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A B S T R A C T

Atmospheric correction (AC) is important in pre-processing of airborne hyperspectral imagery. AC requires
knowledge on the atmospheric state expressed by atmospheric condition parameters. Their values are affected by
uncertainties that propagate to the application level. This study investigates the propagation of uncertainty from
column water vapor (CWV) and aerosol optical depth (AOD) towards abundance maps obtained by means of
spectral unmixing. Both Fully Constrained Least Squares (FCLS) and FCLS with Total Variation (FCLS-TV) are
applied. We use five simulated datasets contaminated by various noise levels. Three datasets cover two spectral
scenarios with different endmembers. A univariate and a bivariate analysis are carried out on CWV and AOD.
The other two datasets are used to analyze the effect of surface albedo. The analysis identifies trends in per-
formance degradation caused by the gradual shift in parameter values from their true value. The maximum
achievable performance depends upon spectral characteristics of the datasets, noise level, and surface albedo. As
expected, under noisy conditions FCLS-TV performs better than FCLS. Our research opens new perspectives for
applications where estimation of reflectance is so far considered to be deterministic.

1. Introduction

Hyperspectral imaging sensors record the at sensor radiance re-
flected from a surface, for hundreds of narrow contiguous spectral
bands. A recorded image can thus be seen as a three dimensional cube
with two spatial dimensions and one spectral dimension. A pixel in such
a cube usually covers an area comprising several endmembers. These
mixed pixels are in contrast with pure pixels that cover a single end-
member. The occurrence of mixed pixels is due to two main reasons: i)
the spatial resolution of a hyperspectral sensor is relatively low, thus,
several endmembers share the spatial extent of a pixel, and ii) the un-
derlying surface is a mixture of several materials.

As important information about the scene might reside in mixed
pixels, extraction of quantities of interest at the subpixel level is needed.
Spectral unmixing is a popular extraction method at the subpixel level.
It exploits spectral information to derive the endmembers in the scene,
their spectral signatures, and their fractional abundances, i.e. areas
occupied by each endmember in each pixel. For a comprehensive re-
view of unmixing techniques, see Bioucas-Dias et al. (2012) and the
references therein. In this study, we rely on the Linear Mixture Model
(LMM) (Keshava, 2003). It expresses the observed spectrum of a pixel as
a linear combination of the spectra of the endmembers weighted by

their fractional abundances.
Spectral unmixing using the recorded radiance is challenging in the

presence of the Earth atmosphere. This is primarily because of the in-
teraction of the surface reflected radiation with the atmospheric con-
stituents while propagating along the path from the target surface to the
sensor (Verhoef and Bach, 2003). The interaction generates two main
atmospheric effects: absorption by atmospheric gases in particular
water vapor and ozone and aerosols in the visible and near-infrared
spectral range and scattering by aerosols and molecules (Lenoble,
1998). In addition, on the path of the beam to the sensor, reflection by
the surrounding area of the target pixel and radiance backscattered by
the atmosphere that did not interact with the surface distorts the at
sensor radiance.

An Atmospheric Correction (AC) algorithm retrieves the surface
reflectance from the at sensor radiance. AC algorithms can be divided
into scene based empirical algorithms and algorithms based on radia-
tive transfer modeling. We use the latter, as it is a mature approach for
routine processing of hyperspectral image data (Gao et al., 2006).

In radiative transfer modeling, the target radiance can be derived
assuming a plane-parallel geometry of the atmosphere, whereas the
viewing and illumination geometry and total optical depth of the at-
mosphere are known. For a reliable estimate of reflectance, the
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concentration of the atmospheric scatters and absorbers, i.e. the optical
parameters, should be available at the time of imaging. In this paper,
we analyze the effect of uncertainty in estimations of atmospheric
aerosol optical depth (AOD) and column water vapor (CWV). Both CWV
and AOD are highly varying in space and time. Thus, they are estimated
directly from satellite or airborne (remote) observations. With knowl-
edge of CWV and AOD, transmission of radiation through the atmo-
sphere can be simulated.

