MICRO TOTAL ANALYSIS SYSTEMS '98

Micro Total Analysis Systems '98

Proceedings of the uTAS '98 Workshop, held in Banff, Canada, 13–16 October 1998

edited by

D. JED HARRISON

Department of Chemistry, University of Alberta, Edmonton, Canada

and

ALBERT VAN DEN BERG

MESA Research Institute, University of Twente, Enschede, The Netherlands

SPRINGER SCIENCE+BUSINESS MEDIA, B.V.

Library of Congress Cataloging-in-Publication Data

ISBN 978-94-010-6225-1 ISBN 978-94-011-5286-0 (eBook) DOI 10.1007/978-94-011-5286-0

Printed on acid-free paper

Reprinted 2000

All Rights Reserved © 1998 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1998 Softcover reprint of the hardcover 1st edition 1998 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.

Dedicated to the late H. Michael Widmer.

Program Committee µ-TAS '98

Prof. D. Jed Harrison (Conference Chairman) Department of Chemistry University of Alberta

Prof. Piet Bergveld University of Twente, MESA Research Institute

Prof. Albert van den Berg University of Twente, MESA Research Institute

Prof. Nico F. de Rooij Université de Neuchatel Institute de Microtechnique

Dr. M. Allen Northrup Vice President and C.T.O. Cepheid

Prof. Andreas Manz Imperial College, London Department of Chemistry

Prof. Günter Fuhr Humboldt Universität zu Berlin Institut für Biologie

Dr. Bart H. van der Schoot Université de Neuchatel Institute de Microtechnique

Prof. Shuichi Shoji Waseda University Department of Electric and Communication Engineering

Dr. J. Michael Ramsey Oak Ridge Laboratories

Preface

The Micro-Total Analysis Systems (μ -TAS) Conference Program, which was first and foremost the responsibility of the contributing authors, was screened and structured by the Program Committee. There were well over 130 manuscripts submitted for about 36 oral presentations and 68 poster presentations, and 18 well recognized researchers accepted invitations to speak. This tremendous response is an indication of the significant growth in the field of miniaturized and integrated analytical systems since μ -TAS '96. The space and time limitations associated with a predominantly single session, workshop style meeting imposed a limitation on the number of presentations from the large number of high quality submissions. All submitted abstracts were evaluated and discussed by the Program Committee before decisions were reached. The Committee hopes that the effort to maintain a limited number of presentations and an interactive, workshop style format will ensure an informative and enjoyable meeting for all attendees. Personally, I wish to thank the Program Committee members for their effort and their generous donation of time and resources to this process.

No Conference or Meeting can occur without the effort of a great many people contributing to its planning, organization and funding. The number of people I wish to thank for their contributions is large: first Allen Northrup for his assistance in fund raising for the meeting, next Amanda Rahn and Laura MacDougall for their assistance with planning, day to day organization and contact management over the past year, and Amanda for her handling of the Abstract submissions, mailings and Proceedings manuscripts, Gregor Ocvirk who contributed most of the art work needed for the brochures and for this volume, Loranelle Shultz-Lockyear for acting as a sounding board and organizer, all of my research group, who performed numerous tasks, the most onerous being assembly of the large volume mailings (including Said Attiva, Youssouf Badal, Abebaw Belay Jemere, Nicolas Bings, Siew Bang Cheng, Nghia Chiem, Guifeng Jiang, Mark Munroe, Charmaine Qiu, Cameron Skinner, Hossein Salimi-Moosavi, Thompson Tang, Can Wang), Patricia Conway for her organization of a special session on commercialization strategies, Albert van den Berg for his expert arrangement of the assembly and printing of this volume, and a number of others for helpful advice, suggestions and contributions. I also thank the Conference Steering Committee for agreeing to my bid to move the meeting to North America for 1998, holding it here in Banff under my Chairmanship.

I would like to dedicate this Proceedings volume to the memory of the late Professor Dr. Michael Widmer. Michael was the Chairman of μ -TAS '96. He was an important figure in the early development of the μ -TAS concept, developing the total analysis system concept for process control and providing guidance, assistance and shelter for the initial technology development within the research labs of Ciba-Geigy, Switzerland. Many of those currently working in the field have had the good fortune to work with him, benefit from interactions with him and his research group, or come into contact with him and his broad range of contributions to Analytical Chemistry. On behalf of all of those who have known Michael Widmer I would like to express our gratitude for his many and varied contributions.

The six years since μ -TAS '94 have seen remarkable developments and expansion of miniaturized instrumentation for chemical, biochemical and biological analysis and sample processing. In fact, the concept has grown to encompass analysis and synthesis for applications ranging from chemistry through to biology, with a high degree of parallelism for high sample throughput. Applications of micro-systems in genetic analysis, clinical diagnostics, chemical synthesis, drug discovery, portable instrumentation and industrial process control provide the drivers for continued research and development. The large degree

of industrial participation in this very young field speaks to the apparent high value of microfluidics and microinstrumentation for practical applications. The number of companies with presentations at this meeting, or which supported the meeting financially, that did not even exist at the time of the first μ -TAS meeting in 1994 is striking.

