilayers, multilayers, and magnetic
textures where interface and finite size effects are dominant. As
important as the fundamental physics of spin-dependent trans-
port are the applications that spintronics makes possible. The
GMR effect allowed magnetic read heads to be miniaturized
and led to an explosion in the density of data that could be stored
on a hard disk. The TMR effect in magnetic tunnel junctions
(MTJs) forms the basis for new forms of nonvolatile storage,
magnetic random access memories (MRAM); MTJs are also
used as sensor elements in read heads. STT makes it possible
to write information in MRAMs more efficiently leading to
STT-RAMs [13,14] or to make microwave frequency STT os-
cillators (STOs) where the injected spin forces a magnetization
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to precess with gigahertz (GHz) frequency [8,15,16]. Passage
of a spin-polarized current can also cause a domain wall to
move, which is the principle behind a form of shift register
called “racetrack memory” [17,18].

The search for new and improved kinds of magnetic storage
provided another focus of attention in the field of spintronics:
magnetization dynamics in response to external fields and
currents in nanoscale systems [19]. The physics of such devices
involves two major contributions: (i) spin-dependent scattering
of electrons in bulk materials and at interfaces, and (ii) spin-
non-conserving scattering of electrons because of spin-orbit
coupling (SOC) when spin is no longer a good quantum
number, or because of magnetic disorder. A breakdown of
spin conservation is essential for spin-relaxation processes that
are described with material dependent time and length scales,
conventionally the Gilbert damping parameter α and the spin-
flip diffusion length lsf , respectively. Predicting and controlling
these properties is very important for understanding and
designing new spintronic devices leading to numerous exper-
imental [20–27] and theoretical [28–31] material-dependent
studies on the subject. The development of a new theoretical
framework [32] for calculating magnetization damping and
its implementation in the framework of density functional
theory [33–37] has motivated systematic reinvestigation of the
damping in alloys [38,39] and of the temperature dependence
of damping in permalloy [40] allowing quantitative confronta-
tion of theory and experiment without invoking adjustable
parameters such as the relaxation time in the torque correlation
method (TCM) [29–31,41].

In this paper, we describe in detail a method we recently
used to calculate the resistivity ρ, the spin-flip diffusion
length (SDL), and the Gilbert damping parameter for Ni1−xFex

substitutional alloys [33], the resistivity and damping for the
itinerant ferromagnets Fe, Co, and Ni with thermal disorder
[34], the resistance [42] and anisotropic damping [43] of
magnetic domain walls, the nonadiabatic STTs in ballistic
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FIG. 1. A sketch of a two-terminal configuration for the scattering
problem. A gray scattering region (S) is sandwiched between left (L)
and right (R) semi-infinite leads that have translational symmetry. A
current flows along the direction of the z axis.

systems [44], interface-enhanced damping [45], thermal dis-
order effects in transport [46], and a novel interface spin Hall
effect [47]. It extends earlier work [48–50] by including SOC
and noncollinearity.

Central to the method is the scattering formalism [51] for the
conductance of a two-terminal device [52]. The system under
investigation is attached to reservoirs by semi-infinite leads that
support well defined scattering states (Fig. 1). For crystalline
leads, these states are right- and left-propagating Bloch states
that are incident upon the scattering region and either reflected
from it or transmitted through it. The probability amplitude that
the νth right-propagating state incident from the left lead with
spin σ ′ is scattered into the μth right-propagating state with
spin σ in the right lead defines the transmission matrix element
tσσ ′
μν . The crystal momenta and band indices of the scattering

states are labeled by μ or ν. Similarly, the reflection matrix rσσ ′
μν

can be defined for right-propagating states that are reflected
back into left-propagating states in the left lead. Denoting leads
as left (L) and right (R) for a two-terminal system, we have two
transmission matrices tLR and tRL, for electrons coming from
left- and right leads, and, similarly, two reflection matrices rLL
and rRR. Together, they form the scattering matrix

S =
(

rLL tRL

tLR rRR

)
(1)

that contains all the information needed to study a number of
important physical properties of the system. The best known
such property is the conductance G that can be expressed
according to the Landauer-Büttiker formalism as [52,53]

G = e2

h
Tr{tt†}. (2)

The scattering formalism is not restricted to calculations of the
conductance but can provide us with useful information about
spin-dynamics and spin-relaxation processes in the scattering
region. In particular, it can be used to calculate the Gilbert
damping parameter α and the spin-flip diffusion length lsf

[33,45,46].
The present study is based upon a first-principles tight-

binding (TB) linearized-muffin-tin-orbital (LMTO) imple-
mentation of the scattering formalism. TB-LMTOs form a
minimal basis set [54–56] that allows us to construct a highly
efficient computational method, especially when combined
with sparse-matrix techniques [57,58]. In combination with
the local spin-density approximation (LSDA) from density
functional theory (DFT), it allows us to study physical systems

either entirely ab initio, i.e., without introducing any free
parameters or in the case of finite temperature transport, a
minimal number thereof. We extend earlier work [49,50] by
introducing noncollinear magnetism [59] and spin-orbit inter-
action using the Pauli-Schrödinger Hamiltonian. We general-
ize the wave-function matching (WMF) technique introduced
by Ando [51] to eliminate the need for a principal layer
decomposition and dispense altogether with partitioning the
scattering region into layers. Compared to the widely used
recursive Green’s function method, the interaction range in the
leads and scattering region is arbitrarily long without loss of nu-
merical stability and optimal use can be made of sparse-matrix
solvers which greatly improves the computational efficiency.
Not having to divide the scattering geometry into “blocks” or
“layers” results in greater flexibility in applications to disorder.

We illustrate how this framework can be used to investigate
spin-dependent transport in the diffusive regime and spin-
relaxation phenomena using recent developments in scattering
theory and spin dynamics [32]. In Sec. II, we outline the
technical details of the method and illustrate it by applying
it to the Ni80Fe20 alloy permalloy in Sec. III. Some technical
details of the SOC implementation with LMTOs are given in
Appendix A. Appendix B contains a brief discussion of some
limitations of the method as well as numerical tests about the
exchange-correlation functional in the LSDA and the basis set
of TB-LMTOs.

II. FORMALISM

To solve the scattering problem for the infinite system
depicted in Fig. 1, we need to solve the single-particle
Schrödinger equation

(H − EI)� = 0, (3)

at some specified energy E, usually the Fermi energy. We as-
sume that the ground-state charge and spin-densities and Kohn-
Sham potentials for all atoms in the system have already been
calculated self-consistently. Here, � is a vector of coefficients
�i when the wave function � is expanded in some localized
orbital basis (i ≡ Rlmσ for the MTOs we will use, where R
is an atom site index and lmσ have their conventional orbital
angular momentum and spin meaning; see Appendix A 1). H
is the Hamiltonian matrix in the localized orbital basis and a
summation over i is implied in (3). Its sparsity is determined
by the range of the localized orbitals, which is minimal for
TB-MTOs. The system in Fig. 1 is infinite so that the dimen-
sions of the Hamiltonian H and unit matrix I in Eq. (3) are both
infinite. By applying the “wave-function matching” method
[51], the semi-infinite leads with full translational symmetry
can be replaced with appropriate boundary conditions in the
form of energy-dependent embedding potentials on the bound-
ary layers. This reduces the problem to a finite size and results
in a two-stage process for calculating the scattering matrix. In
the first stage, to be discussed in Sec. II A, eigenmodes um of
the leads are calculated by solving the Schrödinger equation
for each of the leads in turn taking translational symmetry into
account. By calculating their wave vectors km and velocities
vm, the eigenmodes can be classified as being either left-going
um(−) or right-going um(+). They form a basis in which to
expand any left- and right-going waves in the leads and their

214415-2



CALCULATING THE TRANSPORT PROPERTIES OF … PHYSICAL REVIEW B 97, 214415 (2018)

transformation under a layer translation in the leads is easily
calculated by using a generalization of Bloch’s theorem for
complex k [51].

In the second stage, discussed in Sec. II B, these solutions
from the first stage can be used to construct the energy-
dependent boundary conditions for the Hamiltonian in the
scattering region, which can be a slab of a random alloy, a
single interface, a multilayered structure, a tunnel junction,
a slab of thermally disordered material, etc. One then has to
solve a system of linear equations (LEQs) with the original
Hamiltonian modified by incorporating the boundary condi-
tions in the role of a coefficient matrix to obtain the wave
functions � that provide all information about the scattering
in the system and can be used to calculate the transmission
and reflection probability amplitudes, tμν and rμν , and more.
As a result of choosing a localized basis to minimize the
hopping range, the Hamiltonian matrix is very sparse. This
can be exploited by using efficient numerical methods such
as incomplete LU-factorization (which takes into account the
sparsity of the matrix) to solve the LEQs. The solution scales
linearly with the extent of the scattering region in the transport
direction.

Once the scattering matrix is known, we can extract the
resistivity and Gilbert damping parameter as discussed in
Sec. II C. The scattering formalism will be presented in its
general form not depending on details of the underlying
basis set and Hamiltonian; the most relevant aspects of the
LMTOs used in the current implementation are sketched in
Appendix A 1. In Sec. II D, we discuss ways of modeling
different kinds of disorder using large supercells transverse
to the transport direction.

A. Eigenstates of ideal leads

We make use of an assumed two-dimensional (2D) trans-
lational symmetry in the plane perpendicular to the transport
direction to characterize states in this and the next section with
a lateral wave vector k‖ in the corresponding two-dimensional
Brillouin zone (2D BZ). All variables therefore have an implicit
dependence on k‖ that will be suppressed for simplicity. When
we refer to the number of atoms (orbitals) in a layer, we refer
to the finite number of atoms (orbitals) in a translational unit
cell.

Because the ideal leads have translational symmetry in the
transport direction, they can be decomposed into an infinite
number of translationally invariant layers. When the hopping
range of the Hamiltonian of this system is greater than the
corresponding periodicity, i.e., when hopping to layers beyond
the nearest neighboring layers is not negligible, the usual
approach would be to increase the layer thickness until only
hopping between neighboring layers occurs; these are called
principal layers. In general, the principal layer procedure
results in increased computational cost and decreased accuracy.
To remedy this, we formulate the WFM method for arbitrary
hopping range between layers, thus generalizing previous
formulations of the WFM method [49–51,60].

