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ARTICLE INFO ABSTRACT

The development of new approaches to individual tree crown delineation for forest inventory and management
is an important area of ongoing research. The increasing availability of high density ALS (Airborne Laser
Scanning) point clouds offers the opportunity to segment the individual tree crowns and deduce their geometric
properties with a high level of accuracy. Top-down segmentation methods such as normalized cut are established
approaches for delineation of single trees in ALS point clouds. However, overlapping crowns and branches of
nearby trees frequently cause over- and under-segmentation due to the difficulty of defining a single criterion for
stopping the partitioning process. In this work, we investigate an adaptive stopping criterion based on the visual
appearance of trees within the point clouds. We focus on coniferous trees due to their well-defined crown shapes
in comparison to deciduous trees. This approach is based on modeling the coniferous tree crowns with elliptic
paraboloids to infer whether a given 3D scene contains exactly one or more than one tree. For each processed
scene, candidate tree peaks are generated from local maxima found within the point cloud. Next, paraboloids are
fitted at the peaks using a random sample consensus procedure and classified based on their geometric prop-
erties. The decision to stop or continue partitioning is determined by finding a set of non-overlapping para-
boloids. Experiments were performed on three plots from the Bavarian Forest National Park in Germany. Based
on validation data from the field inventory, results show that our approach improves the segmentation quality by
up to 10% across plots with different properties, such as average tree height and density. This indicates that the
new adaptive stopping criterion for normalized cut segmentation is capable of delineating tree crowns more
accurately than a static stopping criterion based on a constant Ncut threshold value.
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1. Introduction information on 3D structures in forests (Wulder et al., 2012). In-

formation derived from ALS data can provide detailed forest char-

Accurate measurements of forest resources are essential for precise
and sustainable forest management (Chang et al., 2013). Single tree
attributes, such as tree crown base height, volume, DBH (Diameter at
Breast Height), position, height, and species, are required for quanti-
tative forest analysis and ecosystem management services (Hu et al.,
2014; Yao et al., 2012). Currently, most of those variables are estimated
by measuring a set of sample plots manually in field surveys, thus,
forest inventories are expensive and time consuming. Recently, many
studies have been focused on decreasing costs by developing inventory
methods that are based on remote sensing techniques.

Airborne Laser Scanning (ALS) has become a key tool for gathering

acteristics and serve as a basis for single tree analysis (Wagner et al.,
2008; Reitberger et al., 2009). The information extracted from seg-
mented trees, e.g. tree height or crown diameter, is often used as the
independent variable in allometric modeling of additional individual
tree characteristics such as stem volume, leaf area index, and biomass,
as well as entire forest stands (Yao et al., 2012; Yu et al., 2011).
Therefore, any inaccuracy in tree delineation, which is often caused by
over- or under-segmentation, will transfer to these characteristics.
Several methods for detecting and delineating single tree crowns
using ALS point clouds have been proposed in the literature, based on
two main types of data: the ALS-derived Canopy Height Model (CHM)
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and the original ALS point cloud. In the first method, tree crowns are
found using the watershed algorithm (Pyysalo and Hyyppd, 2002) or a
slope-based segmentation (Hyyppa et al., 2001; Persson et al., 2002).
The study of Persson et al. (2002) indicates a detection rate of 71% for a
boreal forest dominated by spruce and pine trees. Later, Solberg et al.
(2006) proposed a region growing method that starts from local surface
maxima and finds crown polygons. The method was applied to a
structurally heterogeneous spruce forest with an overall detection rate
of 66% for the CHM, which was smoothed with a Gaussian filter.
Heurich (2008) demonstrated that the segmentation method of Persson
et al. (2002) leads to an average detection rate of 45% in the Bavarian
Forest National Park. The segmentation results of the studies mentioned
above illustrate the strong dependency on forest type.

In contrast, point cloud-based methods take advantage of the cap-
tured 3D information and focus on the detection of single tree objects,
which are the tree as a whole or parts of the tree, such as stems and
branches (Wu et al., 2016; Zhang et al., 2003). Several approaches have
been developed for extracting single trees from ALS 3D point clouds.
Morsdorf et al. (2004) used the k-means clustering algorithm to seg-
ment single trees from raw ALS point clouds. However, the accuracy of
their study is highly dependent on seed points extracted from the CHM.
Wang et al. (2008) subdivided the forest into different layers and ap-
plied a 2D morphological algorithm to obtain tree crowns. Reitberger
et al. (2009) introduced a novel normalized cut segmentation method
that extracts single trees using a graph cut approach. The study suc-
cessfully showed that the overall accuracy of extraction of individual
tree crowns in heterogeneous forest types could be significantly im-
proved (by up to 20%), especially in the lower forest layers. Lee et al.
(2010) proposed an adaptive region growing and clustering approach to
detect single trees directly within raw point clouds. Li et al. (2012)
developed a spacing-based algorithm that utilizes a region growing
approach to segment trees in a coniferous mixed forest. Véga et al.
(2014) suggested the PTrees method to extract trees in a forest from
ALS data. The method is a multi-scale dynamic segmentation at point
cloud level. Wu et al. (2016) developed an automated segmentation
method that captures the topological structure of forests and assesses
the topological relationships of tree crowns by using a graph theory-
based localized contour tree method, achieving an overall accuracy of
up to 94%.

The forest structure has a strong impact on the single tree seg-
mentation performance. Tree crowns have a complex shape that varies
significantly from species to species. The accuracy of single tree deli-
neation algorithms mainly depends on the complexity of the forest
(Strimbu and Strimbu, 2015; Gonzalez-Ferreiro et al., 2013; Vauhkonen
et al., 2011). Moreover, segmentation algorithms are controlled by
many parameters that are difficult to estimate when the methods are
applied to other forest types. This dependency can be either explicit, as
with the number of seed points in k-means, or implicit, such as the Ncut
threshold for spectral clustering methods. The incorrect setting of such
parameters may lead to over- or under-segmentation effects in the re-
sulting delineated trees (Strimbu and Strimbu, 2015; Khosravipour
et al., 2014; Yao et al., 2014; Li et al., 2012; Heurich, 2008). Although
the control parameters can be estimated by a grid search method for a
localized forest area, their transferability to larger scenes can be poor.
Therefore, if the fixed scheme of control parameters in the segmenta-
tion algorithm is replaced by an adaptive scenario applied on the de-
cision level, a more flexible tree crown delineation procedure is to be
expected.