Estimation of CWV from at sensor radiance consists of identification
of the measurement channels, identification of reference channels, and
using a relation between reference and measurement channels (Carrere
and Conel, 1993). These methods are limited with respect to several
assumptions. First, surface reflectance is assumed to vary with wave-
length in a linear way; second, the effect of sensor noise is often not
considered, and third, uncertainty emerging from instrument char-
acterization is ignored (Rodger, 2011; Qu et al., 2003).

Estimation of AOD consists of determining aerosol radiative prop-
erties characterized by their shape, their size, their chemical composi-
tion, and total amount (Diner et al., 2005). The MODIS science team
(Remer et al., 2005) has developed the dense dark object method to
estimate AOD that is further developed in Richter et al. (2006). The
limitation of such methods is their suitability for pixels with dense
vegetation. For scenes with dark pixels that are clustered at a few lo-
cations, pixelwise estimation of AOD is challenging. Besides, at sensor
based inference of AOD is adversely affected by noise of at sensor ra-
diance.

These assumptions and limitations, reasonable as they are, cause
uncertainty in the estimation of CWV and AOD which likely propagates
to reflectance estimates.

The objective of this paper is to analyze the impact of uncertainty in
unmixing caused by CWV and AOD, given their specific influence on the
estimated reflectance spectra. A basic hypothesis of unmixing is that the
estimated reflectance spectra are free from atmospheric artefacts. By
ignoring uncertainty in the AC parameters, however, it is likely that this
hypothesis is violated. The paper specifically focuses on an operational
processing chain. The operational processing chain is implemented in
the multi-mission Processing, Archiving, and distribution Facility (PAF)
for Earth observation products (Richter, 2007). Experiments in this
paper are performed using the PAF incorporated in the Central Data
Processing Center (CDPC) (Biesemans et al., 2007) at the Flemish In-
stitute for Technological Research.

2. Theoretical background

2.1. Basic atmospheric effect modeling

The fraction (ρt) of the total irradiance at the surface (Eg) reflected
by the earth surface depends upon the type of surface, illumination (θs),
viewing geometry (θv), and wavelength (λ). On the path of the beam to
the sensor other radiation components are added to the radiance re-
flected by the surface (Lt(λ)) due to atmospheric scattering. We dis-
tinguish four contributions to the at sensor radiance (Lrs,t(λ)):

= + + +L λ L λ L λ L λ L λ( ) ( ) ( ) ( ) ( ).brs,t t pa pb (1)

Lt(λ) contains the target surface information, Lpa(λ) and Lpb(λ) are
path radiance and background path radiance, respectively, that enter
the IFOV of the sensor due to scattering, and Lb(λ) is the background
radiance, or adjacency effect, being the average radiance of the sur-
rounding surface.

For a target surface with reflectance ρt(λ) and background re-
flectance ρbck(λ), the background path radiance, background radiance,
and target radiance are:

= +L λ
π

ρ λ T τ θ λ E λ( ) 1 ( ) ( , , ) ( ),vpb bck tot g (2)

= +L λ
π

ρ λ T τ θ λ E λ( ) 1 ( ) ( , , ) ( ),vb bck dir g (3)

= +L λ
π

ρ λ T τ θ λ E λ( ) 1 ( ) ( , , ) ( ),vt t dir g (4)

where +Ttot expresses the total upward transmittance, which is further
subdivided in direct transmittance +T( )dir and diffuse transmittance
(Haan and Kokke, 1996). Let the residual terms in Eq. (1) be denoted
by:

= + +L λ L λ L λ L λ( ) ( ) ( ) ( ).rs,b pa pb b (5)

Then the background reflectance can be retrieved using

=
−

ρ λ
L λ L λ

C
( )