We start with an ideal wire with translational symmetry
(Fig. 2), in which every layer contains NO atom centered
orbitals and is coupled to some number (N ) of layers to its
left and right. Then the Schrödinger equation for the ith layer

FIG. 2. Hamiltonian matrix of an ideal quantum wire partitioned
into slices determined by the translational symmetry of the leads.
Hi ≡ Hi,i is the on-layer term of the Hamiltonian, Bl ≡ Hi,i+l and
B†

l ≡ Hi,i−l describe hopping to the lth and −lth neighboring layers,
respectively.

is given by

(EI − Hi)� i +
N∑

l=1

(Bl� i+l + B†
l � i−l) = 0, (4)

where Hi ≡ Hi,i is the on-layer term of the Hamiltonian, Bl ≡
Hi,i+l and B†

l ≡ Hi,i−l describe hopping to the lth and −lth
neighboring layers respectively, and � i+l is the wave function
on the lth neighboring layer. Taking into account translational
symmetry in the periodic crystal, the wave function on any
arbitrary layer l is related to the wave function on layer l − 1
by a generalized Bloch factor λ as

� l = λ� l−1. (5)

Combining (4) and (5) leads to the generalized eigenvalue
problem of rank 2 × N × NO :

(EI − H0)�0 +
N−1∑
l=1

(Bl� l + B†
l �−l) + B†

N�−N

= −λBN�N−1, (6a)

� l = λ� l−1 ∀ l ∈ [−N + 1,N − 1], (6b)

where, without loss of generality, i = 0 has been assumed.
Nontrivial solutions of (6) can be separated into two classes.
The first class consists of N × NO left-going waves, and
the second class of N × NO right-going waves. Each class
can contain both propagating Bloch waves and nonpropa-
gating, evanescent waves. The corresponding Bloch factors
are denoted by λ(+) and λ(−). Of these N × NO solutions,
only NO Bloch factors λ(+) correspond to the translation of
right-propagating waves to a neighboring layer, the rest of the
λ(+) factors describe translations to more distant layers and do
not provide any additional information; thus we have only NO

unique translation factors among the λ(+). Similarly, for left-
propagating waves, there are only NO unique translations in the
set of λ(−) factors. By using only the NO orbitals belonging to
the l = 0 layer with eigenvectors from (6) corresponding to the
set of unique translation factors λ(±), we construct normalized
eigenvectors um(±) (≡ � l=0,m where l is the layer index and m

is the mode index) and use these to form the NO × NO matrices
[51]

U(±) = (u1(±) · · · uNO
(±)). (7)

Any arbitrary wave function on the l = 0 layer can then
be represented as a linear combination of left- and right-
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FIG. 3. Geometry of the finite scattering problem comprising left (L), and right (R) leads sandwiching the scattering (S) region that is
augmented by a finite number N of lead layers chosen to be sufficiently large so that there is no hopping from the scattering region proper to
the (white) lead layers.

propagating waves

� = �(+) + �(−), (8)

and any left- or right-propagating wave can be expanded in
terms of the eigenstates of the lead as

�(±) = U(±)C(±), (9)

where Cμ(±) is a vector of coefficients. We define the NO ×
NO diagonal eigenvalue matrices by

�(±) = δnmλm(±). (10)

Using the Bloch condition (5) and following Ando’s original
procedure [49–51,61], we define the translation matrices

F(±) = U(±)�(±)U−1(±). (11)

The translation of the wave function on layer i over an arbitrary
number of layers l is then given by

� i+l = Fl(+)� i(+) + Fl(−)� i(−), (12)

allowing us to construct the full solution for the entire lead.

B. The scattering problem

The scattering region S is now inserted between the left
and right leads. It is important to emphasize that we do
not define a layered structure inside the scattering region.
Regardless of its size or contents, the scattering region acts
as one large metalayer. The resulting problem is infinite but
by making use of the translational symmetry in the leads and
the solutions obtained in the previous section, the leads can be
incorporated in the scattering problem in the form of boundary
conditions imposed in the lead layers adjoining the scattering
region. The system is partitioned as shown in Fig. 3 where the
infinite scattering geometry is truncated to include only N + 1
(translationally invariant) lead layers on the left and right in

addition to the original (disordered) scattering region where
N is the hopping range (in terms of number of layers) in the
Hamiltonian describing the leads.

Specifically, we assume that the N + 1 lead layers attached
to the original scattering region on the left side are indexed as
−N, . . . ,0. Then the wave function in the layer in the left lead
with index −(N + Q), where Q > 0, i.e., the wave function in
the white layers on the left in Fig. 3 can be related to the wave
function �L,−N = �L,−N (+) + �L,−N (−), a superposition of
left- and right-propagating waves, as

�L,−N−Q = �L,−N−Q(+) + �L,−N−Q(−)

= F−Q

L (+)�L,−N (+) + F−Q

L (−)�L,−N (−)

= [
F−Q

L ( + ) − F−Q

L ( − )
]
�L,−N ( + )

+ F−Q

L ( − )�L,−N, (13)

allowing us to express an arbitrary �L,−N−Q in terms of �L,−N

and �L,−N (+). The set of Schrödinger equations for layers
−N, . . . ,0 become

(EI − HL,n)�L,n +
−n∑
l=1

BL,l�L,n+l + BLS,n�S

+
N∑

l=1

B†
L,l�L,n−l = 0 ∀ n ∈ [−N,0], (14)

where BLS,n is the coupling between the lead layer on the
left with index n (in the truncated transport geometry) to
the (original) scattering region S , BL,l is the hopping to the
lth next layer in the left lead, and �S is the wave function
in the scattering region. By splitting the summation

∑N
l=1 =∑N+n

l=1 +∑N
l=N+n+1 in the last term on the left-hand side (lhs)

and using (13) to eliminate �L,n (∀ n < −N ), Eq. (14) can be
transformed to

(EI − HL,n)�L,n +
−n∑
l=1

BL,l�L,n+l + BLS,n�S + (
1 − δN,−n

) N+n∑
l=1

B†
L,l�L,n−l +

N∑
l=N+n+1

B†
L,lF

−l+N+n
L (−)�L,−N

= −
N∑

l=N+n+1

B†
L,l

[
F−l+N+n
L (+) − F−l+N+n

L (−)
]
�L,−N (+) ∀ n ∈ [−N,0]. (15)

This effectively acts as a boundary condition for the left-hand side of (15) and removes a direct dependence on the wave functions
to the left of the −N th layer.
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Injection of electrons from the left electrode leads to only right-propagating waves on the right-hand side of the scattering
region and the wave function in the layer with index N + Q can be related to the wave function in the rightmost layer (N ) within
the truncated transport geometry as

�R,N+Q = FQ

R(+)�R,N , (16)

allowing �R,N+Q to be eliminated from the Schrödinger equation

(EI − HR,n)�R,n +
n∑

l=1

B†
R,l�R,n−l + B†

RS,n�S + (1 − δN,n)
N−n∑
l=1

BR,l�R,n+l +
N∑

l=N−n+1

BR,lFl−N+n
R (+)�R,N = 0

∀n ∈ [0,N ], (17)

where B†
RS,n is the coupling between the scattering region

and the lead layer with index n (in the truncated transport
geometry), and BR,l is the hopping to the l-th next layer in
the right lead.

Combining the sets of Eqs. (15) and (17) with the
Schrödinger equation for the scattering region

(EI − HS )�S +
N−1∑
l=0

[B†
LS,l�L,−l + BRS,l�R,l] = 0 (18)

results in a set of inhomogeneous LEQs. By assuming that
�L,−N (+) = UL(+) and solving the LEQs with multiple right-
hand sides in one go, we can obtain the wave functions in the
system for electrons that are injected in all possible propagating
modes of the left lead (i.e., modes with |λ| = 1).

Bloch states incident from the left and propagating to the
right are scattered by the breaking of translation symmetry into
left-going states on the left-hand side and right-going states on
the right-hand side as

�L,−N (−) = UL(−) r̃, (19a)

�R,N (+) = �R,N = UR(+) t̃. (19b)

Once we know the set of wave functions � for all incoming
states from the left lead, we can calculate the elements of the
matrices r̃ = r̃μν with dimension ML × ML, where ML is the
number of propagating modes in the left lead, and of t̃ = t̃μν

with dimensions MR × ML,

r̃ = U−1
L (−)[�L,−N − UL(+)], (20a)

t̃ = U−1
R (+)�R,N . (20b)

The elements of the physical reflection and transmission
probability amplitude matrices can be found by normalizing
with respect to the currents:

rμν =
√

vL,μ(−)

vL,ν(+)
r̃μν ; tμν =

√
vR,μ(+)

vL,ν(+)
t̃μν, (21)

wherevR,L(±) are the group velocities of the eigenmodes in the
left and right leads, which are determined using the expressions
derived in Appendix A 2:

vν(±) = 2a

h̄

N∑
n=1

n Im
[
λn

ν (±)u†
ν(±)Bnuν(±)

]
. (22)

When SOC is included, spin is no longer a good quantum
number and separating the equation of motion for different
spinors is not possible. Nevertheless, it will be convenient for
the purposes of analyzing our results to decompose the matrices
rμν and tμν into the spin projections rσσ ′

μν and tσσ ′
μν . This is

discussed in Appendix A 3.
When only nearest neighbor hopping is allowed (N = 1),

the expressions in Secs. II A and II B reduce to expressions
known from earlier work [49–51,61]. For arbitrary values
of N , they represent a generalized WFM technique that is
similar to the widely used recursive Green’s function method.
The advantage is that proper treatment of sparsity of the
resulting LEQs allows us to use efficient sparse-matrix LEQ
solvers, which drastically improves computational efficiency.
Additionally, departure from the recursive Green’s function
method allows us to describe the scattering region without
introducing “blocks” or “layers.” This eliminates numerical
issues and simplifies application of the method in complicated,
incommensurable systems. The equivalence of the WFM
method with the Kubo-Greenwood formalism in the linear-
response regime was shown earlier [61].

C. Extracting material-specific parameters from
the scattering matrix

Once we know the scattering matrix (1) consisting of the
rσσ ′
μν and tσσ ′

μν matrices calculated from the left and right-hand
sides, we can use this to extract various bulk (and interface)
parameters currently of interest in the field of spintronics.
We focus here on the bulk resistivity and Gilbert damping
of the important Ni80Fe20 ferromagnetic alloy, permalloy, as
illustrative examples.

1. Resistivity

The total resistance of a diffusive conductor (e.g., alloy)
of length L sandwiched between two identical ideal (ballistic)
leads can be expressed as

1/G = 1/GSh + R, (23)

where G is the total conductance of the system and GSh =
(2e2/h)N is the Sharvin conductance of each lead with
N conductance channels per spin. R, the resistance of the
scattering region corrected for the finite conductance of the
ballistic leads [49,62], has two contributions:

R(L) = 2Ri + Rb(L), (24)
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where Ri is the resistance of a single alloy|lead interface, and
Rb(L) is the bulk resistance of an alloy layer of thickness L.
For a sufficiently thick alloy layer, Ohmic behavior is recovered
when Rb(L) ≈ ρL, where ρ is the bulk resistivity.

