

AN ALGORITHM TO DERIVE USE CASES FROM BUSINESS
PROCESSES

Remco M. Dijkman

University of Twente

P.O. Box 217, 7500 AE

Enschede, The Netherlands

email: dijkman@cs.utwente.nl

Stef M.M. Joosten

Ordina Finance Utopics, and

Open University of the Netherlands

P.O. Box 2960, 6401 DL

Heerlen, The Netherlands

email: joosten@anaxagoras.com

ABSTRACT
This paper describes an algorithm to transform business
process models into a functional requirements
specification, specified in the form of use case diagrams.
The benefit of such an algorithm is that it helps to draw up
a functional requirements specification more quickly,
because business process models may be available in an
enterprise, while use case diagrams have to be developed
by performing interviews. The use case diagrams that
result from applying the algorithm, specify a software
system that provides automated support for the original
business processes. We show this with a case study from
practice.

KEY WORDS
Business process modeling, model transformation,
requirements engineering, method engineering

1 Introduction

Requirements engineering is widely considered to be one
of the most difficult tasks in software engineering. At the
same time, errors made in this phase are among the most
difficult to detect and the most expensive to correct [1].
Therefore, much can be gained from requirements
engineering techniques that help to produce robust
requirements specifications, and speed up the
requirements engineering process. In this paper we
propose such a technique. The technique shows how use
case based requirements engineering [2, 3, 4, 5] may be
improved by using business process models as
requirements.

We introduce an algorithm to transform business
process models into use case diagrams. The benefit of
having such an algorithm is that business process models
are often available in a company in the form of working
instructions or administrative handbooks. Therefore, use
case diagrams can be produced more quickly when they
are developed with existing business process models and
the algorithm than when they are developed from scratch.

The approach we used to design the algorithm was to
create metamodels for use case diagrams and for business

process models, and to compare these metamodels. The
comparison of the two metamodels gives rise to a formal
mapping that forms the basis for our algorithm. In this
paper we only introduce the metamodels and their formal
mapping briefly. A detailed overview can be found in [6].

The remainder of this paper is organized as follows.
Section 2 and section 3 briefly introduce use case and
business process modeling. These sections also present the
metamodels of both modeling techniques. Section 4
describes a formal mapping between the two metamodels.
Based on this mapping, section 5 defines the actual
algorithm. Section 6 explains industrial experience we
have with the technique. The paper finishes with some
concluding remarks.

2 UML Use Case Modeling

A use case diagram describes how an entity may use the
system under development. To this end, a use case
diagram contains actors and use cases. An actor is an
entity that may interact with the system. A use case is a
set of interactions between any number of actors and the
system under development. Thus, a use case describes a
part of the behavior of the system.

An example of a use case diagram is shown in figure
1. The ovals represent use cases, and the puppets represent
actors. A line between an actor and a use case represents
the actors involvement in one or more of the interactions
covered by the use case.

When two use cases partly share the same behavior,
this behavior may be put into a third use case, and the
original two use cases may be defined to ‘ include’ the
behavior of this new use case. The description of the
original use cases specifies the point at which to include
this behavior. The goal of the include relation is to remove
redundancy. An include relationship is represented by a
dashed arrow, labeled «include».

When one use case is a generalized form of another
use case, we can draw a generalization relationship
between them. We could, for example, draw a
generalization relationship from the use case ‘process
complaint’ to the use case ‘process incoming mail’ .

Generalization relation ships can also exist between
actors. The actor ‘employee’, for example, is a
generalization of the actor ‘administrative worker’. A
generalization relationship is represented by a solid line
with a hollow arrowhead from the specific to the generic
use case or actor.

We may describe an extension to a use case’s
behavior, that is only carried out under a certain condition.
To do this, we define an extension relation between this
use case, and the use case that describes the extension. If
at a predefined point (an extension point) in the execution
of the base use case, a specified condition is met, then the
extension use case is carried out. An extension relation is
represented by a dashed arrow, labeled «extend».