The main objective of this study is to develop a new adaptive
stopping criterion, applicable to top-down segmentation methods for
precise delineation of single trees in ALS 3D point clouds. Their para-
meters can be automatically determined from reference segmentations,
alleviating the burden of manual, trial-and-error parameter setting.
Moreover, the adaptive procedure is based solely on the appearance of
the target objects (tree crowns) within the point cloud, and is in-
dependent of any internal features of the underlying segmentation
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method. For the time being, we restrict our attention to coniferous trees
whose well-defined crown shape can be easily modeled by an elliptic
paraboloid (Koop, 1989; Husch et al., 2002). This study is motivated by
the successful application of an adaptive stopping criterion to the seg-
mentation of lying dead trees based on the normalized cut algorithm
(Polewski et al., 2015). Here, we extend the idea of an appearance-
based adaptive stopping criterion to the domain of single tree seg-
mentation. We conducted a series of experiments on sample plots from
the Bavarian Forest National Park to assess the performance of the
proposed method using data from the field inventory for validation. In
our experiments, the normalized cut algorithm was used as the seg-
mentation method, but any other top-down clustering procedure could
be applied instead.

The remainder of this work is structured as follows: Sections 2 and 3
describe the details of our approach; Section 4 illustrates the study area,
materials, and field measurements. The results are presented and dis-
cussed in Section 5. Finally, the conclusions are stated in Section 6.

2. Top-down segmentation
2.1. Main foundation

The segmentation of point clouds into individual objects in the
scene is an initial step in processing 3D point clouds. The main objective
of the segmentation processes is to divide points with similar attributes
into homogeneous clusters. Among the various approaches, a popular
paradigm is top-down segmentation, where all objects are initially as-
signed to a single cluster, which is then recursively partitioned. The
subdivision continues until the predefined stopping criterion is met.
However, the main difficulty of these methods is the definition of an
appropriate stopping criterion that yields meaningful clusters under
varying input scenarios.

2.2. Normalized cut segmentation

The normalized cut algorithm (Shi and Malik, 2000) is a top-down
method for data segmentation. This method to construct a low-dimen-
sional representation of the input 3D points uses the eigenvalues as-
sociated with the object similarity matrix (Polewski et al., 2015). A
graph is constructed based on the similarity matrix that quantifies
pairwise compatibility between primitives from a predefined set, such
as cubic voxels or irregular super-voxels provided by any kind of pre-
segmentation like mean shift of k-means. A recursive bisection of the
graph’s vertices into disjoint clusters A and B is performed such that the
within-cluster similarity is maximized while simultaneously the inter-
cluster similarity is minimized. The corresponding normalized cut is:

Cut(A,B)
Assoc(A,V)

Cut(A,B)

NCut(A,B) =
(“.B) Assoc(B,V)

®

with Cut (A,B) = Zi cajep Wi as the total sum of the weights between the
segments A and B, while Assoc(4,V) = Zi cajev Wi is the sum of
weights of all the edges ending in segment A. The similarity function for
the normalized cut is based on the pair-wise similarity of the clusters.
The aforementioned segmentation is controlled by several parameters
whose values can be optimized in experiments. The most important
parameter that controls the subdivision of the graph is the normalized
cut threshold, NCut,,,, which has no physical interpretation. During the
segmentation, if the NCut value of the obtained clusters A and B ex-
ceeds NCuty, then the similarity between A and B is too high and the
process must be terminated. Clearly, choosing a suitable threshold is
critical to obtaining a reasonable segmentation, because too small a
value of NCuty, will lead to under-segmentation with clusters con-
sisting of unrelated objects. Conversely, too large a value will result in
over-segmentation and many small clusters. In real world applications,
setting the most suitable value for this static threshold is challenging
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due to different input characteristics.

2.3. Other top-down algorithms

Although normalized cut is the most commonly-used of the top-
down segmentation algorithms, other methods have also found use in
various clustering applications. Two methods from the graph-cut family
are “Min Cuts” (Wu and Leahy, 1993) as well as “MinMax Cut” (Nie
et al., 2010), where the graph is partitioned according to different
optimization objectives. Also, a recursive, bisecting version of k-means
has been developed (Savaresi and Boley, 2001). Essentially, any of
these mentioned algorithms could benefit from the proposed adaptive
stopping criterion approach. In this work we decided to utilize the
normalized cut procedure as the core method, because (i) the im-
plementation could potentially be modified to optimize one of the other
related criteria from the spectral clustering family (Min Cuts, MinMax
Cut) with moderate effort, and (ii) the normalized cut has already been
applied in literature for the problem of tree segmentation.

3. Adaptive stopping criterion
3.1. Outline

Consider a point cloud representing a forest scene with multiple
coniferous trees. The normalized cut algorithm recursively partitions
the 3D data, starting with the entire point cloud, until the level of single
trees is reached. Let S; represent an intermediate point cluster obtained
at a recursion level m of the partitioning. S; may contain one or more
trees. The rationale of our adaptive stopping criterion is to detect tree
crowns by fitting local quadratic surfaces to candidate tree tops, and
using this information to determine whether the currently processed
cluster of points represents a single or multiple trees. In the former case,
the segmentation is stopped, otherwise the current cluster is split and
the partitioning process continues. The method proceeds as follows. We
use a local maxima detection approach to find candidate peaks of single
trees. Then, we apply the Random Sample Consensus (RANSAC)
method to estimate the best fitting quadratic surface parameters for
points around each detected local maximum. The signed distances be-
tween the fitted surface and local points are binned to form histogram
features. These features provide a basis for classifying the neighborhood
of each local maximum, either as a true tree top or a false positive. After
classification in a probabilistic manner, the spatial overlap ratios op,
(proportion of shared volumes) between all pairs of positively classified
candidate tree tops are calculated. If a pair of fitted surfaces have an
overlap ratio below a threshold value max,,,, then it is decided that the
current cluster contains more than one tree and the segmentation has to
continue. If no such pair is found, the stopping criterion is activated and
the segmentation of the current cluster is terminated. The entire pro-
cessing pipeline is presented in Fig. 1. The method is explained in detail
in the following sub-sections.

3.2. Local maxima detection

The input ALS data is a set of 3D point clouds with 3D coordinates
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Fig. 2. Detected local maxima for two pairs of clusters S;;S;. S; represents a
cluster with 2 true tree tops; S; shows a false positive scenario in the cluster,
with at least one falsely detected local maximum.