In materials whose SOC is weak, the transport of electrons is
found to be well described by considering currents of spin-up
and spin-down electrons separately. For a stack of materials
comprising ferromagnetic (FM) and nonmagnetic (NM) met-
als, the resistance of each spin channel is obtained by adding
resistances in series, the two spin channels are then added in
parallel according to the “two-current series-resistor” (2CSR)
model [63–65]. When a ferromagnetic alloy is sandwiched
between nonmagnetic leads, each spin species sees two spin-
dependent interface resistances Rσ

i and a spin-dependent bulk
term: Rσ (L) = 2Rσ

i + ρσL. The total resistance that results
from adding these terms in parallel can be written as

R(L) = 2Ri(β2 − 2βγ + 1)

1 − γ 2
+ ρL

+ 4R2
i (β2 − 1)(β − γ )2

(γ 2 − 1)[(γ 2 − 1)ρL + (β2 − 1)2Ri]
, (25)

in terms of the total interface resistance Ri given by

1

Ri

= 1

R
↑
i

+ 1

R
↓
i

, (26)

the corresponding interface spin asymmetry γ = (R↓
i −

R
↑
i )/(R↑

i + R
↓
i ), the total resistivity of the alloy ρ given by

1

ρ
= 1

ρ↑ + 1

ρ↓ , (27)

and the corresponding bulk spin asymmetry β = (ρ↓ −
ρ↑)/(ρ↓ + ρ↑).

When the SOC can no longer be considered weak, eight
parameters are used to describe the resistance of a diffusive
NM|FM|NM system [66]. Two parameters are required to
describe the NM metal, a resistivity ρNM and a spin-flip
diffusion length lNM. Three parameters are required to describe
the FM metal: a resistivity ρσ

FM for each spin channel as well
as a spin-flip diffusion length lFM. And three parameters are
required to describe the interface; an interface resistance Rσ

i

for each spin channel and an interface spin-flip scattering
parameter δ (also called the spin memory loss parameter)
[67–69]. The nontrivial evaluation of all of these parameters
would go beyond the present task of illustrating the use of
the scattering formalism and will be the subject of a separate
publication [70]. For the purpose of extracting a resistivity from
a series of calculations of R(L), we will use (25) in the form

R(L) = a + ρL + b/(ρL + c). (28)

For sufficiently thick slabs where the third term in (28) van-
ishes, ρ will be extracted from the slope of R(L). Otherwise,
all four independent parameters will be used to perform the fit.
Both approaches will be examined in Sec. III B.

2. Gilbert damping

The magnetization dynamics of ferromagnets is commonly
described using the phenomenological Landau-Lifshitz-

Gilbert equation

dM
dt

= −γ M × Heff + M ×
[
G̃(M)

γM2
s

· dM
dt

]
, (29)

where Ms = |M| is the saturation magnetization, G̃(M) is
the Gilbert damping parameter (that is in general a tensor),
and the gyromagnetic ratio γ = gμB/h̄ is expressed in terms
of the Bohr magneton μB and the Landé g factor, which is
approximately 2 for itinerant ferromagnets. For a monodomain
ferromagnetic layer sandwiched between nonmagnetic leads,
NM|FM|NM, the energy dissipation due to Gilbert damping is

dE

dt
=

∫
V

d3r
d

dt
(Heff · M)

=
∫

V

d3r Heff · dM
dt

= 1

γ 2

dm
dt

· G̃(M) · dm
dt

, (30)

where m = M/Ms is the unit vector of the magnetization
direction for the macrospin mode. By equating this energy
loss to the energy flow into the leads [71] associated with “spin
pumping” [72],

I
Pump
E = h̄

4π
Tr

{
dS
dt

dS†

dt

}
= h̄

4π
Tr

{
dS
dm

dm
dt

dS†

dm
dm
dt

}
,

(31)

the elements of the tensor G̃ were expressed in terms of the
scattering matrix [32]

G̃ij (m) = γ 2h̄

4π
Re

{
Tr

[
∂S
∂mi

∂S†

∂mj

]}
. (32)

Physically, energy is transferred from the slowly varying
spin degrees of freedom to the electronic orbital degrees of
freedom where it is rapidly lost to the lattice (phonon degrees
of freedom). Our calculations focus on the role of elastic
scattering as the rate-limiting first step.

To calculate the Gilbert damping tensor G̃ij using (32),
we need to numerically differentiate the scattering matrices
with respect to the magnetization orientation m. Expressing
this orientation in spherical coordinates (θ,φ) with the polar
angle θ = 0 corresponding to the equilibrium magnetization
direction m, we vary the magnetization direction about θ = 0
to calculate the 2 × 2 damping tensor in a plane orthogonal to
m. Specifically, ∂S/∂mi in (32) can be replaced by ∂S/∂ei ,
where ei are components of the Cartesian basis vectors in
the plane orthogonal to m and φ0 defines the orientation
of the coordinate system in this plane. Then the derivatives
of the scattering matrix can be approximated as

∂S

∂e1
≈ S(�θ,φ0) − S(�θ,φ0 + π )

2�θ
, (33a)

∂S

∂e2
≈ S(�θ,φ0 + π/2) − S(�θ,φ0 + 3π/2)

2�θ
, (33b)

where �θ is a small variation of the polar angle. Substitution
of (33) into (32) yields four elements of the 3 × 3 damping
tensor for any particular orientation m of the magnetization.
For cubic substitutional alloys, the damping can be assumed
to be isotropic (see Appendix A 4), so we limit ourselves to
differentiating about a single orientation m and our primary
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interest will be in the diagonal elements of G̃ = G̃ii . When the
damping is enhanced by FM|NM interfaces [22,72–74], the to-
tal damping of a ferromagnetic slab of thickness L sandwiched
between leads can be written G̃(L) = G̃if + G̃b(L), where
G̃if is the interface damping enhancement and we express the
bulk damping in terms of the dimensionless Gilbert damping
parameter α as

G̃b(L) = αγMs(L) = αγμsAL, (34)

where μs is the magnetization density and A is the cross
section.

D. Modelling disorder

The structures used in spintronics studies are typically
stacked layers of magnetic and nonmagnetic materials that
exhibit various types of disorder. The magnetic materials
themselves are frequently magnetic alloys like permalloy that
are intrinsically “chemically” disordered and are chosen to
have desirable magnetic properties. Even when two materials
(like Fe and Cr) have the same crystal structure (bcc) and are
closely lattice matched, it is not possible to exclude intermixing
at an interface and becomes desirable to be able to model it.

Other important material combinations such as permalloy
and Pt have a large lattice mismatch. For thin layers, this can
be accommodated by straining either or both layers (pseudo-
morphic growth) but above a critical thickness these will relax
to their preferred structures with or without the formation of
misfit dislocations. Since fully relaxed interface structures can
only be modelled using lateral supercells [45,47], we apply
the supercell approach to all forms of disorder studied in this
work.

Lastly, many experiments are performed at room and el-
evated temperatures making it desirable to take into account
temperature induced lattice and spin disorder. Our approach
will be to model such thermal disorder in large lateral su-
percells. By doing so, we will be able to make contact
with a large body of experiments that have been interpreted
with phenomenological models [65] that assume a diffusive
transport regime.

1. Chemical disorder (random alloys)

To study bulk alloys and interface mixing, we can cal-
culate atomic sphere (AS) potentials self-consistently using
the coherent-potential approximation (CPA) implemented with
MTOs [75,76] or with periodic supercells [54–56]. Transport
calculations are performed with large lateral M × N supercells
in which atomic sites are randomly populated with AS poten-
tials subject to the constraint imposed by the stoichiometry of
the targeted experimental system. This can be done either by
enforcing the desired stoichiometry layer by layer or globally.

For example, to simulate a (001) simple cubic A25B75

random alloy using an 8 × 8 lateral supercell, we can randomly
assign 16 out of the 64 sites to A atoms and the rest to B

atoms maintaining the 25:75 stoichiometry in every layer as
sketched in Fig. 4. In the second case, we assign elements A and
B randomly throughout the complete slab of material that is
chemically disordered. In both cases, configuration averaging
is carried out by repeating the scattering calculations for a
number of different realisations of random disorder.

FIG. 4. Illustration of the configuration for a supercell with
chemical disorder. Two arbitrary layers in an 8 × 8 supercell are
shown for an A25B75 alloy. Atoms of type A are black and atoms
of type B are grey.

2. Positional (thermal) disorder

Thermal lattice disorder (or other kinds of positional dis-
order) can be modelled in lateral supercells by displacing
atoms in the scattering region from their equilibrium positions,
denoted Ri , by a randomized displacement vector ui for each
atomic site resulting in the new set of atomic coordinates R̂i =
Ri + ui (Fig. 5). The scattering matrices are then calculated
for a number of such disordered configurations and the results
averaged. The main physical approximation which is invoked
is the adiabatic approximation. Though formally problematic
for a metal with a gapless spectrum, within the framework
of the lowest order variational approximation (LOVA) to the
Boltzmann equation, the adiabatic approximation is found
to describe the thermal and electrical transport properties of
transition metals very well [77].

Different approaches to generating ui are possible, ranging
from ab initio molecular dynamics, through first-principles
lattice dynamics [46], to parameterized Gaussian disorder
[34,46]. The latter and simplest approach, which is adopted
here, is based on the harmonic approximation whereby the
energy cost of displacing atoms is quadratic in their displace-
ments. Components of ui are then distributed normally with a
root-mean-square (rms) displacement � that can be chosen
in different ways. It can be related to the temperature and
extracted from experiment within the Debye model. Or it can be
chosen to reproduce an experimental temperature-dependent
resistivity. As the particular method of generating displace-
ments does not affect the implementation of the transport
method, we will not concern ourselves overly with the rela-
tionship between the displacements {ui} and the temperature
in this paper.

FIG. 5. Schematic of frozen thermal lattice disorder. Atoms (gray
balls) on an ideal lattice (left) are displaced from their equilibrium
positions by random vectors ui to form a static configuration (right)
for the electronic scattering calculation.
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3. Noncollinear configurations and magnetic disorder

For collinear ferromagnets (or antiferromagnets), thermal
spin disorder can be modelled by rotating magnetic moments in
the scattering region away from their equilibrium orientations
[34] (Fig. 6). To lowest order in the polar angles describing this
orientation, the energy varies quadratically and temperature-
induced spin disorder can be modelled with Gaussian disorder.
In a magnetic domain wall separating domains in which the
magnetization is collinear, the magnetization rotates continu-
ously from one preferred orientation to the other. Addressing
both these problems, spin disorder and domain walls, requires
an implementation of the scattering formalism whereby atoms
on different sites can have differently oriented magnetization
directions. This is simply achieved in the atomic spheres
approximation (ASA) [78–80].

We assume that the spin quantization axis σz of the collinear
system and the spatial z axis are collinear with the direction of
transport. We then rotate the local magnetic moment (exchange
potential) on an arbitrary site (atomic sphere) by rotating all
spin-dependent atomic parameters, which are 2 × 2 operators
in spin-space [such as the potential function Pα (A5) or SOC
parameters (A13)], using the rotation operator

R̂si = exp

(
iσyθi

2

)
exp

(
iσzφi

2

)
, (35)

where θi and φi are polar and azimuthal angles in the AS
on site R̂i , while leaving spin-independent operators like the
structure constant matrix unchanged. The LMTO Hamiltonian
(A18) can then be constructed in the usual way using matrix
operations on the modified operators.