Evaluating the trends seen in the work presented here at μ -TAS '98, two main schemes for miniaturized fluidic systems have become apparent. In one method, conveniently referred to as array based systems, sample or reagent is immobilized in large arrays on a plate or chip and fluids are flushed over the surface. In the other, microfluidic channels form complex manifolds for fluid manipulation and controlled delivery of samples and reagents; these are often referred to as microfluidic systems. These two approaches are both competitive and complementary, as demonstrated by their merger into a larger system for genetic analysis in papers presented in this volume. Inclusion of array based systems within the μ -TAS concept appears to be well established now.

Several other current themes become apparent when reflecting upon the presentations at μ -TAS '98. Applications, rather than fabrication methods, appear to be the primary interest of researchers in this field. This focus has engendered a much broader exploration of materials outside of those normally compatible with integrated circuit technologies than has been seen in the parent Micro-Electromechanical Systems (MEMS) community. In particular, μ -TAS '98 sees extensive developments in the field of plastic microfabrication, the subject of only one or two pioneering papers at μ -TAS '94 and '96, due to the demand for single use disposable products in diagnostic applications. The most dominant application at μ-TAS '98 is clearly genetic analysis, reflecting the value of parallel analysis in genetics and the ability of microfabrication methods to potentially meet this need. Various chemical and biochemical analyses remain the focus of significant effort, but applications in drug discovery, cell biology and in chemical synthesis represent exciting and powerful new trends that greatly extend the range of applicability of microfluidic systems. The dominance of electrokinetically pumped systems remains apparent, yet the application of sophisticated approaches to prepare better pumps and valves for microfluidic systems is evidently beginning to produce functionally useful components.

Two key issues of difficulty for μ -TAS have been the detection of the necessarily small amounts of sample, and interfacing the chip based fluidic device to the external environment for sample, reagent and solvent delivery. Progress is being made on these problems, as evidenced by the presentations on integrating micro-optics or electrochemical detection with microfluidic devices, and others on sample interfacing with quick-fit connectors, low dead volume connectors and continuous sampling elements. The interfacing of microfluidic systems with the mass spectrometer requires a good interfacial connection method, as indicated by several papers augers well for the future of this powerful combination of integrated sample processing and information rich analysis.

Many other exciting ideas, concepts and applications are identified by the authors in the following pages, and their lack of inclusion in this discussion is only due to limits of space and time. I invite the conference attendees to enjoy this meeting and extract all they can from the opportunity to interact personally with many of the leading researchers in this growing field. I trust that future readers of this Proceedings volume will find it to be a highly useful snapshot of the current state of the art and the future goals of a major fraction of the pioneers in microfluidics, arrays and μ -TAS.

D. Jed Harrison μ-TAS '98 Chairman July 22, 1998

Contents

Day 1
Microsystems for genetic analysis DNA Analysis with Capillary Array Electrophoresis Microplates
Continuous Flow PCR on a Chip
Advances in Integrated Genetic Analysis
Themes in μ-TAS today Photo-Polymer Microchannel Technologies and Applications
Interconnections and sample interfaces Parallel Separations in Microfabricated Channels with Capillary Electrophoretic Sample Introduction
Novel Interconnection and Channel Technologies for Microfluidics
A μ-TAS Based on Microdialysis for On-line Monitoring of Clinically Relevant Substances
Microdevices for Electrospray Mass Spectrometry
Fluid mobilization and control Cell Sorting in Microfluidic Systems
Electrohydrodynamic Pumps for High-Density Microfluidic Arrays
Electrokinetic Generation of High Pressures using Porous Microstructures
Studies of Hydrostatic Pressure Effects in Electrokinetically Driven μ-TAS
Poster session I An Electronic Nose Based on a Micromechanical Cantilever Array
Chemical Analysis Based on Environmentally Sensitive Hydrogels and Optical Diffraction