D;(x;,;,2:) for each point. In our approach, the local maxima are de-
tected only within a currently segmented scene in the normalized cut
segmentation process. We examine a spherical neighborhood around
each point to determine whether it has the locally maximal z co-
ordinate. The neighborhood radius is balanced between permitting
adjacent tree tops and not producing too many insignificant local
maxima. Note that we do not apply a smoothing step to the original
point clouds. Fig. 2 shows the detected local maxima for two clusters S;
and S; with true tree tops and a false positive, respectively.

3.3. Shape fitting with RANSAC

The Random Sample Consensus algorithm (Fischler and Bolles,
1981) is a general robust parameter estimation approach designed to
deal with a large proportion of outliers in the input data. In this step,
the algorithm is applied to estimate the best-fitting elliptic paraboloid
parameters around each local maximum based on points inside a cy-
linder with a predefined length cyl, and radius cyl,. The parameters of
the cylinder are defined experimentally. The center of the paraboloid is
indicated by the inferred local maximum, and RANSAC is used to
compute the remaining paraboloid parameters. Fig. 3 illustrates the
fitted elliptic paraboloids based on detected local maxima for two
clusters S; and S;.

3.3.1. Elliptic paraboloids
A second order algebraic surface is given by the following general
equation

ax®? + by? + cz? + 2fyz + 28z + 2hxy + 2px + 2qy + 2z +d =0 (2)

Single tree segmentation

ALS 3D point
clouds

Decision level
(Stop/Continue)

) Local mgxima
detection o
fitting

Adaptive Stopping criterion

Spatial overlap Individual
Classification ratios —> tree point
calculation sets

Elliptic

Paraboloid

Fig. 1. Overview of single tree segmentation strategy using adaptive stopping criterion.
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Sj

Fig. 3. Fitted paraboloid surfaces on detected local maxima. S; represents a
cluster with two true tree tops; S; shows a false positive cluster with at least one
wrongly detected local maximum.

S e o> R
Q — o>
N 6 0
QN e s

3

where E stands for the coefficient matrix of the surface. The quadratic
surfaces have different standard form types. In this study, we use the
elliptic paraboloid, a quadratic surface which has an elliptical cross
section (Dai et al., 2007). We assume the paraboloid axis is known and
coincides with the world Z axis due to the phenomenon of gravitropism
of trees. Therefore, the simplified version of the Eq. (2) as an elliptic
paraboloid of height z., semi-major axis a and semi-minor axis b
without any rotation angle can be specified parametrically as a function
of (x,y):

Ce=x)? r—n)?

Z(xy) = 2 T

C)]

The paraboloid’s center (x.,).,z.) is fixed to the current detected local
maximum, whereas the semi-axis lengths, a and b, need to be de-
termined through RANSAC estimation.

3.3.2. Details of RANSAC estimation

Consider two samples (x0,,%0) and (x.y;;z) with (x.).,2.) as the
fixed center of the paraboloid. It is possible to calculate the axis lengths
a and b for the aforementioned samples, by using the following equa-
tion (Eq. (5)).

(xo_xc)2 (yo_yc)z [1/02] _ [Zo—Zc]
Ca—x? —)* |L1/b A% (5)
After calculating the axis lengths a and b for all points, their dis-

tances to the paraboloid surface are determined. Additionally, the ab-
solute distance |z—z;!| is taken as the error measure for the RANSAC.

3.4. Classification

Although the RANSAC procedure yields the optimal paraboloid
shape anchored at the chosen local maximum, it is still possible that the
paraboloid does not represent a true, distinct tree top, but rather is
located to the side of an adjacent, dominant tree (see Fig. 3). Therefore,
it is necessary to further classify each fitted paraboloid based on its
spatial characteristics in order to retain only those representing true
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tree tops. We use a kernelized logistic regression (KLR) with L, norm
regularization as a classifier. Logistic regression models the probability
distribution of the class label Y and histograms X (see Section 3.4.1) as
follows:

1

N
-2 oc,-k(xi,x>]

j=1

PY=1X=x)=

1+ exp

(6)

where j,j = 1..N denotes N feature vectors of training examples and Y
the corresponding binary label. The term k represents a positive semi-
definite kernel function. Training the model amounts to maximizing the
regularized log-likelihood of the training examples in Eq. (6) as:

A r
m;ixé(oc)—goc Ka @
where K = (k(x;x)))1,..n,1,..~ represents the design matrix, and the ex-
pression a’Ka denotes the L, norm regularization term. Eq. (7) re-
presents a convex optimization problem that was solved by the Newton-
Raphson method (Roscher et al., 2012). The model’s log-likelihood and
the functional form of the used Gaussian kernel are given respectively
by Egs. (8) and (9).

N
¢@) =) logP(Y = 31X = x)

j=1

(C))
2
Ky (xiyy) = EXP(—%M)

4 €)]
where x; and x; are two sample feature vectors. The two main para-
meters, Gaussian kernel bandwidth y and regularization coefficient 2,
are determined by a grid search on an exponential grid, using Cohen’s
kappa coefficient as the error measure and 10-fold cross-validation. We
classify the candidate local maxima (and their associated paraboloids)
of single coniferous trees into two classes: “positive” and “negative”,
respectively. The “positive” class corresponds to true tree tops, whereas
the “negative” class indicates false positives. See Section 4.2 for a de-
scription of the training procedure.

3.4.1. Elliptic paraboloids features

The features for classifying the local maxima are based on projected
distances of local points to the fitted shape. Specifically, we consider all
points located in the aforementioned cylinder around the local max-
imum (see Section 3.3) and compute an approximate projection onto
the paraboloid using the algebraic distance, i.e. for a point Q; = (x;,),%:)
we take the point (x;,,,Z (x;,,)), where Z (x;,);) is the fitted surface’s Z
position at coordinate (x,y), as in Eq. (4). We decided to use this ap-
proximate method instead of a true projection onto the paraboloid due
to the fact that computing the true projection of a point onto a quadric
requires solving a 6-th degree polynomial equation for each point (Dai
et al., 2007), which could be prohibitively computationally expensive.
The signed distance from point Q; to the surface is thus z,—Z (x;,;). In
this part of our method, the signed distances are binned to form his-
togram features, X, for the classification purpose mentioned in the
Section 3.4. These features capture the shape of the point distributions
around the apices of the paraboloids. Fig. 4 shows the process of gen-
erating features for the classification of local maxima. For local maxima
representing true tree tops, the distances should be approximately
symmetrically distributed around zero, while for the case of a false local
maximum depicted in Fig. 3 (S)), the signed distance distribution should
be significantly biased towards large positive residuals.