( ) ( )
bck

rs,b pa

(6)

with

= + −+ −C θ T τ θ λ T θ λ F S L λ L λcos ( ) ( , , ) ( , ) [ ( ) ( )]s v stot tot rs,b pa

where S is the spherical albedo for illumination from below of the at-
mosphere and −Ttot expresses the total downward transmittance. Sub-
stituting the expression for ρbck(λ), the target reflectance equals

=
− + − + +
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L λ L λ L λ L λ T τ θ λ T τ θ λ

C
( )
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t
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(7)

The basic atmospheric effect model is well described in Gao et al.
(2009). We use MODTRAN 4 (Berk et al., 2000) to estimate the radiance
components in Eq. (7). It computes absorption and scattering in the
terrestrial atmosphere at high spectral resolution and is treated below
as a black box. It allows one to pixelwise solving the DIScrete Ordinate
Radiative Transfer (DISORT) (Stamnes et al., 1988) for accurate com-
putations of atmospheric multiple scattering. In an operational pro-
cessing chain, however, the considerable execution time to do so is a
problem. Therefore, MODTRAN 4 is executed for a uniform Lambertian
surface reflectance with a spectrally flat surface albedo of App=0,
App=0.5, and App=1.0. In this way, the various radiance components
for a given atmospheric state and angular geometry are determined.
This is the MODTRAN interrogation technique that has been used in
operational processing chains to derive the same radiance component
as in Eq. (7) (Verhoef and Bach, 2003; Sterckx et al., 2016). MODTRAN
4 provides four radiance components:

1. The total radiance as measured by the sensor, Lrs,t(λ),
2. The total path radiance Lpath(λ) that consists of the light scattered in

the path,
3. The total ground radiance that consists of all the light reflected by

the surface and traveling directly towards the sensor, Lgnd(λ),
4. The direct ground reflectance, Ldir(λ) as a fraction of Lgnd(λ) re-

sulting from direct illumination of the ground surface.

The four components are then combined using Eq. (7).

2.2. The linear mixture model (LMM) and unmixing methods

Let y ∈ℝB be the reflectance spectrum of one pixel, where B is the
number of spectral bands. According to the LMM, it can be expressed as
a linear combination of the spectra of the endmembers, weighted by
their fractional abundances:

= ⋅ +y A x n. (8)

Here, A ∈ℝB×m is the set of endmembers in the scene serving as a
spectral library containing m pure spectra, x ∈ℝm is the vector of cor-
responding fractional abundances compatible with A, and n ∈ℝB is a
noise vector. In this paper, we assume that A is available a priori.
Unmixing thus aims at identifying the atoms of A which are active in
each pixel and their respective abundances. To solve Eq. (8), we
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consider the classical least-squares solution obtained by solving:

⋅ −A x ymin 1
2

‖ ‖ .
x

2
2

(9)

Two constraints, arising from the physical meaning of the fractional
abundances, can be imposed on Eq. (9): 1) the non-negativity constraint
(ANC), and 2) the sum-to-one constraint (ASC) (Heinz and Chang,
2001).

In addition, we take intrinsic spatial smoothness into account as an
important characteristic of natural scenes. We use the Sparse Unmixing
via Variable Splitting, Augmented Lagrangian and Total Variation
(SUnSAL-TV) (Iordache et al., 2012) to obtain a solution with piece-
wise smooth transitions of the abundance fractions in neighboring
pixels. SUnSAL-TV solves the optimization problem:

− + +AX Y λ X λ Xmin 1
2

‖ ‖ ‖ ‖ TV( ),
X

F TV
2

1 1,1 (10)

where

∑≡ −
∈

X x xTV( ) ‖ ‖
i j ε

i j
{ , }

1
(11)

is a vector extension of the non-isotropic TV (Chambolle, 2004) and ε
denotes the set of neighbors in the image. In Eq. (10), Y ∈ℝL×n is the
observed data matrix with each column containing the observed spec-
trum at a pixel, X ∈ℝm×n is the matrix of fractional abundances,