Each use case can be described in detail, by describing
the interactions between the actors and the system, and the
order in which they occur. Many description techniques
exist to detail a use case. We could, for example, use state
machines [7], activity diagrams [8], or informal text [9].
In this paper we use activity diagrams both for describing
use cases in detail and for business process modeling,
because this makes the transformation algorithm
straightforward.

The metamodel of a use case diagram is shown in
figure 2. It is a simplified version of the metamodel that
can be found in the UML specification [7].

3 Business Process Modeling

Many techniques for business process modeling exist. In
an earlier study [10], we studied 18 of the most referenced

techniques. From this study we were able to draw up a
generalized metamodel of business process modeling.
Figure 3 presents a simplified version of this metamodel.
Although all business process modeling techniques have
means to model aspects other than behavior, such as
organizational structure, and data objects, we will focus
on modeling behavior. The reason for this is that use case
diagrams do not have means to model aspects other than
behavior. Therefore these aspects can not be mapped, and
are thus irrelevant in this paper.

A business process model describes the tasks that have
to be carried out to reach a certain goal, and the order in
which these tasks have to be carried out. A task is the
smallest unit of work that makes sense to a user. Each task
is assigned to a role. A role is a group of entities that have
the same rights and obligations with respect to performing
a task or a group of tasks. A role may be assigned to any
number of tasks, and an entity may act in any number of
roles.

In this paper, we use UML activity diagrams to model
business processes. Activity diagrams have been shown to
be useful for business process modeling in [11, 12]. An
example of an activity diagram that models a business
process for mortgage processing is shown in figure 4. The
rounded rectangles represent tasks, and the arrows
represent transitions between tasks. The names in the
columns represent roles, and a task in the column of a role
represents that this task is assigned to that role. The bullet,
and the bulls eye, represent the beginning and the end of
the business process respectively.

We can use a guard to model a condition that must be
met before starting the next task. A guard could be, for
example, ‘legal act received’. A guard is graphically
represented as a label between square brackets on a
transition.

We can use a branch to model a choice on the task that
has to be started after the current task has finished. A
branch has decision criteria attached to it that define under
which condition, which task is started. Decision criteria
could be, for example, ‘if amount � 50, start task A,
otherwise start task B’. Decision criteria cannot have
overlapping values. A branch is represented by a diamond
with one incoming arrow and at least two outgoing
arrows. The outgoing arrows have guards attached to them
that represent the decision criteria.

We can use a fork to model that two or more tasks are
started in parallel (i.e. are carried out in random order)

Administrative
Worker

Advisor

Enter
Mortgage

Draw up
Offer

 Check Credit

 Advise

Inform about
Rejection

<<include>>

<<include>>

Figure 1. Example use case diagram

Role

Guard

Start

Model
Element

Transition

Branch

End

Task

Figure 3. Business process metamodel

+responsible
1 *

+guard
0..1

+source 1 1 +destination
 * *

1

Figure 2. Use case metamodel

Actor

 Association

Extension Point

Generalization

 Use Case Include

 Extend

1 +actor

 +extension
 point

 1
+extension

 +extend

 +generalization

 +child

 +usecase

+specialization

+parent

 +base

 1 +addition*
+base

 1..* *

+extension
 point

*

*
* 1

*

1

*

1

*

*

1

*

1

 1 + include

after the current task has finished. When two or more
tasks are started in parallel, we may want to wait for all
tasks to be finished before going on to the next task. This
can be achieved by using a join. A fork is represented by
an arrow to a thick line, from which arrows leave to the
tasks that have to be started. A join is represented by a set
of incoming arrows to a thick line, from which an arrow
leaves to the task that has to be started next.

We chose to disregard the fork and join construct in
this paper to simplify the algorithm. Therefore, task that
are actually out in sequence. The fork and join construct
can be added in future work.