3.5. Calculating spatial overlap ratio

After the classification step, a number of fitted paraboloids remain
which represent the detected true tree tops. However, in some cases
more than one local maximum may represent the same tree, which
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Fig. 4. Signed distances between data points (in red) and their approximate
projections (in yellow) onto the fitted paraboloid (green). Positive and negative
distances are indicated respectively by blue and red lines. (a) Residuals around
a true tree top, distributed symmetrically around zero, (b) Residuals around a
false local maximum located at the side of the tree, showing bias towards large
positive values. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Sj

Si

Fig. 5. Estimating the spatial overlap ratio op, between fitted paraboloid sur-
faces. S; represents a cluster with 2 true tree tops; S; shows a false positive
cluster with at least one falsely detected local maximum.

makes it necessary to filter redundant values. Therefore, we define a
feature for a pair of paraboloids S; and S;, which evaluates the ratio of
their spatial overlap op,, i.e. the ratio of the volume shared by both
shapes to the volume of an individual paraboloid. The ratio is nor-
malized between a value of zero and one, corresponding to no overlap
and full overlap between the paraboloids, respectively. If the overlap
ratio exceeds the maximum threshold value max,, , then we assume
that both paraboloids represent the same tree. In the current step, since
it is difficult to analytically derive parameters for elliptic surfaces, we
apply Monte Carlo simulation to estimate the spatial overlap of the
fitted paraboloids. Fig. 5 demonstrates the idea behind calculating the
intersection volume using a random simulation method. We generate a
number of sample points N within the interior of the first paraboloid.
Afterwards, for each point, we check the possibility that the point also
lies in the second paraboloid. The overlap ratio, op,, can be approxi-
mated as the number of points that are located inside both paraboloids
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v(2)
H/—%\
f na(z)b(z)dz
0

Z

Fig. 6. The entire volume of a paraboloid, V, can be decomposed into an in-
finite number of elliptical slices with infinitely small thicknesses, dz, and vo-
lumes, v(z), which are functions of their heights z. H represents the height of
the paraboloid. The number of points generated in each slice should be pro-
portional to its cross-sectional area.

divided by the number of generated sample points, N. Note that in the
current experiment, a uniform spatial distribution of the points is
generated in the entire volume of the paraboloid. To ensure this uni-
formity, we perform the sampling in two steps. In the first step, we draw
the vertical distance, Z, from the paraboloid center randomly according
to the triangular distribution, P(Z < z) « z2. For the second step, we
generate a point from the interior of the ellipse that constitutes the cross
section of the paraboloid at the drawn height of z from the previous
step. Fig. 6 shows the process of uniformly sampling points in the
paraboloid. In order to maintain a uniform point density across the
entire paraboloid, the local densities in every vertical ‘slice’ of the vo-
lume should be equal. However, the volume of a slice at height z is
proportional to z. Since the density remains constant, the number of
generated points for a layer must also be proportional to its height. The
spatial overlap ratio of paraboloids, op,, for the adaptive stopping cri-
terion method is given by algorithm Alg. 1. The rmd() function in the
algorithm refers to the uniform random number generator in the range
0-1. This Monte Carlo based procedure yields an unbiased estimator of
the true ratio of overlapping volume.

Algorithm 1. Spatial overlap ratio.

function CalculateSpatialOverlapparal, para2, N
forl =1,..N do
Z < paral. Height\/rnd ()
6« 2mrnd ()
r < paral. Az -r-cos(6)
x = para2. Bz -r-sin(6)
y=+rnd()
if para2 contains (x,y,z) then
nBoth < nBoth + 1
return nBoth/N

4. Experiment
4.1. Materials

Our experiments were conducted for three sample plots in the
Bavarian Forest National Park (49°3'19"N, 13°12'9"E), a temperate forest
located in the southeastern part of Germany, along the border with the
Czech Republic. The sample plots contain a mixture of mountainous



N. Amiri et al.

ISPRS Journal of Photogrammetry and Remote Sensing 141 (2018) 265-274

Fig. 7. ALS point clouds of Plot A (100% coniferous), Plot B (99% coniferous) and Plot C (70% coniferous) colored by height over DTM. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Properties of sample plots.
Property Plot A Plot B Plot C
Size [ha] 0.10 0.10 0.30
Trees/ha 450 2150 700
Ave. DBH" (cm) 46.2 17.9 35.0
Ave. Crown base height (m) 20.90 7.08 16.70
Ave. Tree height (m) 36.90 16.08 35.45
Dominant species Spruce Spruce Spruce
Deciduous trees[%] 0 1 29
Understory trees [Number] 0 76 11
Intermediate layer [Number] 4 85 33
Overstory trees [Number] 41 54 165

2 Diameter at Breast Height.

and subalpine forest types, dominated by Norway spruce (Picea abies)
and European beech (Fagus sylvatica) (Cailleret et al., 2014). The air-
borne full-waveform data were acquired using a Riegl LMS-Q560
scanner in May 2007 in a leaf-on condition with an average point
density of 25 points/m?. The flying altitude of 400 m resulted in a
footprint size of 20 cm. We used the mixture-of-Gaussians decomposi-
tion model (Reitberger et al., 2009) on the collected waveforms, ob-
taining a 3D point cloud. The 3D visualization of point clouds for the
plots (coniferous-dominated stands) is shown in Fig. 7. Table 1 sum-
marizes the characteristics of our sample plots, estimated based on the
reference data from the field inventory.

4.2. Classifier training

Additionally, we chose 100 point cloud clusters from areas outside
the test plots as training data for the local maxima classifier. The
clusters consisted both of scenes containing only a single tree and ones
comprising multiple adjacent trees, in order to ensure a wide range of
training scenarios (with the proportion of 50-50%). These clusters were
obtained from various intermediate steps, i.e. partial segmentations, of
the standard normalized cut algorithm with the static normalized cut
threshold NCuty,.. For each training cluster, the local maxima detection
was performed, and each local maximum was labeled as either a true
tree top or a false positive, based on visual interpretation of the point
cloud. The paraboloid-based features (see Section 3.4.1) were extracted
for each local maximum. The set of all extracted features together with
the local maxima labels formed the basis for training the classifier to
detect the characteristic paraboloid shape of coniferous trees. The
classifier provides a probability of p that a local maximum represents a
“true positive”, i.e. tree top. Later, the minimum acceptance probability
threshold min,, is used as a control parameter, i.e. a local maximum is
processed further if its probability p exceeds this threshold value.