Optimization of a Porous Silicon Carrier Matrices Applied in Chip Based Micro- Enzyme Reactors	129
Electrochemical Fabrication of Multi Walled Micro Channels R. Tjerkstra, J.G.E. Gardeniers, M.C. Elwenspoek, A. van den Berg	133
Utilizing the {111} Plane Switch-Over Etching Process for Micro Fluid Control Applications R. E. Oosterbroek, J.W. Berenschot, S. Schlautmann, T.S.J. Lammerink, A. van den Berg, M.C. Elwenspoek	137
Coupling Electrospray Mass Spectrometry to Microfluidic Devices with Low Dead Volume Connections	141
Silicon-Micromachined Separation Columns Coated with Amino Acid Films for an Integrated On-chip Gas Chromatograph S. Hannoe, I. Sugimoto, T. Katoh	145
Computer Simulations for Microchip Electrophoresis S.V. Ermakov, S.C. Jacobson, J.M. Ramsey	149
Electrophoretic Separation of Antisense DNA using Polymer-solution filled Capillary by Cross-Injection SH. Chen, YC. Lin, YH. Chen, HS. Liao, CY. Wu, SH. Wang	153
Integrated Serial Dilution on a Microchip for Immunoassay Sample Treatment and Flow Injection Analysis S.B. Cheng, C.D. Skinner, D.J. Harrison	157
Minimizing Dispersion Introduced by Turns on Microchips C. T. Culbertson, S.C. Jacobson, J.M. Ramsey	161
Use of Surfactant Additives for Modification of Electroosmotic Flow and Wall Chemistry <i>C.A. Lucy, K.KC. Yeung</i>	165
Sample Matrix Effects on Injection and Sample Loading in Integrated Capillary Electrophoresis Devices L. Shultz-Lockyear, C. Colyer, K. Roy, D.J. Harrison	169
Development of a Microfabricated Biochemical Workbench - Improving the Mixing Efficiency <i>T. Fujii, K. Hosokawa, S. Shoji, A. Yotsumoto, T. Nojima, I. Endo</i>	173
Micro Mixer Incorporated with Piezoelectrically Driven Valveless Micropump Z. Yang, H. Goto, M. Matsumoto, T. Yada	177
Liquid Mixing Studies with an Integrated Mixer/Valve J. Voldman, M.L. Gray, M.A. Schmidt	181
Fabrication of an Integrated Mixing/Reaction Micro Flow Cell for µ-TAS A. Yotsumoto, R. Nakamura, S. Shoji, T. Wada	185
Micro-fluidic Diffusion Coefficient Measurement P. Galambos, F.K. Forster	189

Day 2

Cells on chips

Sizing, Fractionation and Mixing of Biological Objects via Microfabricated Devices O. Bakajin, R. Carlson, C.F. Chou, S.S. Chan, C. Gabel, J. Knight, T. Cox, R.H. Austin	193
Individual Embryo Transport and Retention on a Chip I.K. Glasgow, H.C. Zeringue, D.J. Beebe, SJ. Choi, J.T. Lyman, M.B. Wheeler	199
Single Cell Enzymatic Analysis on a Microchip: Lysing of Single Cells and Identification of their β-Galactosidase Activity G. Ocvirk, H. Salimi-Moosavi, R.J. Szarka, E. Arriaga, P.E. Andersson, R. Smith, N. J. Dovichi, D.J. Harrison	203
Applying Microfluidic Chemical Analytical Systems to Imperfect Samples Paul Yager, D. Bell, J.P. Brody, D. Qin, C. Cabrera, A. Kamholz, B. Weigl	207
Array based technologies Building Highly Diverse Arrayed Substance Libraries by Micro Offset Printing E. Ermantraut, T. Schulz, J. Tuchscheerer, S. Wölfl, HP. Saluz, E. Thallner, J. M. Köhler	213
Fluorescence Array Biosensor - Biochemistry and Application F.S. Ligler, C.A. Rowe, S. Balderson, M. Feldstein, J.P. Golden	217
An Integrated Microelectronic Hybridization System for Genomic Research and Diagnostic Applications M.J. Heller, A. Holmsen, D. Ackley, G. Tu, R. Sosnowski, B. Butler, P. Dillion, M. Nerenberg, D. Raymond, E. Sheldon, J. Cheng, R. Rooney, B. Mather, J. O'Connell	221
Microfluidic systems for assays	
Microfluidic systems for assays Development of a Generic Microfluidic System for Electrochemical Immunoassay-Based Remote Bio/Chemical Sensors	225
Development of a Generic Microfluidic System for Electrochemical Immunoassay-Based Remote Bio/Chemical Sensors	
Development of a Generic Microfluidic System for Electrochemical Immunoassay-Based Remote Bio/Chemical Sensors	231
Development of a Generic Microfluidic System for Electrochemical Immunoassay-Based Remote Bio/Chemical Sensors	231 235
Development of a Generic Microfluidic System for Electrochemical Immunoassay-Based Remote Bio/Chemical Sensors	231 235 241
 Development of a Generic Microfluidic System for Electrochemical Immunoassay-Based Remote Bio/Chemical Sensors	231 235 241 245
 Development of a Generic Microfluidic System for Electrochemical Immunoassay-Based Remote Bio/Chemical Sensors	231235241245249