≡X XX‖ ‖ trace{ }F
T represents the Frobenius norm of X and

≡ ∑ =
X x‖ ‖ ‖ ‖i

n
i1,1 1 1, with xi denoting the ith column of X. The first term

in Eq. (10) measures the data misfit, the second term forces the matrix
of fractional abundances to be sparse, and the last term accounts for
spatial homogeneity of the abundance maps. The parameters λ1 ≥ 0
and λTV ≥ 0 are regularization parameters. SUnSAL-TV introduces a set
of new variables per regularizer and then uses the Alternating Direction
Method of Multipliers (ADMM) (Jonathan and Bertsekas, 1992) to solve
the resulting constrained optimization problem. In our experiments, we
neglect sparsity as the spectral libraries employed will contain a small
number of endmembers. We use SUnSAL-TV applying both ANC and
ASC to solve both optimization problems Eqs. (9) and (10), as follows:

• Fully constrained least squares (FCLS): no sparsity is enforced and
no spatial information is considered. This situation is encountered if
the regularization parameters λ1=0 and λTV=0;

• FCLS with Total Variation (FCLS-TV): Only spatial information is
considered in SUnSAL-TV by setting λ1=0 and λTV>0.

The ASC, often ignored due to signature variability (Bateson et al.,
2000), is used in this work as we assumed the set of image endmembers
to be known and hence no sparsity is enforced on the vectors of frac-
tional abundances.

3. Datasets

Three synthetic datasets are used to quantify the uncertainty pro-
pagated at two levels: reflectance cubes as a level2 product and abun-
dance maps as a level3 product. These two products are estimated
under various atmospheric conditions: i) low to moderate to high
scattering conditions; ii) low to moderate to high absorption conditions;
iii) the usual conditions, related to the moderate atmospheric condi-
tions under which most of the airborne campaigns are performed.

We create two datasets for a geological scenario and one dataset for
a scenario containing vegetation. Further, we use two Spectral
Scenarios (SS): SSa with spectrally distinct endmembers in a scene; SSb
with spectrally similar endmembers in a scene. The two spectral sce-
narios are linked to the three synthetic datasets.

3.1. The synthetic datasets

The two geological datasets are generated using the MATLAB
Hyperspectral Imagery Synthesis tools, available online (Matlab-
Toolbox, 2012). They contain two distinct sets of five endmembers,
collected from the USGS spectral library (Kokaly et al., 2017). We use
the following spectrally distinct endmembers to generate the first
geological dataset: Buddingtonite, Alunite, Montmorillonite, Jarosite,
and Rivadavite (Fig. 1). The spectrally similar endmembers, used to
generate the second geological dataset, are signatures of a single mi-
neral, Nontronite, to address endmember variability (Fig. 2). All end-
member spectra were resampled to the central wavelengths of the
HyMap airborne hyperspectral sensor (Cocks et al., 1998). Each dataset
contains 128×128 pixels on 126 spectral bands with the spatial re-
solution of 2.5 m along track and 2.0 m across track.

The vegetation dataset is generated following (Iordache et al., 2012)
and is a hyperspectral image cube of 75×75 with 126 spectral bands.
There are five endmembers present in the scene: leather oak, dry grass,
sandy loam, construction concrete, and asphalt. These endmembers
were obtained as follows: dry grass and leather oak spectra from the
database of Jasper Ridge, spectral library (ENVI-Team, 2014) and
construction, sandy loam, and asphalt from the database of the Johns

Fig. 1. Fractional abundances of the five (spectrally distinct) endmembers (a)–(e) and their corresponding spectral signatures (f) generating the first geological dataset.
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Hopkins University Spectral Library (Baldridge et al., 2009). All end-
member spectra were resampled to the central wavelengths of the
HyMap airborne hyperspectral sensor (Fig. 3). The vegetation dataset
contains square regions of 5×5 pixels, which are spectrally homo-
geneous, and all pixels within a square region have the same reflectance
values. Fig. 4 depicts spatial arrangement of the homogenous regions
and ground truth fractional abundance maps.