4.3. Reference data

The ground truth data for the test plots was acquired by field
measurements. In each of the 3 plots, at least 40 single trees with DBH
greater than 10 cm were present. Several individual tree parameters
such as total tree height, stem position, DBH, and tree species were
measured with the help of GPS and tacheometry. Moreover, the single
trees in the scene are subdivided into three layers with respect to the
top tree height h,,, in the plot. The top tree height h,, is defined as the
average height of the 100 highest trees per ha (Heurich, 2006). The
lower layer contains all trees below 50% of h,,p, the intermediate layer
corresponds to all trees between 50% and 80% of hy,,, and the upper
layer refers the remainder of the trees. Plot A has no trees at the un-
derstory layer and fewer than 10% of total number of trees at the in-
termediate layer. However, plot B contains a higher number of trees at
intermediate and understory layers compared to plots A and C. Plot B
has the highest number of trees at the intermediate and understory
layers among the other plots. In this study, we removed both lower and
intermediate layers based on the top tree height h,,, and focused on the
upper layer, where the single tree crowns are clearly shaped as elliptic
paraboloids. There were a total of 260 single trees in the three sample
plots.

4.4. Experimental setup

We conducted four groups of experiments. These experiments are
concerned with assessing the performance of the entire method for
single tree segmentation, particularly the benefit of using the newly
introduced adaptive stopping criterion. For the first two sets, we used
the basic normalized cut segmentation algorithm with normalized cut
threshold NCuty,. In the other two groups of experiments, tree seg-
mentation was based on our adaptive stopping criterion. To demon-
strate that our approach is independent of the segmentation granu-
larity, we executed the experiments with two kinds of primitives for
merging: (i) voxel-based and (ii) those obtained from mean shift clus-
tering. In the voxel-based approach, the concept is to subdivide the tree
into a voxel space, which results in equal-sized primitives in the form of
voxels with a side length d,,, = 0.5 m. In contrast, the mean shift al-
gorithm generates a segmentation of the point cloud consisting of non-
uniformly sized clusters. We used a cylindrical kernel with base radius
h, = 2.4 m and height H = 2.4 m (see Yao et al. (2013)). The similarity
function was the standard exponential model as in Reitberger et al.
(2009). The adjacency relation of the graph was based on a cylindrical
neighborhood with a predefined radius and unlimited height, as de-
scribed in our previous work (Amiri et al., 2016). Aside from geometric
information, the similarity function contained a term reflecting the
mean pulse intensities and widths averaged over the clusters’ member
points.
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Table 2
Control parameters of the adaptive stopping criterion method for single tree
segmentation.

Parameters Symbols Values
Maximum overlap ratio maxep, 0.3
Minimum probability threshold minp,,. 0.5
Local maxima neighborhood radius Teig 1.2
Signed distance bin width sdpw 1.0
Signed distance range sdrange 20.0
Cylinder length oyl 5.0
Cylinder radius oyl, 1.0
RANSAC inlier distance sacq 0.05

4.5. Choice of parameters

The different control parameter values that we used in our approach
are summarized in the Table 2. The values were assigned empirically
based on the forest characteristics. The cylinder radius cyl, is based on
the largest radius of a single coniferous tree crown that we expect to
find in the plots. Similarly, the cylinder length cyl, approximates the
maximum expected range of the upper tree crown in the study area.
Moreover, the local maxima neighborhood radius #,;, corresponds
roughly to the average size of the tree crown segments. Consistent
parameter values were used for all test plots.

4.6. Evaluation

The output of our processing pipeline consists of a set of points that
correspond to the individual segmented trees. The matching between
segmented and reference trees was calculated using the strategy pro-
posed by Reitberger et al. (2009). We considered the segmented and
reference trees as matched if (i) the distance to the reference single tree
is less than 60% of the mean tree distance within the sample plot and
(ii) the height difference between and the height of the reference tree is
less than 20% of the top height of the plot. Moreover, if a reference tree
is associated with more than one tree position, the tree position with
the shortest distance to the reference tree is taken. A segmented tree
cluster without a link to a reference tree is called a “false positive”
segment.

In the current experiment, we use the “correctness” and “com-
pleteness” metrics to measure the quality of the obtained segmentation
results. The “correctness” metric is defined as the number of segmented
trees that were successfully linked to reference trees as a fraction of the
total number of segmented trees. The “completeness” expresses the
ratio of the number of reference trees that have at least one associated
segmented tree to the total number of reference trees.

5. Results and discussion
5.1. Sensitivity analysis

Clearly, the adaptive stopping criterion approach requires proper
values for the control parameters. We conducted tests to find the values
of the most important parameters and their sensitivity. We demonstrate
the performance of the adaptive stopping criterion with two main
control parameters: the maximum overlap ratio, max,,, and minimum
probability threshold, min, . The results from the maximum overlap
ratio, max,,, showed that smaller values produce relatively higher
correctness and completeness. A value of 0.3 represents a good trade-off
between the correctness and completeness that can successfully split the
cluster into adjacent tree crowns. Fig. 8 shows the segmentation per-
formance by ROC curves on the sample plots mentioned in Section 4.2
when different values of maximum overlap ratio, max,,,, are applied.
The three plots dominated by coniferous trees share the property that
over 70% of trees can be detected correctly, at the threshold of 0.3 of
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the spatial overlap between clusters. In plot C, which contains almost
30% deciduous trees, the true positive rate on average did not exceed
65% for various threshold values. Among the test datasets, plot A ex-
hibits relatively higher correctness and completeness rates. In Fig. 9,
the adaptive segmentation performance for the probability threshold of
the same sample plots (see Section 4.2) is presented by ROC curves. For
the minimum probability threshold min,, , 0.5 was selected as an op-
timal trade-off value. A larger minimum probability threshold, min,,, ,
led to more segments, which resulted in an overall higher completeness
but lower correctness across the all the sample plots. The sensitivity
analysis of our segmentation method for the selected plots was similar if
a minimum probability threshold value, min,, , less than 0.3 was se-
lected. Also, for plot A, the ROC curves with different threshold values
continue to increase and attain a completeness of 0.75, whereas on the
other two plots, a value of 0.65 is not exceeded. The lowest true positive
rate with the highest false positive rate is achieved for plot B. Note that
the obtained values of 0.3 for the maximum overlap ratio, max,, , and
0.5 for the minimum probability threshold, min ,, , were nearly optimal
on all three considered plots. Moreover, for the baseline experiment, we
demonstrate the sensitivity analysis for the normalized cut threshold,
NCuty,, that controls the subdivision of the segments in the procedure.
Tests in terms of correctness and completeness for the sample plots
mentioned in Section 4.2 showed the best performance was achieved
with a NCuty, value of 0.16.