4 Mapping

We created a mapping between the two metamodels by
assessing from their definitions, which concepts or
relations in the business process metamodel map to which
concepts or relations in the use case metamodel. We then
defined and evaluated the mapping formally [6]. In this
section we give an informal description of the mapping.

The mapping is straightforward, except for finding a
business process concept that maps to the concept ‘Use
Case’. We may be tempted to map the ‘Task’ concept to
the ‘Use Case’ concept. However, according to the UML
semantics [7], a use case must describe a complete
sequence. This means that a use case specifies all the
interactions that have to be carried out to bring the system
in a state in which the use case can be performed again. A
task does not enforce this constraint, and thus does not
describe a complete sequence. Therefore, we introduce the
‘Step’ concept [13]. A step is a sequence of tasks that can
be performed by the same role without interruption. ‘Send

offer’, for example can be a step. ‘Send offer and process
reply’ cannot be a step, because time passes between
sending an offer and receiving the reply. Since a step is a
sequence of tasks that can be performed by the same role
without interruption, users experience a step as a unit of
work that is completed when it ends, after which it can be
performed again. Therefore, a step does describe a
complete sequence, and can be mapped to a use case.

We map ‘Role’ to ‘Actor’, and the association between
a step and a role to an association between the
corresponding actor and use case. Since all tasks in a step
are performed by the same role, a role and a step are
associated when the role is associated to any of the tasks
in the step.

Since a step is defined as a sequence of tasks, each
step forms a sub-diagram of the original business process
model. Because we decided that use cases are described in
detail by activity diagrams, we can use the sub-diagrams
that are formed by the steps, to detail the use cases that
correspond to these steps. Also, we call the tasks that
detail a use case: interactions, because a use case model a
sequence of interactions between the system and its users.

The definition of the mapping leads to an integrated
metamodel that contains both the use case and the
business process metamodel. Figure 5 shows this
integrated metamodel. To keep the figure simple, it does
not show include, extend, or generalization relations
between use cases. However, these relations are part of the
integrated metamodel. We chose to represent a mapping
from concept A to concept B by an inheritance relation
from B to A. A mapping between two associations can be
represented as an OCL constraint. For example, the
mapping between the association between step and role,
and the association between use case and actor, can be
represented by the following OCL constraint:
context Step inv:
 self.association.actor → includes(self.responsible)

We also need an OCL constraint that expresses that steps
can not contain steps:
 context Step inv:
 self.contains → excludesAll(Step.allInstances)

5 The Transformation Algorithm

From the mapping that we defined in the previous section,
we derived an algorithm to transform a business process
model into a use case diagram. In this section we will
explain this algorithm. The algorithm is based on an
algorithm to create steps from tasks [14].

To develop the algorithm, we assume that a set of
instances exists for each concept in the integrated
metamodel. We also assume that a new <Concept>
operator exists, which adds a new instance to the set of
instances of the concept that follows the operator, and
returns this instance. For example, new Step adds a new
step to steps, and returns this it.

Administrative Worker Advisor

Enter Client Data

Enter Mortgage Data

Check Credit

Inform Client
about Rejection

Advise Client

Process Changes

Check Credit

Draw up Offer

Approve
Mortgage [Disapproved]

[Approved]

Figure 4. Example business process model

The algorithm should start by identifying the tasks that
denote interactions with the system under development,
because only these tasks are interesting from a use case
point of view. In this section we assume that interactions
have already been defined, and we refer to [6] for an
elaborate discussion on this topic. After the interactions
have been identified, we do the following.