1.00	-				1.15
-12	n	12			2
11		L	U	v.	0

DNA analysis on microchips Micro-Genetic Analysis Systems
A Microfabricated Fluidic Reaction and Separation System for Integrated DNA Analysis
High Performance DNA Separations in Microchip Electrophoresis Systems 271 L. Bousse, B. Dubrow, K. Ulfelder
Nucleic Acid Concentration and PCR for Diagnostic Applications
Micro optics and detection Microoptical Fluorescence Detection for Chip-Based Multiplexed Analysis Systems 281 A.E. Bruno, E. Baer, R. Völkel, C.S. Effenhauser
Micro-Optical Systems for Fluorescence Detection in µ-TAS Applications
Integrated Bio/Chemical Microsystems Employing Optical Detection: A Cytometer 291 O. Leistiko, P. F. Jensen
Photothermal Ultrasensitive Detection and Microchemistry in the Integrated Chemistry Lab
Fluid control concepts Impedances for Design of Microfluidic Systems
Miniaturized Electrocaloric Flow Controller for Analyte Muliplexing and Cell/Particle Sorting
Hydrophobic Microcapillary Vent for Pneumatic Manipulation of Liquid in µ-TAS 307 K. Hosokawa, T. Fujii, I. Endo
Microfabricated Chips for Capillary Electrophoresis on Quartz Glass Substrates Using a Bonding with Hydrofluoric Acid
Micro chip based electrophoresis Rapid Electrophoretic and Chromatographic Analysis on Microchips
Free Flow Electrophoresis Module Fabricated with Pyrex Glass

A Miniaturized Planar Isotachophoresis Separation Device for Transition Metals with Integrated Conductivity Detection
Characterization of Silicon-Based Insulated Channels for Capillary Electrophoresis 327 Y. Fintschenko, P. Fowler, V. Spiering, GJ. Burger, A. van den Berg
Novel Microfabricated Capillary Array Electrophoresis Chip Fabricated by Synchrotron Radiation & Direct Observation of Dynamics of DNA Molecules Migrating in Microchannels
Poster session II
Continuous Flow versus Stopped Flow in a Micro Flow Injection System
Microfabricated Channels and Fluid Control Systems for Integrated Flow Injection Analysis
Microfabricated Dual-Microdialysis and Capillary Isoelectric focusing Devices for Cleanup and Separations/ Mass Spectrometric Anyalysis of Biomolecules
Chip-based Heterogeneous Immunoassay for Clinical Diagnostic Applications
Micro-Analytical (µFIA) Reactor for the Determination of Phosphate as Orthophosphate
Investigation of Chemiluminescent MicroAnalytical Systems
Isotachophoresis on Planar Polymeric Substrates
Application of Thin Cross-Linked Gelatin Layers in Micro Systems Technology
Plastic Microfluid Devices for Clinical Measurements
Fabrication Processes for Polymer-based Microfluidic Analytical Devices
μ-Structured Polymers as Components of Chemical Microreactors
Development of Microfabricated Valves for µTAS
A Silicon Micropump with a High Bubble Tolerance and Self-Priming Capability

Flow-through Microdispensing; Design and Applications
Manufacturing of Self-Priming Plastic Micropumps
Micromachined Bi-directional Liquid Pump with Thermally Controlled DynamicValves. 395 S. Matsumoto, A. Klein, R. Maeda
Micro Ball Valve for Fluidic Micropumps and Gases
Nanomanipulation Techniques Inside the SEM - First Attempts to Integrate Microfabrication into a SEM
Fluidics for a Multi-analyte Detector Based on Intermolecular Binding Forces
Reagent Handling by Manipulation of Magnetic Particles: A New Approach to the Automation and Miniaturization of Analytical Chemistry
Novel DNA Manipulation Based on Local Temperature Control:Transportation and Scission
Numerical Simulation of Magnetic Separation of Particles in a Rectangular Microchannel
 Automated Microchip Platform for Biochemical Analysis
Automatic Sensor System for Water Analysis
Fluorescence Array Biosensor - Part 1: Optics and Fluidics
Microseparations and Microfluidic Studies
μTAS for Volumetric or Coulometric Titrations of Nanomole Amounts of Analytes in Microliter Samples
System Requirements for a Portable Cell Based Sensor
Laboratory on Chip for Clinical Applications

xv

Day 4
Future themes in micro-TAS I Microfabricated Liquid Chromatography Columns Based on Collocated Monolith Suppport Structures
Towards a Modular Microfluidic System for Proteome Analysis by Mass Spectrometry 457 D. Figeys
Future themes in micro-TAS II
Integrated Gas Phase Microreactors
In Situ Detection of Cells and Biochemical Reactions by Optical Diffraction
Micromachined Flame Analysers (Atomic Emission Flame Spectrometer (AES)
Flame Ionization Detector (FID))
Integrated Chemical Analysis Systems for Gas Phase CW Agent Detection
Authors index
Subject index

xvi