By using a suitable distribution of spinor-rotation angles,
we can simulate thermal disorder or ordered structures like
domain walls [34,42–44]. For thermal disorder, we can choose
φi to be random while assuming a Gaussian distribution for
θi with an rms rotation �� related to the temperature using
some model, e.g., to reproduce an experimental temperature
dependent resistivity [34] or magnetization [46]. Alternatively,
we can calculate the interatomic exchange interactions from
first principles and use these to determine the magnon dis-
persion relations. By occupying the magnon modes for some
chosen temperature, random sets of φi and θi can be generated
and used as input to a scattering calculation in a frozen-
magnon approximation [46]. Details of how {θi,φi} depend
on temperature fall outside the scope of this paper.

FIG. 6. Schematic of frozen thermal spin disorder. Atomic mag-
netic moments (arrows) of a ferromagnetically ordered system (left)
are tilted by random polar angles θi (and azimuthal angles φi , not
shown) to form a static spin-disordered configuration (right) for the
electronic scattering calculation.

Although the above scheme is only applied to magnetization
fluctuations about the global quantization axis in this paper, we
have applied it to nontrivial noncollinear magnetizations such
as spin spirals and magnetic domain walls in references [42–
44]. By explicitly taking the spatially varying magnetization
into account, we calculated the domain wall resistance [42],
the enhancement of the Gilbert damping by noncollinearity
[43], and the nonadiabatic STT parameter [44] in domain walls
with different profiles. It could equally well be applied to study
transport properties in spin glasses [81] or amorphous magnets
[82] where the Gilbert damping is generally an anisotropic
tensor depending on the symmetry [83,84], as demonstrated
for magnetic domain walls [43].

III. CALCULATIONS

The scattering calculations are carried out in two distinct
steps. In the first step, semirelativistic [85] AS potentials
are calculated self-consistently for the atoms in the structure
we are interested in, starting with the calculation of “bulk”
potentials for the left and right leads. AS potentials can be
calculated self-consistently for the scattering region using the
surface Green’s function (SGF) method [86] or a supercell
approach with a conventional “bulk” band structure code
[54–56]. For substitutional random alloys, this is done very
efficiently by combining the SGF method with the CPA [86].
In the second step, the WFM method outlined in Sec. II is
used to calculate the scattering matrix for the fully relativistic
Pauli-Schrödinger Hamiltonian using a TB-MTO basis; for
details see Appendix A 1. In this step, the scattering states in
the left and right leads are first determined following Sec. II A
and then the scattering problem is solved according to Sec. II B.

Although the calculations are entirely ab initio in the
sense that the computational scheme does not contain any
free parameters, the results do depend on the numerical
implementation, which is necessarily approximate. In this
section, we discuss a number of relevant issues and illustrate
some potential difficulties for a Cu|Py|Cu system consisting
of a length L of permalloy sandwiched between copper leads.
Both fcc materials are chosen to have a (111) orientation in
the transport direction. The lattice constant of permalloy is
taken to be aPy = 3.5412 Å according to Vegard’s law. This
is slightly smaller than the experimental lattice constant of
Cu, aCu = 3.614 Å. As we will be interested only in the bulk
properties of the alloy, we will choose the lattice constant of
the copper leads to be equal to that of permalloy and ignore the
(small) modifications introduced into the electronic structure
of Cu that may result.

Should the lattice mismatch be important, as is the case
when modeling the interface properties of an A|B interface
between materials A and B, the lattice constant ratio aA/aB

can be approximated by the ratio of two integers NA and NB

such that NAaA ∼ NBaB . When the A and B lattices are chosen
to be aligned, this can result in unfavorably large values of NA

and NB . By dropping the alignment condition, more flexibility
can be achieved by searching for lattice vectors in each lattice
whose lengths match; in general, this will require rotating the
lattices with respect to one another. This approach made it
possible to study fully relaxed interfaces between permalloy
and the nonmagnetic materials Cu, Pd, Ta, and Pt [45,47].
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A. Modelling diffusive transport with supercells

The (lateral) supercell approach allows us to flexibly model
interfaces between materials with different crystal structures
and lattice constants by imposing a degree of lattice periodicity
in order to be able to use Bloch’s theorem. A substitutional
alloy, or a crystalline material at finite temperature has, how-
ever, no translational symmetry and the supercell approach
is formally only correct in the thermodynamic limit. Just
as practical experience has shown that periodic boundary
conditions can be very effectively used to model symmetry-
breaking surfaces, interfaces, impurities, etc., with very small
supercells, we will see that we can model diffusive transport
with lateral supercells of very modest size.

1. �-point calculations with large lateral supercells

By assuming lattice periodicity parallel to the interface, the
wave functions can be characterized by a wave vector k‖ in
a 2D BZ no matter how large the period might be. In the
thermodynamic limit, this BZ becomes vanishingly small, the
band dispersion becomes negligible and neither BZ sampling
nor configuration averaging over configurations of disorder
should be necessary. We explore this limit in Fig. 7 where the
dependence of the resistance of a Cu|Py|Cu system is shown
as a function of the Py slab thickness L for 5 × 5, 15 × 15, and
25 × 25 supercells without SOC, i.e., examining the majority
and minority spin subsystems separately and neglecting the
effects of periodicity entirely by using only k‖ = (0,0) ≡ �.

The first feature we observe in Fig. 7 is a roughly two-order-
of-magnitude difference between the resistances of majority
and minority spins. Such a difference is qualitatively consistent
with what is known about the mean-free paths of electrons
in the two spin-channels [87]. For minority spins, this is
extremely short with reported values in the range 4–8 Å, while
for majority spins, it is much larger, in the range 50–200 Å
[88,89]. We can understand this [43] in terms of the energy
bands that were calculated for fcc Fe and Ni using the AS
potentials calculated self-consistently for permalloy with the
CPA [86,90], shown in Fig. 8. At the Fermi energy, the
majority-spin bands for Ni and Fe are almost identical so that
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FIG. 7. Resistance in f� m2 of a Cu|Py|Cu structure as a function
of the thickness L of Py for �-point calculations for 5 × 5 (top), 15 ×
15 (middle), and 25 × 25 (bottom) lateral supercells, for majority
(left column) and minority (right column) spins, with 10 random
configurations of chemical disorder per thickness.
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FIG. 8. Band structures calculated with the Ni and Fe AS po-
tentials and Fermi energy that were calculated self-consistently for
Ni80Fe20 using the coherent potential approximation. The same AS
radii were used for Ni and Fe.

in a disordered alloy the majority-spin electrons see essentially
the same potentials on all lattice sites and are only very weakly
scattered by the randomly distributed Ni and Fe potentials. In
contrast, the minority-spin bands are quite different for Ni and
Fe, which can be understood in terms of the different exchange
splittings; the magnetic moments calculated for Ni and Fe
in permalloy in the CPA are 0.63 and 2.61 μB , respectively.
The random distribution of Ni and Fe potentials in permalloy
then leads to strong scattering of minority-spin electrons in
transport. This picture is consistent with previous calculations
of the resistivity and Bloch spectral function of permalloy
[91–93].

As we approach the diffusive limit, we expect to see a
linear dependence of the resistance on the slab thickness.
The minority spins clearly exhibit this behavior even for the
smallest supercell size studied, N × N = 5 × 5. Increasing N

only reduces the spread between results for different configu-
rations of alloy disorder. For the majority spins, the situation is
rather different: the resistance depends nonlinearly on L with
notable oscillations that we attribute to constructive and de-
structive interference of electron waves in the Fabry-Perot-like
Cu|Py|Cu cavity. Only for thick Py or large supercells do the
oscillations vanish, restoring the expected linear dependence
of the resistance for L > 10 nm.

In the case of a 5 × 5 supercell, with only five layers of Py
(∼1 nm, the smallest Py slab thickness L in Fig. 7), the system
size is already comparable to the mean free path of electrons in
the minority-spin channel, and we are in the diffusive limit. For
the majority-spin channel, the lateral dimensions of the slab
only begin to approach the reported mean free path [88,89]
for a 25 × 25 supercell and even for such large supercells
the resistance only shows diffusive (linear) behavior when the
length of the slab is larger than the mean free path.

Once the system is large enough to approach the diffusive
limit and the length dependence of the resistance becomes
linear, a resistivity ρ� can be determined from the slope of
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size for �-point calculations: for majority (top) and minority (bottom)
spins. The “error bars” measure the spread on averaging different
configurations of alloy disorder.

R versus L. The dependence of ρ� on the supercell size N

is shown in Fig. 9. One can see that in the minority-spin
case the resistivity is converged with a negligible error bar to
ρ�

min ∼ 105 μ� cm when the linear dimensions of the supercell
are much larger than the mean free path. For the majority spin
case, as discussed above, we are not yet in the diffusive limit
and quantum (interference) effects are still observable. For
sufficiently large values of L, we extract resistivity values of
order ρ�

maj ∼ 0.5 μ� cm. Though the “error bar” that results
from configuration averaging is small, there is still a strong
dependence on the size of the lateral supercell.

2. Small supercell with integration over 2D BZ

Although �-point calculations with a large supercell might
be the most direct way of simulating a diffusive medium, the
computational cost is very high. We therefore study the effect of
improving the sampling of the wave functions by making use of
Bloch’s theorem. For an N × N lateral supercell, we calculate
the transmission using a Q × Q set of k‖ points in the 2D BZ
associated with the supercell. The total transmission is given by
summation of partial transmissions. The same effect could be
obtained for a QN × QN supercell with � point sampling only
(and with disorder in an N × N unit cell artificially repeated
Q × Q times).

The resistance of a Py slab is shown in Fig. 10 for a 5 × 5
supercell as a function of the thickness L for different Q × Q

samplings of the 2D BZ. As discussed in the previous section,
for a 5 × 5 supercell, especially for majority spins, we were far
from the diffusive limit and the � point picture was dominated
by interference effects; these are still visible in the top left
subplot in Fig. 10 when only 4 × 4 k points are used for
the BZ integration. Nevertheless, even though the resistance
displays oscillatory behavior for any individual k point, these
oscillations average out with increasing BZ sampling density
resulting in a substantially linear dependence visible in the
bottom left subplot of Fig. 10 for a sampling of 256 × 256
k-points. For minority spins, the picture is simpler, as we
already approach the diffusive limit for a 5 × 5 supercell and
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FIG. 10. Resistance in f� m2 of a Py slab in a Cu|Py|Cu scattering
geometry as a function of the slab thickness L for a 5 × 5 supercell
with different k-point samplings of the Brillouin zone. The normalized
area of the 2D element used in the BZ summation is defined as
�2k|| = ABZ/Q2 where ABZ is the area of the downfolded supercell
BZ. Results are shown for Q = 4 (top), 48 (middle), and 256
(bottom) for majority (left) and minority (right) spins, with six random
configurations of chemical disorder for every value of L.

therefore even a quite small BZ sampling results in a very
linear dependence. Once the sampling is dense enough and
we observe linear diffusive behavior, we can extract values
of the Py resistivity from the slope of R(L). In the limit that
L → 0, the resistance does not vanish because of the interface
resistance and the finite (Sharvin) conductance of the ideal
leads.