First, we create an actor for each role in the business
process model.
act or s = r ol es

Second, we create steps around the tasks in the
business process model. Initially we create steps around
the tasks that are in the same role and can be reached
directly from a start state. We add start states to the
created steps to denote where they can start.
st eps = Empt ySet
f or each r i n r ol es do
 i f exi st s m i n model El ement s wher e
 r = m. r esponsi bl e and
 exi st s t r i n t r ansi t i ons wher e
 t r . dest i nat i on = m and
 t r . sour ce i n st ar t
 t hen
 St ep newS = new St ep
 St ar t newSt = new St ar t
 newS. cont ai ns += { newSt }
 newS. r esponsi bl e = r
 f or each m i n model El ement s do
 i f r = m. r esponsi bl e t hen
 f or each t r i n t r ansi t i ons do
 i f t r . dest i nat i on = m and
 t r . sour ce i n st ar t
 t hen
 Tr ansi t i on newTr = new Tr ansi t i on
 newTr . sour ce = newSt
 newTr . dest i nat i on = m
 newTr . guar d = t r . guar d
 newS. cont ai ns += { newTr , m}
 newTr . pr ocessed = Tr ue
 f i
 od
 f i
 od
 f i
od

Each step is then extended with the model elements
that: (1) have the same responsible role as the step, and (2)
can be reached from model elements within the step, and
(3) can be performed without waiting. We assume that
each transition has a property t i mepassi ng that denotes
if time passes before the transition can be made. This
allows us to check (3). The user of the algorithm must
define the value of this property for each transition. If a
transition points to a model element with a different
responsible role or time passes on a transition, then the

transition points to a model element in another step. If this
step was not yet created, then it will be. If the step was
already created, but there exists no start state in this step
that has a transition to the model element, then a start state
and a transition from this start state to the model element
have to be added. This procedure is repeated until no new
steps are added, and the steps themselves also do not
change anymore.
ol dst eps = Empt ySet
whi l e ol dst eps ! = st eps do
 ol dst eps = st eps
 f or each s i n st eps do
 f or each t r i n t r ansi t i ons do
 i f t r . sour ce i n s and
 ! t r . pr ocessed and
 t r . dest i nat i on ! i n end
 t hen
 i f ! t r . t i mepassi ng and
 t r . dest i nat i on. r esponsi bl e =
 s. r esponsi bl e
 t hen
 s. cont ai ns += { t r . dest i nat i on, t r }
 t r . pr ocessed = t r ue
 el se
 i f t r . dest i nat i on ! i n st eps. cont ai ns
 t hen
 St ep newS = new St ep
 newS. r esponsi bl e =
 t r . dest i nat i on. r esponsi bl e
 St ar t newSt = new St ar t
 Tr ansi t i on newTr = new Tr ansi t i on
 newTr . sour ce = newSt
 newTr . dest i nat i on = t r . dest i nat i on
 newTr . guar d = t r . guar d
 newS. cont ai ns +=
 { newSt , newTr , t r . dest i nat i on}
 t r . pr ocessed = t r ue
 newTr . pr ocessed = t r ue
 el se
 i f ! exi st s t r ’ i n t r ansi t i ons wher e
 t r ’ . sour ce i n st ar t and
 t r ’ . dest i nat i on = t r . dest i nat i on
 t hen
 St ar t newSt = new St ar t
 Tr ansi t i on newTr = new Tr ansi t i on
 newTr . sour ce = newSt
 newTr . dest i nat i on = t r . dest i nat i on
 newTr . guar d = t r . guar d
 t r . dest i nat i on. st ep. cont ai ns +=
 { newSt , newTr }
 t r . pr ocessed = t r ue
 newTr . pr ocessed = t r ue
 f i
 f i
 f i
 f i
 od
 od
od

Third, we create a use case for each step that we
identified. Also, we create an association between an actor
and a use case when an association exists between the role
that corresponds to the actor, and a step that corresponds
to the use case.
usecases = st eps
f or each s i n st eps do
 Associ at i on newA = new Associ at i on
 newA. act or = (Act or) s. r esponsi bl e
 newA. usecase = (UseCase) s
od

Fourth, we restructure the use case diagram that results
from applying the algorithm. This can be done according
to normal restructuring rules, like, the ones described in
[5]. However, when using the algorithm, some constructs
need special attention. Therefore, we will point out some
restructuring actions that are normally necessary when

Figure 5. Integrated Metamodel

Guard

Role

Transition

Model
Element

Step

End

Start

Branch

1..* +contains

+guard 1
0..1 *

1 +source 1 +destination

Task

Use Case

Actor

Association

 +contains

+responsible
1 *

1 +actors

 +usecase

 1

*

*

* *

using the algorithm. Due to space limitations, we only
discuss the restructuring rules informally.