5.2. Adaptive segmentation approach

The results of the segmentation performance on the upper canopy
layer with respect to the two sets of merging primitives: (i) voxel-based
and (ii) those obtained from mean shift clustering are summarized in
Table 3. For all plots, the correctness and completeness terms are es-
timated. In the current plots, due to the point density and forest char-
acteristics (particularly deciduous trees), up to 30% of the upper layer
trees could not be correctly segmented. The task of adaptive single tree
segmentation in the mixed deciduous and coniferous plots proved to be
even more challenging than it was for the coniferous dominated stands.
In upper canopy layer, the reliability of the method is high because the
3D tree structure captured within the point clouds exhibits the full
shape of elliptic paraboloids.

The results in terms of correctness and completeness for the adap-
tive segmentation by using two different primitives are presented. For
three plots, an improvement of 6-9% and 7-10%, respectively, for
correctness and completeness is achieved, in comparison to the basic
normalized cut segmentation with mean shift primitives. Also, the
adaptive approach of the normalized cut with voxel-based primitives
for the same plots compared to the basic segmentation with voxel-based
step performs a gain of 7-8% and 8-10%, respectively, in terms of
correctness and completeness. The experiments on the three plots
confirm that higher completeness and correctness rates can be achieved
for the adaptive normalized cut with voxel-based and mean shift clus-
tering primitives rather than the basic segmentation approaches. In the
case of adaptive segmentation by voxel-based primitives, for plot A the
good trade-off results between correctness and completeness rate are
0.65 and 0.77, respectively. For plot B, identical correctness and com-
pleteness results for both voxel-based and mean shift primitives are
achieved. Finally, for plot C, 0.69 for the completeness and 0.76 for the
correctness rate are accomplished. For all the plots, when the adaptive
segmentation scenario is applied, the correctness and completeness
rates are both increased. The average rate of false detected tree seg-
ments in the plot A, B and C amount to 0.23, 0.33 and 0.31, respec-
tively. Note that the method is evaluated by the single trees located in
the upper canopy layer.

Figs. 10 and 11 show examples of the segmentation results by pri-
mitives obtained from mean shift clustering for a part of test plot A.
Note that the sample plot contains only coniferous trees. The results
indicate that our method was successful in overcoming the over- and
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Fig. 8. ROC curve of single tree adaptive segmentation for plots A (100% coniferous), B (99% coniferous) and C (70% coniferous). Each diagram contains four ROC
curves that correspond to various thresholds of the maximum overlap ratio, max,,.
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Fig. 9. ROC curve of single tree adaptive segmentation for plots A (100% coniferous), B (99% coniferous) and C (70% coniferous). Each diagram contains four ROC
curves that correspond to various thresholds of the minimum probability threshold, min,,,..

Table 3
Results of analysis on the upper canopy layer for sample plots A, B, and C.
Segmentation scenario Plot A Plot B Plot C
Completeness
Mean Shift + NCut 0.69 0.56 0.61
Voxel-based + NCut 0.66 0.58 0.61
Mean Shift + NCut (Adaptive) 0.76 0.67 0.68
Voxel-based + NCut (Adaptive) 0.77 0.67 0.69
Correctness
Mean shift + NCut 0.59 0.64 0.70
Voxel-based + NCut 0.53 0.63 0.69
Mean shift + NCut (Adaptive) 0.68 0.70 0.79
Voxel-based + NCut (Adaptive) 0.65 0.70 0.76

under-segmentation problems in the test plot. Fig. 10 presents the
comparison of segmentation results between the normalized cut com-
bined with mean shift clustering and the adaptive stopping criterion
method. The tree clusters are classified using fitted elliptic paraboloids
and the spatial overlap ratios between them are calculated. The red box
in Fig. 10a shows an over-segmented cluster that is delineated as a
single tree (see Fig. 10b) by using the adaptive segmentation approach.

In contrast, the case of under-segmentation is indicated by Fig. 11.
In this case, we used the adaptive stopping criterion method to reduce
the under-segmentation error of the normalized cut algorithm with
clusters obtained from the mean shift step. In Fig. 11a, the red box is
focused on an example cluster consisting of multiple trees, which is

known as under-segmentation. Using the adaptive segmentation
method, it is revealed in Fig. 11b how the under-segmentation for the
current cluster is removed.

The computational costs for both the static and adaptive versions
were similar, which indicates that the processing time was dominated
by solving the generalized eigenvalue problem on the Ncut similarity
matrix. A simple heuristic may be used to reduce the number of times
the adaptive stopping criterion is invoked; for a given point cluster, if
its 3D bounding box exceeds the dimensions of the largest possible
single object (i.e. tree), the segmentation must continue. In principle
our approach is applicable for larger forest areas.

Our method takes the advantage of fitting elliptic paraboloids to
point clouds and determining whether the currently processed cluster of
points represents a single coniferous tree or multiple trees. The sensi-
tivity analysis shows that for all the sample plots the same set of
parameters, such as maximum overlap ratio, max,,, and minimum
probability threshold, min,, , achieves the best trade-off values be-
tween correctness and completeness. The restrictions of the current
approach are: (i) mainly trees in the upper canopy layer in the 3D point
cloud can be segmented accurately, (ii) the method fails in plots with
concentrations of deciduous trees where the segments’ points cannot be
clearly clustered. The crown boundaries of deciduous trees are not clear
in the point clouds due to the complex geometry of these trees in the
leaf-on condition. Therefore, no benefit was achieved, despite the
adaptive segmentation approach, for deciduous trees. In the case where
the study area is dominated by coniferous trees, single tree segments
are successfully delineated by the classifier training and elliptic
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Over-segmentation

paraboloids fitting method. Moreover, the normalized cut threshold
NCuty, has no physical meaning; however, our method’s main control
parameters are closely tied with the appearance of single trees in the
forest scene, which makes them more easily interpretable.

6. Conclusions

The study presents a novel method for single tree segmentation in
temperate coniferous forest by applying an adaptive stopping criterion
to top-down segmentation in ALS point clouds. Following the study on
segmentation of fallen stems (Polewski et al., 2015), our results also
confirm that the use of an appearance-based stopping criterion can
benefit a top-down segmentation process in different scenarios. Our
method is directly applied to the 3D ALS point clouds, targeting con-
iferous trees through modeling their crowns by elliptic paraboloids. The
adaptive segmentation approach generally appears to lead to an

Under-segmentation
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Fig. 10. Single tree segmentation results for a
part of plot A: (a) corresponds to the normalized
cut segmentation with mean shift clustering re-
sults; and (b) represents the adaptive stopping
criterion for normalized cut segmentation by
fitting paraboloids. Each set of colored points
represents a delineated single tree. The red
boxes outline the over-segmentation issue on an
example single tree. (For interpretation of the
references to colour in this figure legend, the
reader is referred to the web version of this ar-
ticle.)