To investigate the convergence of this procedure and com-
pare with the �-only limit, we plot in Fig. 11 the resistivity
calculated for 5 × 5 and 15 × 15 supercells as a function of the
equivalent BZ sampling NQ × NQ together with the results

ρ
ρ

FIG. 11. Resistivity in μ� cm of Py as a function of equivalent
k-point sampling (N × Q) in which the downfolded 2D BZ with area
ABZ for an N × N supercell is sampled with BZ element �2k|| =
ABZ/Q2 for 5 × 5 (dash-dotted blue line) and 15 × 15 (solid red line)
supercells. For comparison, the results of �-only calculations (Q =
1) with variable supercell size are also shown (dashed black line).
Results for majority and minority spins are shown in the upper and
lower panels, respectively. The converged values ρmaj = 0.57μ� cm
and ρmin = 105–109 μ� cm are in very good agreement with the
calculated values in the literature [91] around 0.6 and 100 μ� cm,
respectively.
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for the �-only calculations for an N × N supercell from Fig. 9.
For majority-spin electrons, �-only calculations are dominated
by interference effects and far from convergence so an ac-
ceptable estimate of the resistivity could not be made. When
the BZ sampling is increased, then the results for both 5 × 5
and 15 × 15 supercells converge rapidly to the same value of
0.57 ± 0.01 μ� cm for majority spin electrons, suggesting that
this is the true calculated (albeit experimentally unobservable
because SOC has been omitted) resistivity. For minority spins,
the BZ-integrated 15 × 15 supercell result provides us with a
converged value of 105 ± 1 μ� cm, which is similar to the
�-only result with a large supercell. The converged value for
a 5 × 5 supercell is 4% larger (109 ± 1 μ� cm), which can be
attributed to the error that results from the limited averaging
of configuration space possible with a limited supercell size;
for a mean-free-path of 1 nm, a volume containing only
5 × 5 × 5 atoms is sampled by a minority-spin electron before
undergoing a collision. For our present purposes, this error
is not big enough to justify the greater expense associated
with larger supercells and we will limit ourselves to the 5 × 5
supercell with 32 × 32 2D BZ sampling throughout the rest of
this paper. This is something which should be born in mind
when comparing to experiment where calculations should
be explicitly tested for convergence with respect to lateral
supercell size as well as BZ sampling. Additional tests of other
aspects of the numerical implementation of the method can be
found in Appendix B 1.

B. Resistivity calculations with SOC

Figure 12 shows the thickness dependence of the Py layer
resistance where SOC was included with the magnetization
perpendicular to the current direction (R⊥) and parallel to it
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FIG. 12. Resistance calculated for Cu|Py|Cu using a 5 × 5 su-
percell with SOC as a function of the layer thickness L with the
magnetization parallel to (R‖: dots, solid line) and perpendicular to
(R⊥: squares, dashed line) the current direction. Calculated results
are shown by symbols while the lines are fits using the 2CSR
model. The fitted resistivities are nearly a factor of two smaller
than the experimental values in the range 4.2–4.8 μ� cm measured
for polycrystalline samples at low temperature [95–98], where the
presence of grain boundaries can increase the resistivity [99,100].

(R‖). What is most striking about these results compared to
those without SOC in Fig. 10 is the nonlinearity of R(L). When
a current of electrons is injected from the Cu lead on the left
into disordered Py, they need not scatter immediately at the
interface but do so on a length scale measured in terms of the
elastic mean free path. However, we do not see any evidence
for such an effect in the absence of SOC (Fig. 10) and there is
no good reason why SOC should greatly alter this. When we
include SOC, spin is no longer a good quantum number and
the unpolarized current must adapt to the finite polarization
of Py. This it does asymptotically on a length scale given by
l
Py
sf , the spin-flip diffusion length in Py, which was calculated

in Ref. [33] to be ∼5.5 nm in good agreement with values
determined experimentally [69,94]. However, in Fig. 12, R

appears to be varying nonlinearly on a length scale much larger
than this value of l

Py
sf . To understand why, we must return to

calculations for Py without SOC.
Within the 2CSR model, the resistances of the individual

spin channels are first determined and then added in parallel
to determine the total. These individual spin resistances are
shown in Fig. 13 for the same system as studied in Fig. 12 but
with the SOC switched off. The majority and minority spin
resistances are perfectly linear (except for a small mean-free-
path effect showing up for a Py thickness smaller than 2 nm in
the majority spin channel). The total resistance shown in the
bottom panel exhibits a curvature that is absent in the individual
spin channels and in addition, the slope is about a factor of
four smaller than with SOC included. We can understand the
curvature from (25) or by (28); we only expect to observe
the linear behavior characteristic of Ohm’s law when the third
term on the right-hand side of these equations is negligible
compared to the other terms (or vanishes). This only happens
when ρL 
 Ri (or β = γ ).

It is instructive to try and extract a value for the resis-
tivity from Fig. 13(c), while pretending not to know the
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FIG. 13. Resistance calculated for Cu|Py|Cu for a 5 × 5 supercell
without SOC as a function of the Py slab thickness L for (a) majority-
spin electrons, (b) minority-spin electrons and (c) total. The multiple
symbols for a given length are results for different configurations of
disorder. Linear least-square fits for L > 20 nm are shown by solid
lines, a nonlinear least squares fit for total resistance is represented
by a dashed line.
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slopes of ρmaj = 0.57 ± 0.01 μ� cm and ρmin = 109 μ� cm
from Figs. 13(a) and 13(b), which when combined result in
ρnonrel = (ρ−1

maj + ρ−1
min)−1 = 0.567 ± 0.009 μ� cm. We can do

this either by fitting the expression (28) to the calculated data
or by studying systems so long that the contribution of the bulk
resistivity to the total dominates the interface terms and can be
extracted from the slope of R(L). A linear fit of R(L) for L >

20 nm yields a total resistivity of 1.08 ± 0.07 μ� cm, which
is almost twice as large as the true value, ρnonrel, demonstrating
that the nonlinear contribution from the interface terms in
(28) is still not negligible even though R(L) looks reasonably
linear. Estimating the resistivity with higher accuracy using
this approach requires calculations for much longer systems.

The alternative is to fit R(L) using (28). To ensure a
stable fitting procedure, we use an iteratively re-weighted least
squares algorithm with bisquare weights [101]. In this case the
estimated total resistivity is 0.53 ± 0.05 μ� cm. Though this
is in much better agreement with ρnonrel, an additional error of
7% has nevertheless been introduced and the error bar itself
has increased by a factor of 5.

Returning now to Fig. 12, we find that the R(L) data with
SOC shown as symbols can be fitted very well using (28)
(solid and dashed lines) yielding resistivity values of ρ‖ =
2.70 ± 0.02 μ� cm and ρ⊥ = 2.15 ± 0.01 μ� cm. The av-
erage resistivity ρ̄ = (ρ‖ + 2ρ⊥)/3 = 2.33 ± 0.02 μ� cm is a
factor four larger [91,99] than ρnonrel = 0.567 ± 0.009 μ� cm.
This compares reasonably well with CPA calculations per-
formed within the Kubo-Greenwood formalism [92,93,99] but
is almost a factor of two smaller than experimental values
in the range 4.2–4.8 μ� cm measured for polycrystalline
samples [95–98]. Note that the resistivity can be significantly
enhanced by the grain boundaries [100]. The magnetoresis-
tance anisotropy value we estimate is (ρ‖ − ρ⊥)/ρ̄ × 100% =
24% ± 1%, which compares reasonably with experimental
values in the range 16%–18% [95–97] and previous theoretical
estimates [92,93,99].

Our calculations confirm the overall picture that in spite
of its smallness for 3d materials, SOC plays an essential role
in determining the transport properties of alloys when there
is a very large difference between the resistivities of majority
and minority spins in the absence of SOC. When temperature-
induced lattice and spin disorder are included below, the bulk
resistivity will increase and the curvature seen for low values
of L decreases; it will turn out that low-temperature Py is
peculiarly difficult to describe accurately in our real-space
approach because of the large mismatch between the two spin
channels.

1. Influence of the Interface

Determining an alloy resistivity from calculations that
include SOC using a 2CSR model that neglects it entirely is
unsatisfactory. The 2CSR model does identify an important
issue however, namely, the essential role played by interfaces in
the scattering formalism. Clearly, the interface is obscuring the
character of the bulk property we want to study by introducing
a number of extraneous effects: mean-free-path effects at the
interface, spin-dependent interface resistances, and interface
and bulk spin flipping required to bring the unpolarized current
injected from the Cu lead into equilibrium with the spin-
polarized current in Py. Since the asymptotic resistivity should
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FIG. 14. (Top) Self-consistent virtual-crystal approximation band
structure for a nuclear charge ZVCA = (1 − x)ZNi + xZFe. At the
Fermi level, the majority-spin states (lhs) are free-electron-like,
the minority-spin states have mainly 3d character (rhs). (Bottom)
Majority (lhs) and minority (rhs) spin band structures of Cu in which
a replusive constant potential of 1 Ry has been added to the minority
spin potential, the effect being to remove all minority-spin states from
the Fermi energy.

be independent of the leads, ideally, we would choose lead
materials that are perfectly matched to the properties of the
alloy we are studying with the same current polarization and
minimal interface resistance. However, we are constrained in
our choice of lead material to choose something with full
lattice periodicity. We examine a number of possibilities in
this section.

We could choose leads to be ordered alloys with the
same chemical composition as Py. However, for an arbitrary
Ni1−xFex chemical composition this might require using im-
possibly large unit cells. Instead, we adopt the virtual-crystal
approximation (VCA) [102] and construct artificial atoms with
nuclear charge ZVCA = (1 − x)ZNi + xZFe and a correspond-
ing number of neutralizing valence electrons. A self-consistent
calculation with this procedure for an fcc lattice with the same
lattice constant as Py results in a magnetic moment of 1.06μB ;
the corresponding bands are shown in Fig. 14 (top row). At
the Fermi level, we see that the majority-spin states (lhs) are
free-electron-like, while the minority-spin d states [right-hand
side (rhs)] are partly occupied so we expect a better matching
of the electronic structures at the interface that should result in
a smaller interface resistance. The result of calculating R‖(L)
using these VCA leads is shown in Fig. 15 (black dots). The
curvature for low values of L is strongly reduced compared to
Fig. 12 and a resistivity value of ρ‖ = 2.76 ± 0.01 μ� cm is
directly extracted from the linear dependence.