 First, we found out that tasks are often described
multipletimes. The reason for this is that business process
modeling techniques do not cater for reuse of tasks.
However, in use case diagrams reuse is possible by means
of the include relation. Therefore, we search the use cases
for interactions that are defined more than once. We put
these interactions in a separate use case, and we draw an
include relation from the original use cases to this separate
use case.

Second, the algorithm does not cater for inclusion,
extension or generalization of use cases. Therefore, it may
be useful to split up some use cases into a base use case
and an extension or addition use case, or into one
generalized and multiple specialized use cases.

Third, according to its definition a use case delivers a

result of value to its user. However, in the case study we
found situations in which users experienced that a use
case only delivered a result of value when it was
combined with another use case. This situation can be
solved by verifying if each use case delivers a result of
value to its users, and, if not, by combining it with other
use cases such that it does.

Fourth, the choice to describe use cases that belong to
the same business process in one use case diagram
suggests that each system is built for only one business
process. Also, it suggests that only one system is built for
each business process. However, this is rarely the case. A
client database, for example, is usually used by all
primary business processes. Therefore, once a use case
diagram is drawn, we must evaluate which use cases will
be implemented by which system. This decision will be
based on what systems already exist to support other
business processes. When we decide that a use case is
partly implemented by one system, and partly by another
system, we must split up the use case. Eriksson and
Penker describe a procedure for doing this in [15].

Fifth, the algorithm does not add end states to the
activity diagrams that detail the use cases. To be complete,
we should add end states to these diagrams.

6 Case Study

In a case study, we applied the algorithm in the mortgage
department of a bank, and evaluated the quality of the
resulting use case diagrams by comparing them to use
case diagrams that were constructed from scratch. From
the results we derived some recommendations that were
incorporated in the restructuring step of the algorithm.

In the case study, we investigated a total of 6 business
processes, from which we derived 42 use cases. When
comparing the use case diagrams, 17 use cases contained
improper constructs: of 2 use cases some of the tasks were
defined more than once, 3 use cases were completely
redundant, and 12 use cases only delivered a result of
value in combination with another use case. We corrected
these errors by introducing the restructuring actions that
are described in the previous section.

A simplified example that shows how a business
process model was transformed into a use case diagram
during the case study is shown in figure 6. The figure
shows two of the use cases that result from applying the
algorithm to the business process model from figure 4. It
shows how each use case is detailed by an activity
diagram that is a part of the original diagram. It also
shows the transitions that contain information about the
relations between the use cases, but that are not part of the
use cases themselves. These transitions may be used later
on to build a system that controls the order in which the
use cases may occur (such as a workflow engine).

7 Conclusion

In this paper we introduced an algorithm to transform
business process models into UML use case diagrams.
The algorithm is based on a formal mapping between the
metamodels of the two modeling techniques. We have
shown in a case study that the application of the algorithm
results in use case diagrams that can serve as a basis for
further system development.

The study described in this paper is related to the
fields of requirements, and method engineering. Much
work is done in both fields to study how models of
different types can be generated from each other. Research
is done to how business processes can be described using
use case diagrams [5, 7, 16]. We, however, do the
opposite, and use business processes to derive use cases.
Eriksson and Penker describe a procedure to derive use
cases from business processes that is similar to ours in
[15], but less detailed.

The use case diagrams that result from the application
of the procedure have limitations.