(b)

improvement of up to 10% in both correctness and completeness. We
did not try to include the tree species composition in the analysis; this
will constitute a topic of future research. Moreover, the accuracy of the
segmentation was negatively impacted by the higher number of de-
ciduous trees in the upper canopy layer. Further improvements to the
method would be achieved by extending the adaptive segmentation
approach to the deciduous tree species to deal with the over- and under-
segmentation problems. Although some deciduous tree species may
follow a well-defined geometric crown shape, it is challenging to pro-
pose a single model that can accurately represent all broad-leaf trees.
However, higher point density ALS data, as well as data acquisition in
leaf-off condition, could lead to more precise reconstruction of the
single tree segments. Furthermore, we would like to utilize the stems
obtained from the method proposed by Amiri et al. (2017) to enhance
the single tree segmentation in the intermediate and lower canopy
layers by providing prior knowledge about tree locations.

Fig. 11. Single tree segmentation results for
a part of plot A: (a) corresponds to the
normalized cut segmentation with mean
shift clustering results; and (b) represents
the adaptive stopping criterion for the nor-
malized cut segmentation by fitting para-
boloids. Each set of colored points shows a
delineated single tree. The red boxes outline
the under-segmentation issue on an example
group of single trees. (For interpretation of
the references to colour in this figure legend,
the reader is referred to the web version of
this article.)



N. Amiri et al.

References

Amiri, N., Polewski, P., Yao, W., Krzystek, P., Skidmore, A., 2017. Detection of single tree
stems in forested areas from high density als point clouds using 3d shape descriptors.
ISPRS Annals Photogram., Remote Sens. Spatial Inform. Sci. 35-42.

Amiri, N., Yao, W., Heurich, M., Krzystek, P., Skidmore, A.K., 2016. Estimation of re-
generation coverage in a temperate forest by 3d segmentation using airborne laser
scanning data. Int. J. Appl. Earth Obs. Geoinf. 52, 252-262.

Cailleret, M., Heurich, M., Bugmann, H., 2014. Reduction in browsing intensity may not
compensate climate change effects on tree species composition in the bavarian forest
national park. For. Ecol. Manage. 328, 179-192.

Chang, A., Eo, Y., Kim, Y., Kim, Y., 2013. Identification of individual tree crowns from
lidar data using a circle fitting algorithm with local maxima and minima filtering.
Remote Sens. Lett. 4 (1), 29-37.

Dai, M., Newman, T.S., Cao, C., 2007. Least-squares-based fitting of paraboloids. Pattern
Recogn. 40 (2), 504-515.

Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model fit-
ting with applications to image analysis and automated cartography. Commun. ACM
24 (6), 381-395.

Gonzélez-Ferreiro, E., Diéguez-Aranda, U., Barreiro-Ferndndez, L., Bujan, S., Barbosa, M.,
Suérez, J.C., Bye, L.J., Miranda, D., 2013. A mixed pixel-and region-based approach
for using airborne laser scanning data for individual tree crown delineation in pinus
radiata d. don plantations. Int. J. Remote Sens. 34 (21), 7671-7690.

Heurich, M., 2006. Evaluierung und Entwicklung von Methoden zur automatisierten
Erfassung von Waldstrukturen aus Daten flugzeuggetragener
Fernerkundungssensoren (Ph.D. thesis). Technische Universitdt Miinchen.

Heurich, M., 2008. Automatic recognition and measurement of single trees based on data
from airborne laser scanning over the richly structured natural forests of the bavarian
forest national park. For. Ecol. Manage. 255 (7), 2416-2433.

Hu, B, Li, J., Jing, L., Judah, A., 2014. Improving the efficiency and accuracy of in-
dividual tree crown delineation from high-density lidar data. Int. J. Appl. Earth Obs.
Geoinf. 26, 145-155.

Husch, B., Beers, T., Kershaw, J., 2002. Forest Mensuration. Ecology (John Wiley and
Sons). John Wiley & Sons. <https://books.google.de/books?id =pOv3m8Pau-kC>.

Hyypp4, J., Kelle, O., Lehikoinen, M., Inkinen, M., 2001. A segmentation-based method to
retrieve stem volume estimates from 3-d tree height models produced by laser
scanners. IEEE Trans. Geosci. Remote Sens. 39 (5), 969-975.

Khosravipour, A., Skidmore, A.K., Isenburg, M., Wang, T., Hussin, Y.A., 2014. Generating
pit-free canopy height models from airborne lidar. Photogramm. Eng. Remote Sens.
80 (9), 863-872.

Koop, H., 1989. Forest Dynamics: SILVI-STAR, a Comprehensive Monitoring System.
Springer-Verlag.

Lee, H., Slatton, K.C., Roth, B., Cropper Jr, W., 2010. Adaptive clustering of airborne lidar
data to segment individual tree crowns in managed pine forests. Int. J. Remote Sens.
31 (1), 117-139.

Li, W., Guo, Q., Jakubowski, M.K., Kelly, M., 2012. A new method for segmenting in-
dividual trees from the lidar point cloud. Photogramm. Eng. Remote Sens. 78 (1),
75-84.

Morsdorf, F., Meier, E., Kotz, B., Itten, K.I., Dobbertin, M., Allgéwer, B., 2004. Lidar-based
geometric reconstruction of boreal type forest stands at single tree level for forest and
wildland fire management. Remote Sens. Environ. 92 (3), 353-362.

Nie, F., Ding, C., Luo, D., Huang, H., 2010. Improved minmax cut graph clustering with
nonnegative relaxation. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, pp. 451-466.

Persson, A., Holmgren, J., Soderman, U., 2002. Detecting and measuring individual trees
using an airborne laser scanner. Photogramm. Eng. Remote Sens. 68 (9), 925-932.

Polewski, P., Yao, W., Heurich, M., Krzystek, P., Stilla, U., 2015. Detection of fallen trees

ISPRS Journal of Photogrammetry and Remote Sensing 141 (2018) 265-274

in als point clouds using a normalized cut approach trained by simulation. ISPRS J.
Photogramm. Remote Sens. 105, 252-271.