The procedure can be further refined by noting that the 1/L

term in (25) vanishes if R
↓
i → ∞, i.e., γ = 1. This situation

would correspond to using half-metallic ferromagnetic (HMF)
[103] leads. There is no need to actually use a “real” HMF,
we can construct one from Cu leads by simply adding a
strong (∼1 Ry) repulsive potential to the minority spin Cu
lead potentials to eliminate all minority spin states from the
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FIG. 15. Resistance calculated with SOC as a function of the
Py slab thickness L. The black dots are calculated using the VCA
Ni80Fe20 leads, while the red (blue) dots are obtained using Cu leads
with one (both) of the Cu leads replaced by the artificial HMF Cu.
The solid lines are linear fits to the calculated values.

vicinity of the Fermi level (Fig. 14, lower panels). In this way,
only majority spins are injected into Py whose low-temperature
polarization we calculated to be β ∼ 0.9 [46]. If we do this
for the left-hand lead, we obtain the results shown in Fig. 15
as red dots; constructing both leads in this way, we obtain
the results shown as blue dots. In both cases, we achieve
nearly ideal Ohmic behavior. We attribute the small deviations
from linearity for small values of L to spin flipping on a
length scale of l

Py
sf as the fully polarized injected electrons

equilibrate to β ∼ 0.9. The slopes are essentially identical
within the error bars of the calculation, consistent with the
slope obtained with VCA leads with ρ ∼ 2.8 μ� cm and only
slightly larger than the value we extracted with unpolarized Cu
leads, ρ ∼ 2.7 μ� cm.

All theoretical estimates of the permalloy resistivity are
below the reported experimental range ρ̄ = 4.2–4.8 μ� cm
[95–98]. The discrepancy has been explained by noting that
theoretical calculations have been carried out for monocrys-
talline, monodomain permalloy, while experimental observa-
tions are made on polycrystalline samples [99]. In the latter
case, additional scattering on the grain boundaries increases
the resistivity. We also have no information about the domain
structure of the experimental samples, but one can expect that
for multidomain samples the resistivity should further increase
due to the additional scattering involved.

C. Gilbert damping

The Gilbert damping can be calculated by numerically
differentiating the scattering matrices with respect to the
magnetization orientation as formulated in Sec. II C 2. The
value of G̃ resulting from the differentiation may depend on
the choice of the finite but small value of �θ chosen for the
numerical procedure. An example is shown in Fig. 16 for Py
in the Cu|Py|Cu system. One can see that numerically G̃ is
very stable and does not depend on the choice of �θ for
variation of the polar angle over a large range, indicating linear

10
−5

10
−4

10
−3

10
−2

10
−1

0.096

0.098

0.1

0.102

0.104

G
/(

γ 
μ sA

) 
[n

m
]

Δθ [π ]

FIG. 16. Gilbert damping of a 11.2-nm-thick layer of Ni80Fe20

alloy as a function of �θ , the finite difference of the polar angle
used for numerical differentiation. Calculations are performed using
a 5 × 5 supercell.

dependence of the scattering matrix on small variations of the
magnetization orientation.

When the thickness of the Py layer is increased, the total
damping of the system grows proportionally, as anticipated in
(34) and demonstrated in Fig. 17. Moreover, the strict linearity
and negligible variation for different configurations of disorder
indicate that the Gilbert damping is very insensitive to details
of how the random chemical disorder in the alloy is modelled.
The value of α extracted from the slope of G̃(L)/(γμsA)
is 0.0046 ± 0.0002, which falls at the lower end of a range
of values, 0.004–0.013, reported in the literature for mea-
surements at room temperature [22,24–27,39,40,73,105–114].
Very recently, measurements were carried out as a function of
temperature from room temperature (RT) to low temperatures,
decomposing the damping into bulk and interface contributions
[40]. These yield a value for the bulk damping of 0.0048 ±
0.0003 at 5 K in remarkably good agreement with the value
calculated above (that has been confirmed by subsequent
coherent potential approximation calculations [36,37] within
the error bars of the calculations).

At room temperature, Zhao et al. reported a value of α =
0.0055 ± 0.0003 that is at the low end of the 0.004–0.013
range measured previously. An even more recent RT study of
the Ni1−xFex alloys as a function of x reported [39] values of
α in essentially perfect agreement over the full concentration
range with the values calculated by Starikov et al. for T = 0
[33]. Schoen et al. attributed the better agreement they obtained
with theory to corrections they made (i) for interface damping
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]
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= 0.0046 ± 0.0002
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FIG. 17. Total damping of the Py slab as a function of its thickness
L [104]. The error bars, which measure the spread over different
configurations of disorder for every thickness, are less than the marker
size in this plot and thus nearly invisible. The damping extracted via a
linear fitting (blue solid line), αcalc = 0.0046 ± 0.0002, is in excellent
agreement with the experimental value reported at low temperature
[40].
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FIG. 18. Scaling of Gilbert damping with the SOC strength. The
dots correspond to the calculated results, and the solid line shows the
quadratic fit. The quadratic dependence of α on the SOC strength is
in agreement with a recent CPA calculation for Os-doped Py [36].

enhancement [22,23,73,115] and (ii) for radiative damping. For
Py, they reported an RT value of α = 0.0050. Taken together
with the Zhao et al. result, α = 0.0055 ± 0.0003, this would
seem to indicate a minimal temperature dependence of the
magnetization damping that is striking in view of a factor five
increase in the resistivity of Py over the same temperature
range. To elucidate this (and the apparent disagreement be-
tween the T = 0 calculations of Starikov et al. [33] and the
older room-temperature experiments), we undertook a study
of the effect of thermally induced lattice and spin disorder on
the resistivity and damping that will be the subject of the next
section.

The ingredients contributing to the magnetization damping
in the calculations are disorder and SOC; omitting either will
lead to a vanishing bulk damping. In the next section, we will
examine what happens when we “tune” the amount of disorder.
Before doing this, we investigate how the damping depends on
the magnitude of the SOC term in (A12) when we scale it
with a parameter λ: Hso → λHso. From the results shown in
Fig. 18 for Py, it is clear that the damping scales quadratically
with the strength of the SOC. This is the scaling expected for
the strong interband scattering limit of the torque correlation
model. Though only strictly applicable to ordered solids with
well-defined band structures [29–31,41], the strong interband
scattering limit is the appropriate limit for a disordered alloy
where momentum is not well defined.

D. Thermal lattice and spin disorder

To resolve the discrepancy between room-temperature mea-
surements [22,24–27,39,73,105–114] and T = 0 calculated
values of α for the Ni1−xFex alloy system [33] and because we
are aware of only a single low-temperature measurement [40],
we extend to Py the method introduced in Ref. [34] to study
the temperature dependence of damping in Fe, Co, and Ni.
Finite temperatures lead to displacements of the atoms from
their equilibrium positions (lattice disorder) and to rotations
of atomic magnetic moments away from their equilibrium
orientations. A correct theoretical description of temperature
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FIG. 19. Resistivity ρ‖ (top) and damping parameter (bottom) in
Ni80Fe20 alloy as a function of the rms displacement of atoms from
their equilibrium positions (in units of the lattice constant a0).

effects in solids would begin with the fundamental lattice and
spin excitations (phonons and magnons, respectively) and the
occupancy of these excitations [46] but this lies outside the
scope of the present paper. Instead, we apply a simpler scheme
of uncorrelated Gaussian atomic and spin displacements [34]
to study the effects of thermal lattice and spin disorder on the
resistivity and damping of Py.

We describe lattice disorder in terms of independent random
displacements ui of the NS atoms in the scattering region
labeled i from their equilibrium positions Ri i.e., we describe
the lattice as a collection of independent harmonic oscillators,
see Fig. 5. The displacements ui are distributed normally with
rms displacement � =

√∑
i u

2
i /NS . As shown in Fig. 19,

increasing � leads to increased scattering and increased
resistivity. For �/a0 = 0.029 corresponding to a resistivity
of 8.2 μ� cm, the resistance R(L) of the Cu|Py|Cu system
(unpolarized Cu leads) is shown as a function of L in Fig. 20.
The increased bulk resistivity leads to a substantial decrease
of the curvature observed in Fig. 12 underlining the peculiar
difficulties presented by low-temperature Py.

While an rms displacement of 4% (in units of the lattice
parameter a0) is enough to cause an almost fourfold increase in
the resistivity, the damping increases by only ∼5%. Figure 19
therefore indicates that while the resistivity might depend
strongly on additional structural sources of scattering in Py
such as dislocations, grain boundaries, etc., the damping is
expected to be insensitive to this additional disorder. The
resistivity estimated theoretically for crystalline Py at zero
temperature can be expected to be lower than the values
determined experimentally for polycrystalline samples.

The weak dependence of α on lattice disorder is consistent
with the quadratic scaling of the damping with the SOC
strength expected in the strong interband scattering limit of
the torque correlation model. The electronic structure of Py
strongly resembles that of clean Ni in sofar as the majority
spin d band is filled (seen clearly in the VCA, Fig. 14); it
is known from experiment [20] and TCM calculations in the
strong interband scattering limit [29,31,41] that the damping
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FIG. 20. Resistance calculated for Cu|Py|Cu with lattice disorder
corresponding to �/a0 = 0.029 in a 5 × 5 supercell and including
SOC as a function of the layer thickness L. The magnetization is
parallel to the current direction. The results without lattice disorder
are included for comparison. The solid lines illustrate the linear fits
to the calculated values.

parameter of Ni depends only weakly on the relaxation time
in this limit.

Reverting to the ideal crystal structure, we next introduce a
certain level of spin disorder, as sketched in Fig. 6, by tilting the
atomic moments randomly from their equilibrium orientations
through angles θi that are assumed to be distributed normally

with a rms tilt angle �� =
√∑

i θ
2
i /NS . The results plotted

in Fig. 21 show that the resistivity depends strongly on spin
disorder (suggesting that measured resistivity values should
also depend on the domain structure of the samples); for the
range of �� shown, it increases by a factor of almost ten.
Compared to the lattice disorder case, the damping parameter
also increases more strongly, by almost 20%. A major factor in
this increase is, however, the reduced effective magnetization
density μs in (34) as �� increases. Note that these calculations
assume that the external magnetic field is negligibly weak.
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FIG. 21. Resistivity (top) and damping parameter (bottom) in
Ni80Fe20 alloy as a function of the rms rotation �� of the atomic
magnetic moments and macrospin.