All datasets are generated according to the LMM, including the ANC
and ASC.

3.2. Case study: variability of surface albedo (dark and bright surfaces)

The surface albedo influences the quality of the spectra retrieved via
atmospheric correction (AC), independently from the effects of the
uncertainty in the AC parameters. Aerosol optical depth is particularly
important in this respect, as it influences the amplitude of the spectra in
a large range of wavelengths. This case study analyzes the effect of
surface albedo on reflectance and abundance estimates with two da-
tacubes comprising dark and bright targets separately. The bright target
datacube is generated using spectra of five minerals: Albite, Ammonio-
Illite, Ammonio-Alunite, Muscovite, and Topaz. The dark surface is
generated mainly using man-made materials: Black tar paper, Cinders,
Construction asphalt, Reddish asphalt, and Bornoite (mineral). Each

dataset contains 128×128 pixels with 126 spectral bands and the
spatial resolution of 2.5 m along track and 2.0 m across track. The
spectra of these materials are presented in Fig. 5.

3.3. Addition of noise to the simulated datasets

Sensor noise and processing noise are major sources of distortion.
Sensor noise refers to the random electronic noise like dark current,
processing noise occurs due to the final pre-processing steps on the
reflectance datacube, e.g. spectral smoothing. We added the two types
of noise to the datasets at two stages: sensor noise to the radiance cube
and processing noise to the estimated reflectance cube. In order to
observe the effect of the different noise levels we considered three le-
vels of the correlated processing noise, with signal-to-noise ratios
(SNR): 30, 40, and 50 dB, respectively. All correlated noise levels were
generated from independent, normally distributed noise by low-pass
filtering with a normalized cut-off frequency of ⋅ π

B
8 for each SNR.

Fig. 6 shows four estimates of band 100 (2.2 μm) of the reflectance
cube when random (white) sensor noise with SNR: 30, 40, 50, and
60 dB is added to the at sensor radiance. True AC parameters were
employed and no correlated noise was added to the reflectance cube.
From visual interpretation we conclude that sensor noise with
SNR=60 dB is a realistic choice as the other noise levels severely

Fig. 2. Fractional abundances of the five (spectrally similar) Nontronite (Non.) types (a)–(e) and their corresponding spectral signatures (f) generating the second geological dataset.

Fig. 3. Spectral signatures of the five materials
used to generate the vegetation dataset.
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distort the images when other errors are missing.

4. Experiments

Atmospheric correction, as a mathematical model of an atmosphere,
returns an estimate of reflectance for any physically realizable values of
column water vapor, aerosol optical depth and other parameters. In our
experiments, the other parameters are treated as constants. Column
water vapor and aerosol optical depth, however, should also have un-
ique values during atmospheric correction. In simulations, it may be
necessary to vary them over a range of values, where the distribution of
values reflects the uncertainties of the parameters. We use one-at-a-time
variation in aerosol optical depth and column water vapor, i.e. uni-
variate analysis, and their joint variation in a bivariate analysis for the
uncertainty analysis. A bivariate analysis permits large deviations from
the nominal parameter values, thus allowing evaluation of atmospheric
correction for various combinations of column water vapor and aerosol
optical depth. We use uniform probability distributions for the two
atmospheric parameters, resulting in equally probable samples.

4.1. The forward modeling

At sensor radiance cubes are simulated using the forward radiative
transfer modeling using MODTRAN 4. Standard MODTRAN 4 mid-la-
titude summer model with the rural aerosol model is used and the
sensor altitude is approximately 3 km above sea level. In an operational
processing chain, realistic aerosol optical depth values that coincide
with image acquisition are unavailable (Wilson et al., 2015). As an
alternative, image based methods measuring visibility are often used to
set aerosol optical profiles (Richter, 2007; Schlapfer, 1998). Here, we
specify aerosol optical depth values and their corresponding visibility
values so that it is useful to the remote sensing communities dealing
with both quantities.