Pyysalo, U., Hyypp4, H., 2002. Reconstructing tree crowns from laser scanner data for
feature extraction. Int. Arch. Photogram. Remote Sens. Spatial Inform. Sci. 34 (3/B),
218-221.

Reitberger, J., Schnorr, C., Krzystek, P., Stilla, U., 2009. 3d segmentation of single trees
exploiting full waveform lidar data. ISPRS J. Photogram. Remote Sens. 64 (6),
561-574.

Roscher, R., Forstner, W., Waske, B., 2012. I 2 vm: incremental import vector machines.
Image Vis. Comput. 30 (4), 263-278.

Savaresi, S.M., Boley, D.L., 2001. On the performance of bisecting k-means and pddp. In:
Proceedings of the 2001 SIAM International Conference on Data Mining. SIAM, pp.
1-14.

Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22 (8), 888-905.

Solberg, S., Naesset, E., Bollandsas, O.M., 2006. Single tree segmentation using airborne
laser scanner data in a structurally heterogeneous spruce forest. Photogramm. Eng.
Remote Sens. 72 (12), 1369-1378.

Strimbu, V.F., Strimbu, B.M., 2015. A graph-based segmentation algorithm for tree crown
extraction using airborne lidar data. ISPRS J. Photogram. Remote Sens. 104, 30-43.

Vauhkonen, J., Ene, L., Gupta, S., Heinzel, J., Holmgren, J., Pitkdnen, J., Solberg, S.,
Wang, Y., Weinacker, H., Hauglin, K.M., et al., 2011. Comparative testing of single-
tree detection algorithms under different types of forest. Forestry 85 (1), 27-40.

Véga, C., Hamrouni, A., El Mokhtari, S., Morel, J., Bock, J., Renaud, J.-P., Bouvier, M.,
Durrieu, S., 2014. Ptrees: a point-based approach to forest tree extraction from lidar
data. Int. J. Appl. Earth Obs. Geoinf. 33, 98-108.

Wagner, W., Hollaus, M., Briese, C., Ducic, V., 2008. 3d vegetation mapping using small-
footprint full-waveform airborne laser scanners. Int. J. Remote Sens. 29 (5),
1433-1452.

Wang, Y., Weinacker, H., Koch, B., 2008. A lidar point cloud based procedure for vertical
canopy structure analysis and 3d single tree modelling in forest. Sensors 8 (6),
3938-3951.

Wu, B., Yu, B., Wu, Q., Huang, Y., Chen, Z., Wu, J., 2016. Individual tree crown deli-
neation using localized contour tree method and airborne lidar data in coniferous
forests. Int. J. Appl. Earth Obs. Geoinf. 52, 82-94.

Wu, Z., Leahy, R., 1993. An optimal graph theoretic approach to data clustering: theory
and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15
(11), 1101-1113.

Wulder, M.A., White, J.C., Nelson, R.F., Nasset, E., @rka, H.O., Coops, N.C., Hilker, T.,
Bater, C.W., Gobakken, T., 2012. Lidar sampling for large-area forest characteriza-
tion: a review. Remote Sens. Environ. 121, 196-209.

Yao, W., Krull, J., Krzystek, P., Heurich, M., 2014. Sensitivity analysis of 3d individual
tree detection from lidar point clouds of temperate forests. Forests 5 (6), 1122-1142.

Yao, W., Krzystek, P., Heurich, M., 2012. Tree species classification and estimation of
stem volume and dbh based on single tree extraction by exploiting airborne full-
waveform lidar data. Remote Sens. Environ. 123, 368-380.

Yao, W., Krzystek, P., Heurich, M., 2013. Enhanced detection of 3d individual trees in
forested areas using airborne full-waveform lidar data by combining normalized cuts
with spatial density clustering. ISPRS Annals Photogram., Remote Sens. Spatial
Inform. Sci. 1, 349-354.

Yu, X., Hyypp, J., Vastaranta, M., Holopainen, M., Viitala, R., 2011. Predicting individual
tree attributes from airborne laser point clouds based on the random forests tech-
nique. ISPRS J. Photogram. Remote Sens. 66 (1), 28-37.

Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J., Zhang, C., 2003. A progressive
morphological filter for removing nonground measurements from airborne lidar data.
IEEE Trans. Geosci. Remote Sens. 41 (4), 872-882.


http://refhub.elsevier.com/S0924-2716(18)30139-4/h0005
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0005
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0005
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0010
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0010
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0010
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0015
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0015
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0015
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0020
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0020
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0020
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0025
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0025
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0030
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0030
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0030
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0035
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0035
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0035
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0035
http://refhub.elsevier.com/S0924-2716(18)30139-4/h9000
http://refhub.elsevier.com/S0924-2716(18)30139-4/h9000
http://refhub.elsevier.com/S0924-2716(18)30139-4/h9000
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0040
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0040
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0040
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0045
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0045
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0045
https://books.google.de/books?id=p0v3m8Pau-kC
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0055
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0055
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0055
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0060
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0060
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0060
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0065
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0065
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0070
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0070
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0070
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0075
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0075
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0075
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0080
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0080
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0080
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0085
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0085
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0085
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0090
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0090
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0095
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0095
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0095
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0100
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0100
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0100
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0105
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0105
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0105
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0110
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0110
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0120
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0120
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0125
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0125
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0125
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0130
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0130
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0135
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0135
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0135
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0140
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0140
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0140
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0145
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0145
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0145
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0150
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0150
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0150
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0155
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0155
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0155
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0160
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0160
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0160
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0165
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0165
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0165
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0170
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0170
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0175
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0175
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0175
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0180
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0180
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0180
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0180
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0185
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0185
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0185
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0190
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0190
http://refhub.elsevier.com/S0924-2716(18)30139-4/h0190

	Adaptive stopping criterion for top-down segmentation of ALS point clouds in temperate coniferous forests
	Introduction
	Top-down segmentation
	Main foundation
	Normalized cut segmentation
	Other top-down algorithms

	Adaptive stopping criterion
	Outline
	Local maxima detection
	Shape fitting with RANSAC
	Elliptic paraboloids
	Details of RANSAC estimation

	Classification
	Elliptic paraboloids features

	Calculating spatial overlap ratio

	Experiment
	Materials
	Classifier training
	Reference data
	Experimental setup
	Choice of parameters
	Evaluation

	Results and discussion
	Sensitivity analysis
	Adaptive segmentation approach

	Conclusions
	References