The qualitative picture sketched above can be improved by
introducing quantitative measures for the rms displacements
and rotations in terms of the temperature T . In the Debye
model [116], the mean-square displacement of the ith atom
from equilibrium 〈u2

i 〉 depends on T as〈
u2

i (T )
〉 = �2 = 3h̄2T

mk�2
D

[
�

(
�D

T

)
+ �D

4T

]
, (36)

where �D is the Debye temperature and �(x) is the Debye
integral function

�(x) = 1

x

∫ x

0

y

ey − 1
dy. (37)

Expanding the integrand in (37) as a power series in y leads to
�(x) = 1 − x

4 + x2

36 + ... so that in the high-temperature limit
where x < 1, �(x) � 1 − x/4 and (36) reduces to the classical
statistics [116]

�2 = 3h̄2T

mk�2
D

. (38)

In the low-temperature limit T � �D (x 
 1), zero point
motion (zpm) is dominant and �2 = 3h̄2

4mk�D
. Because it does

not contribute to give a low-temperature resistivity, we neglect
the zpm at T = 0 but keep the complete Debye integral (37)
for the finite temperature calculation.

To map spin disorder onto temperature, we can use a cubic
spline to interpolate the experimental magnetization [117,118]
at an arbitrary temperature [46] or fit the experimental data
using some empirical analytical function [119]. We assume
that the magnetization at finite temperature can be defined in
terms of the mean value of the cosine of the tilting angle θ :

M(T ) = M0〈cos θ〉. (39)

For atomic tilting angles θi distributed according to the Fisher
distribution [120] with probability density

P (θ,κ) = κ sin θ eκ cos θ

2 sinh κ
, (40)

the expectation value of the z projection of the local magne-
tization can be expressed via the distribution parameter κ as
〈cos θ〉 = coth κ − 1/κ , which is just the Brillouin function
for large J and κ ∼ 1/kBT . This results in a transcendental
equation which relates temperature and magnetic moment
distribution:

M(T )

M(0)
= coth κ − 1

κ
. (41)

The azimuthal angle φ in (35) defining the orientation of the
projection of the magnetic moment in the xy plane is assumed
to be distributed uniformly in [0,2π ], which is reasonable for
an isotropic material like Py.

The thermally induced random field satisfies the fluctua-
tion dissipation theorem, i.e., the time-averaged correlation
function of the random field is proportional to the Gilbert
damping and depends on the temperature [121–123]. In our
modeling of the spin disorder, we do not explicitly involve
the random field but generate several snapshots of magnetic
configurations which are essentially “independent” of one
another. So the implementation using the random distribution
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FIG. 22. Resistivity (top) and bulk damping (bottom) of Ni80Fe20

as a function of the temperature. The red symbols are the calculated
results (the red line is a guide to the eye). The asterisks (black)
in the resistivity plot correspond to tabulated average experimental
values from [124]. The asterisks (green) in the damping plot are the
data of Zhao et al. [40]. The blue diamond is a room-temperature
measurement corrected for spin pumping and radiative contributions
[39].

of the atomic magnetic moments (40) does not violate the
fluctuation dissipation theorem.

The temperature dependent resistivity and damping calcu-
lated for Py using �D = 450K and the experimental mag-
netization [118] are compared with experiment in Fig. 22.
For temperatures around room temperature, the model of
independent harmonic oscillators describes phonon motion
reasonably well and the phonon spectrum of transition metals
is quite similar to the spectrum described by the Debye model.
The agreement between the calculated and experimentally
observed values of ρ(T ) [124] and of α(T ) [40] is remarkably
good. The results for the damping confirm an earlier report
of an, at best, weak temperature dependence of α [125]. A
recent room-temperature measurement [39] of the damping
containing corrections for spin pumping and radiative effects
is in almost perfect agreement with our RT result. We note that
the measurements of Zhao et al. [40] were corrected for spin
pumping but not for radiative effects.

IV. CONCLUSION

We have developed a method to calculate the scattering
matrix including SOC and noncollinearity and illustrated it
here with calculations of the resistivity and Gilbert damping
of permalloy. The very efficient implementation with tight-
binding muffin tin orbitals allows it to be applied to a wide
range of materials and systems. In addition to zero-temperature
calculations for ideal disordered alloys [33], the method can
be used to model temperature-induced disorder [34,46], for
systems such as interfaces that are not periodic [45,47], or
for noncollinear systems [42,43]. Our results for disordered
alloys are in agreement with or have been confirmed by other
established theoretical methods like CPA. Where comparison

can be made, our results are in good agreement with experiment
so they can be used to predict material parameters.
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APPENDIX A: COMPUTATIONAL DETAILS

1. Linearized Muffin-Tin Orbitals (LMTOs) and
the Pauli-Schrödinger Hamiltonian

The practical implementation of the WFM method pre-
sented in this paper is based on LMTOs and the ASA that
are described in detail elsewhere [54–56]. Here, we will
focus only on those aspects that are important for the present
version of the scattering formalism. An earlier, nonrelativisitic
version of the method [49,50] can be referred to for additional
details regarding the use of muffin-tin orbitals in transport
calculations.

In the ASA, muffin-tin spheres are expanded to fill the vol-
ume of the solid [126]. Considering only the l = 0, spherically
symmetric component of the potential inside the resulting AS
located at R, a solution φRl(E,rR) of the radial Schrödinger
equation can be determined numerically for energy E and
angular momentum l resulting in the partial wave [56]

φRL(E,rR) ≡ φRl(E,rR)Ylm(r̂R), (A1)

with rR ≡ r − R, L ≡ lm labels the angular momentum, and
Ylm is a spherical (or real, cubic) harmonic. r̂R denotes a unit
vector and rR ≡ |r − R|. Later, we can drop the explicit R
dependence where it does not give rise to ambiguity. In terms
of the logarithmic derivative Dl of φl(E,r) at r ≡ s (the AS
radius),

Dl(E,s) ≡ rφ′
l(E,r)

φl(E,r)

∣∣∣∣
r=s

≡ sφ′
l(E,s)

φl(E,s)
, (A2)

we can define the energy-dependent potential function

P 0
l (E) = 2(2l + 1)

(
w

s

)2l+1
Dl(E) + l + 1

Dl(E) − l
, (A3)

which in the ASA depends only on the potential and is
independent of the crystal structure. When there is more than
one atom type, w is an average AS radius. In terms of the
“canonical” structure constant matrix S0

R′L′,RL [56,126], which
depends only on the positions of the ions, we can define the
Hermitian matrix at E = Eν as

h0(Eν) = −[
Ṗ0(Eν)

]−1/2[
P0(Eν) − S0][Ṗ0(Eν)

]−1/2
, (A4)

214415-16



CALCULATING THE TRANSPORT PROPERTIES OF … PHYSICAL REVIEW B 97, 214415 (2018)

where P 0
RL is an (m-independent) element of the diagonal

matrix P0 and Ṗ0 is the energy-derivative of P0. In this
expression only S0 is a nondiagonal matrix. To first order in
E − Eν , h0(Eν) is the Hamiltonian in the ASA [54–56]. The
problem presented by the long range [126] of the structure
constant matrix S0 is resolved by introducing a generalized
representation characterised by a set of l-dependent screening
parameters αl and defining the so-called “screened” structure
constants Sα and potential functions Pα defined by

Pα = P0
[
1 − αP0

]−1
, (A5)

Sα = S0
[
1 − αS0

]−1
, (A6)

where α is a diagonal matrix with m-independent elements
αl . For a suitable choice of screening parameters, the range
of Sα is essentially limited to the first- and second-nearest
neighbors for close-packed structures [54–56]. In the screened
representation, the two-center tight-binding matrix becomes

hα(Eν) = −[
Ṗα(Eν)

]−1/2[
Pα(Eν) − Sα

][
Ṗα(Eν)

]−1/2
.

(A7)

The energy-independent, linearized (at Eν) muffin-tin or-
bitals for the AS located at R are defined [56] as∣∣χα

RL(Eν)
〉 = |φRL(Eν)〉 + ∣∣φ̇α

R′L′(Eν)
〉
hα

R′L′,RL(Eν), (A8)

where∣∣φ̇α
R′L′(Eν)

〉 = 1

Nα
l (Eν)

∂
[|φR′L′(E)〉Nα

l (E)
]

∂E

∣∣∣∣
E=Eν

, (A9)

with the normalization function

Nα
l (Eν) = [

(s/2)Ṗ α
l (Eν)

]1/2
. (A10)

For simplicity, we will later assume that the orbitals are
constructed at Eν and omit any explicit energy dependence.
Now we can construct the energy independent Hamiltonian
matrix correct to second order in E − Eν :〈

χα
∣∣H − EνI

∣∣χα
〉 = hα + hαoαhα, (A11)

where oα = 〈φ|φ̇α〉 = Ṅα/Nα is the so-called overlap matrix.
Equation (A11) shows that the hopping range of the LMTO
Hamiltonian is double the hopping range of the screened
structure constant matrix, defined by the three-center integral
hαoαhα . In a transport calculation dominated by what happens
at the Fermi energy EF , we can choose Eν = EF and the
second (three-center) term in Eq. (A11) can be omitted.

We include the spin-orbit interaction in a perturbative way
by adding a Pauli term to the Hamiltonian,

Hso = 1

c2 r

dV (r)

dr
L̂ · Ŝ. (A12)

In the LMTO basis set, the matrix elements of Hso are given
by

〈χα|Hso|χα〉 = γ 1 + γ 2hα + hαγ +
2 + hαγ 3hα,

where γ 1, γ 2, and γ 3 are spin-orbit parameters for one-, two-,
and three-center terms,

γ 1 = 〈
φ
∣∣ 1

c2 r

dV (r)

dr
L̂ · Ŝ

∣∣φ〉 = K ⊗ ξ , (A13a)

γ 2 = 〈
φ
∣∣ 1

c2 r

dV (r)

dr
L̂ · Ŝ

∣∣φ̇α〉 = K ⊗ ξ̇
α
, (A13b)

γ 3 = 〈
φ̇

α∣∣ 1

c2 r

dV (r)

dr
L̂ · Ŝ

∣∣φ̇α〉 = K ⊗ ξ̈
α
, (A13c)

and we introduce a matrix of coefficients

Klmσ,l′m′σ ′ = 〈
lmσ

∣∣L̂ · Ŝ
∣∣l′m′σ ′〉, (A14)

and a set of SOC potential parameters:

ξlσσ ′ = 〈
φlσ (r)

∣∣ 1

c2 r

dV σσ ′
(r)

dr

∣∣φlσ ′(r)
〉
, (A15a)

ξ̇ α
lσσ ′ = 〈

φlσ (r)
∣∣ 1

c2 r

dV σσ ′
(r)

dr

∣∣φ̇α
lσ ′(r)

〉
, (A15b)

ξ̈ α
lσσ ′ = 〈

φ̇α
lσ (r)

∣∣ 1

c2 r

dV σσ ′
(r)

dr

∣∣φ̇α
lσ ′(r)

〉
. (A15c)

The expressions for ξ̇ and ξ̈ can be slightly reworked by taking
(A9) into account:

ξ̇ α
lσσ ′ = ξ̇lσσ ′ + ξlσσ ′oα

lσ ′ , (A16a)

ξ̈ α
lσσ ′ = ξ̈lσσ ′ + ξ̇lσσ ′

(
oα

lσ + oα
lσ ′

) + ξlσσ ′oα
lσ oα

lσ ′ , (A16b)

where

ξ̇lσσ ′ = 〈
φlσ (r)

∣∣ 1

c2 r

dV σσ ′
(r)

dr

∣∣φ̇lσ ′(r)
〉
, (A17a)

ξ̈lσσ ′ = 〈
φ̇lσ (r)

∣∣ 1

c2 r

dV σσ ′
(r)

dr

∣∣φ̇l′σ ′(r)
〉
. (A17b)

The parameters ξ , ξ̇ , and ξ̈ can be obtained by radial integration
over the AS. Off-diagonal (in spin-space) elements of V σσ ′

(r)
are assumed to be the average of potentials for different spins
[127].