First, use case diagrams specify a typical information
system, in the sense that they do not specify control
information that is above step level. For example, the use
case diagram from figure 1 does not specify whether client
data must be entered before mortgage data or not. Our
algorithm partly caters for this, but we have not
investigated this thoroughly.

Second, the use case diagrams are as detailed as the
business processes from which they have been derived. A

Figure 6. Resulting Use Case Diagram

Administrative
Worker

Advisor

Enter Mortgage
Data

Check Credit

Enter
Cliente Data

Inform Client
about Rejection

Approve
Mortgage

Enter Mortgage
[Mortgage Not Approved]

[Mortgage Not Approved]

Inform about Rejection

use case may, for example, contain the interaction ‘enter
client data’ , or the interactions ‘search client’ , if the client
was not found ‘create new client data’ . The second set of
interactions provides a more precise specification than the
first set of interactions. Therefore, depending on the detail
specified in the business processes, it may be necessary to
perform refine the use case diagrams that result from the
algorithm further. The extend to which this is a problem
can not be assessed from one case study.

REFERENCES

[1] B. Boehm, Software Engineering Economics (Englewood
Cliffs, NJ: Prentice Hall, 1981).

[2] A. Cockburn, Structuring use cases with goals, Journal of
Object Oriented Programming, 10(7), 1997, 35-40.

[3] A. Cockburn, Structuring use cases with goals, Journal of
Object Oriented Programming, 10(8), 1997, 56-62.

[4] I. Jakobson, M. Christerson, P. Jonsson, & G. Övergaard,
Object Oriented Software Engineering: A Use Case Driven
Approach (Workingham, United Kingdom: Addison-
Wesley, 1992).

[5] I. Jacobson, G. Booch, & J. Rumbaugh, The Unified
Software Development Process (Reading, MA: Addison-
Wesley, 1999).

[6] R. Dijkman, & S. Joosten, Deriving use case diagrams from
business process models, CTIT Technical Report 02-08,
CTIT, Enschede, The Netherlands, 2002.

[7] OMG, OMG Unified Modeling Language Specification
version 1.4, OMG Specification formal/2001-09-67, 2001.

[8] M. Fowler, & K. Scott, UML Distilled: Applying the
Standard Object Modeling Language (Reading, MA:
Addison-Wesley, 1997).

[9] J. Rumbaugh, I. Jacobson, & G. Booch, The Unified
Modeling Language Reference Manual (Reading, MA:
Addison-Wesley, 1999).

[10] W. van Dommelen, S. Joosten, & M. de Mol, Comparative
Study to Aids for Managing Business Processes (in dutch:
vergelijkend warenonderzoek hulpmiddelen beheersing
bedrijfsprocessen) (The Hague, The Netherlands:
Department of Finance, 1999).

[11] G. Booch, J. Rumbaugh, & I. Jacobson, The Unified
Modeling Language User Guide (Reading, MA: Addison-
Wesley, 1999).

[12] M. Dumas, & A. ter Hofstede, UML activity diagrams as a
workflow specification language, Proc. UML 2001 Conf. on
Modeling Languages, Concepts and Tools, Toronto, Canada,
2001, 76-90.

[13] S. Joosten, G. Aussems, M. Duitshof, R. Huffmeijer, & E.
Mulder, An Empirical Study about the Practice of Workflow
Management (Enschede, The Netherlands: University of
Twente, 1994).

[14] J. van Beek, Generation Workflow: How Staffware
Workflow Models can be Generated from Protos Business
Models, University of Twente, Enschede, The Netherlands,
2000.

[15] H.-E. Eriksson, & M. Penker, Business Modeling with UML:
Business Patterns at Work (New York, NY: Wiley, 2000).

[16] S. Nurcan, G. Grosz, & C. Souveyet, Describing business
processes with a guided use case approach, Proc. 1998 Conf.
on Advanced Information Systems Engineering, Pisa, Italy,
1998, 339-362.