Thus the complete Pauli-Schrödinger Hamiltonian will be

Hso = [
EνI + γ 1

] + [
hα + γ 2hα + hαγ +

2

]
+ [

hα(oα + γ 3)hα
]
, (A18)

where we have grouped one-, two-, and three-center terms.
Even when E = Eν , omitting the three-center term in (A18)
is formally less readily justified than when SOC is neglected
because it introduces longer-range hopping in the Hamiltonian
matrix. The practical impact on the resistivity and damping of
neglecting the three-center terms is examined in Fig. 23 where
no significant effect can be seen while the computational cost
is reduced by some 70%.

2. Velocities

In this section, we derive the expression (22) for the group
velocities of eigenmodes in the ideal wire for the generalized
WFM framework. The derivations are similar to previous work
[60,61]. The vectors um of (7) are solutions of the polynomial
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FIG. 23. Effect of the three-center terms in Hso on (a) the total
resistance and (b) the total damping of Ni80Fe20 at T = 0. Red open
circles include three-center terms, black filled circles omit them.

equation of order 2N :

λNHum +
N∑

n=1

(
λN+n

m Bnum + λN−n
m B†

num

) = 0. (A19)

Left multiplying by u†
m and differentiating with respect to

energy leads to

d

dE

[
λN

mu†
mHum +

N∑
n=1

(
λN+n

m u†
mBnum + λN−n

m u†
mB†

num

)]

= λN
m + 2ıλN−1

m

dλm

dE

N∑
n=1

n Im
(
λn

mu†
mBnum

) = 0, (A20)

which yield the following expression for dE/dλm:

dE

dλm

= − 2ı

λm

N∑
n=1

n Im
(
λn

mu†
mBnum

)
. (A21)

For propagating states, λm = eikma , km is real, and a is the
thickness of the periodic lead layer so

dkm

dE
= 1

ıaλm

dλm

dE
. (A22)

The standard definition of group velocity is υm = 1
h̄

dE
dk

, there-
fore, substituting Eq. (A21) and (A22), we obtain

υm = ıaλm

h̄

dE

dλm

= 2a

h̄

N∑
n=1

n Im
(
λn

mu†
mBnum

)
. (A23)

3. Spin-projections of the scattering matrix

For convenience of interpretation it is useful to decompose
the transmission and reflection matrices into spin-projected
ones. Although spin is not a valid quantum number when SOC
is included, we can still characterize states in the leads as states
which have a distinctive spin projection onto the σz axis (σz =
± 1

2 ). For leads consisting of light nonmagnetic metals, this is
a reasonable approximation and can be achieved in practice

as follows: for every pair of spin-degenerate lead eigenmodes
u1,u2, we can construct a new pair of orthogonal eigenmodes
u′

1,u
′
2 by taking a linear superposition of the original modes[

u′
1

u′
2

]
=

[
a11 a12

a21 a22

]
×

[
u1

u2

]
(A24)

and choosing the coefficients aij to maximize the σz = + 1
2

component of u′
1 and the σz = − 1

2 component of u′
2. We denote

these new states as uσ+ and uσ−. This basis set transformation
allows us to to operate with reasonably well defined spin-
projected scattering matrices. For example, the matrix rσσ ′

μν

describes reflection from the νσ ′ states into the μσ states in
the same lead.

4. Reduction of the Gilbert damping tensor to a scalar

For a crystal with cubic symmetry and a collinear mag-
netization, the damping torque can in general be written as
τ = m × (α · ṁ). If the magnetization m is taken to be along
the z axis, then to leading order in the transverse components
of the magnetization (mx,my � mz ∼ 1), the damping torque
can be written in Cartesian coordinates as

τx = −mz(αyxṁx + αyyṁy), (A25a)

τy = mz(αxxṁx + αxyṁy). (A25b)

Without loss of generality, we choose the momentary direction
of magnetization precession to be along the x axis, i.e., ṁ =
ṁx̂ and |mz| = 1, as sketched in Fig. 24(a). Then τx = −αyxṁ

and τy = αxxṁ. Keeping the system otherwise unchanged, we
rotate the coordinate axes through 90◦ clockwise about the z

axis as shown in Fig. 24(b). In this case, we can write the
damping torque τx ′ = −αyyṁ and τy ′ = αxyṁ. Comparing the
components in Figs. 24(a) and 24(b), we find αxx = αyy and
αxy = −αyx .

If we reverse the magnetization in Fig. 24(a) but keep ṁ

unchanged, the damping torque should be reversed as plotted
in Fig. 24(c). If we then rotate the system 180◦ about the x

axis, it reproduces the configuration of Fig. 24(a) except that
the component τx is inverted. As a consequence, τx = −αyxṁ

must be zero indicating that the off-diagonal elements αyx =
−αxy = 0. In the same manner, it can be proved that in a
collinear magnetic system with cubic symmetry, the Gilbert
damping tensor reduces to a scalar, α = α1, where 1 is the
3 × 3 unit matrix.

 τ x

  m
 x

 y

 τ y

 τ x

  m
 x

 y

 τ y

m = z   m = −z

 τ x

  m
x

y

 τ y

m = z(a) (c) (d)

 τ ′y

  m

′x
 ′y

 τ ′x

m = z(b)

FIG. 24. Geometry of damping torque exerted on magnetization.
See text for detailed analysis.
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APPENDIX B: LIMITATIONS

A number of factors limit the application of the present
method. First and foremost, memory considerations limit the
size of system that can be addressed. A calculation for a single
configuration of the longest scattering region shown in Fig. 12
and containing about 15 000 = 5 × 5 × 600 atoms requires
about one hour on a supercomputer node with 32 cores and
256 GB memory, where the calculation parallelized perfectly
over the two-dimensional 32 × 32 k-point summation. The
maximum length of ∼105 nm places an upper limit on,
e.g., the spin-flip diffusion length that could be studied. For
larger systems, the calculations need to be performed with a
multithreading sparse matrix solver or simply with extended
memory. For metals, the computing time scales linearly with
the length L of the scattering region and quadratically with the
size of the lateral supercell. For a lateral supercell containing
M atoms, a calculation for a single k-point scales as M3. The
BZ size scales as 1/M , so for constant sampling density of
reciprocal space, the scaling goes as M2L. The upper limit of
lateral supercell size with SOC is in practice about 10 × 10 and
30 nm long; this scattering region also contains about 15 000
atoms.

A second important limitation is the ASA. This conven-
tional description of the potential in combination with the MTO
scheme is usually very good for close-packed systems; open
systems can frequently be reasonably well modelled by filling
space with artificial “empty atomic spheres” [56,128], i.e.,
without nuclei inside. For lower symmetry structures, where
the spherically symmetric potentials around the nuclei are not
sufficient to characterize the real Kohn-Sham potential, the
ASA breaks down. In these cases, the reliability and accuracy
of transport calculations as currently implemented with MTO
and ASA are limited by the ASA description of the Kohn-Sham
potentials. Andersen has suggested ways of circumventing this
limitation without sacrificing the efficiency of the ASA [129].

The ultimate limitation is the DFT itself, or rather the
approximation to the exchange-correlation potential, the func-
tional derivative of the exchange-correlation (XC) energy, that
has to be chosen. Some of the uncertainties that result from
different choices are discussed briefly next.

1. Additional numerical tests

Although the formalism described in this paper is parameter
free, the practical implementation requires approximating the
XC energy of DFT [130] as in the local density approximation
[131] where electron gas data have been parameterized by vari-

TABLE I. Dependence of the atomic magnetic moment μs ,
nonrelativistic resistivities ρmaj and ρmin, the relativistic resistivity
ρ‖, and the Gilbert damping parameter for Py, on the basis set and
choice of exchange-correlation potential: von Barth-Hedin (vBH)
[132], Perdew-Zunger (PZ) [133], and Vosko-Wilk-Nusair (VWN)
[134]. Calculations are performed with a 5 × 5 supercell and a
k-point sampling grid of 32 × 32 (equivalent to 160 × 160 for a 1 × 1
primitive interface cell). Resistivities are given in μ� cm and the
magnetic moment is in Bohr magneton μB per atom.

XC/Basis μs ρmaj ρmin ρ‖ α (10−3)

vBH/spd 1.025 0.57 ± 0.01 109 ± 1 2.7 ± 0.1 4.6 ± 0.2
vBH/spdf 1.001 0.67 ± 0.01 101 ± 1 2.6 ± 0.1 4.3 ± 0.2
PZ/spd 1.010 0.92 ± 0.01 108 ± 1 3.1 ± 0.1 4.7 ± 0.2
VWN/spd 1.022 0.60 ± 0.01 107 ± 1 2.8 ± 0.1 4.5 ± 0.2

ous workers [132–134]. The numerical values of the resistivity
and damping parameter will depend on the parametrization
chosen. Our implementation with TB-MTOs requires truncat-
ing the orbital angular momentum expansion at some maxi-
mum value of the orbital angular momentum and this will also
influence the numerical results. For all calculations presented
in this paper, the von Barth-Hedin (vBH) XC potential and
an spd basis set were used. To demonstrate the uncertainty
resulting from the somewhat arbitrary choice of XC potential
and basis sets, we show the results of calculations for Cu|Py|Cu
with different choices of potentials and spd or spdf basis set
in Table I.

The quantity most dependent on these choices is the permal-
loy majority-spin resistivity in the absence of SOC. The very
weak scattering of majority spins makes this very sensitive to
small details of the electronic structure, which in turn depend
strongly on the exchange splitting. Once SOC is included, the
mean-free path is reduced and the sensitivity of the resistivity
and, especially, of the Gilbert-damping parameter to these
“technical” details becomes acceptable.

Various forms of the XC potentials have been implemented
in computer programs and examined for different physical
and chemical quantities [135]. For the transport properties of
magnetic metals and alloys that we study in this paper, there is
no clear evidence to show that one XC potential is better than
the others. The test for the basis set using the vBH XC potential
also indicates that the minimal spd basis is good enough for
convergence, as initially proposed by Lambrecht and Andersen
[136]. The slight difference in the calculated resistivity and
Gilbert damping can be regarded as the “uncertainty” arising
from an arbitrary choice of XC potential.
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