In MODTRAN 4, visibility scales the aerosol content in the atmo-
sphere, whereas AOD specifies extinction due to aerosols at wavelength
λ and is the product of the extinction coefficient EXT(λ) and the path
length. Aerosol optical depth asymptotically decreases with increasing
visibility. At 550 nm the contributions of molecular depth, ozone depth,
and trace gases usually are small and aerosol optical depth is the main
contributor to the total optical depth of the atmosphere i.e. EXT(550) is

Fig. 4. Spatial arrangement of the homogenous regions (a) and ground truth fractional abundance maps (b)–(f). The square regions at the top are pure and correspond to the five
endmembers. The other square regions are mixed with the number of endmembers ranging between two and five. The remaining pixels (image background) contain a mixture of the five
endmembers in which the abundance fractions were randomly fixed to 0.513, 0.1476, 0.1158, 0.1242 and 0.0994, respectively.

Fig. 5. Spectra of the materials used to
generate the bright surface in (a) and
spectra of the materials used to generate
the dark target surface in (b).
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directly related to aerosol optical depth. A high precision in aerosol
optical depth can be achieved by subtracting the Rayleigh scattering
coefficient and a very small trace gas depth from a known total optical
depth. In MODTRAN 4, for λ=550 nm and for a geographic region at
mid-latitude during the summer season, visibility is related to aerosol
optical depth (Fig. 7) as,

=
+EXT

visibility ln(50)
(550) 0.01159

,
(12)

where, 0.01159 km−1 is the surface Rayleigh scattering coefficient for
λ=550 nm. Therefore, visibility is given as a parameter for transmit-
tance simulations for a given illumination and viewing geometry. This
leads to a look-up table of visibility against transmittance. The relation
between visibility and aerosol optical depth, jointly with the effect of
visibility on atmospheric transmittance, are illustrated in Fig. 7.

In univariate and bivariate analysis applied to the FCLS-TV algo-
rithm, the regularization parameter λTV is set to values between 0 and
0.06 with a step size of 0.01, and the best performance among all values

is retained. Average performances over ten runs are taken.

4.2. Experimental setup for univariate analysis

The univariate analysis experiments for aerosol optical depth consist
of three ranges: high to moderate (visibility: 4–26 km), moderate to low
(visibility: 16–45 km), and low (visibility: 45–72 km). From our ex-
perience with real images processed in the CDPC, we observed that the
reflectance is not sensitive to visibility values above 60 km. Thus, the
maximum value of visibility is set to 72 km. Each visibility range is
associated with an experiment given in Table 1, where column water
vapor is kept fixed to the value used in the forward modeling. Likewise,
the experiments for column water vapor consist of two column water
vapor ranges: low to moderate (0.1–1.0 g⋅cm−2) and moderate to high
(1.0–2.25 g⋅cm−2). Each column water vapor range is associated with
an experiment given in Table 2. In these experiments, visibility is kept
fixed to the value used in the forward modeling. We used the same
atmospheric settings to analyze the propagation of uncertainty to the

Fig. 6. Band at (2.2 μm) of the estimated reflectance with
30 dB (a), 40 dB (b), 50 dB (c), and 60 dB (d) noise levels.
The noise levels strongly distort the reflectance image.

Fig. 7. Relation between visibility and aerosol optical depth
in (a) and effect of visibility on atmospheric transmittance in
(b). Standard MODTRAN 4 mid-latitude summer model with
the rural aerosol model is used while sensor altitude is ap-
proximately 3 km and column water vapor equals 2.0 g⋅cm−2

and other MODTRAN parameters are at their default values.

N. Bhatia et al. Remote Sensing of Environment 204 (2018) 472–484

477



abundance maps. The unmixing performed using the FCLS and FCLS-TV
is repeated for noiseless data and correlated noise with SNR of 50 dB,
40 dB and 30 dB.

4.3. A univariate analysis of dark and bright targets

This experiment analyzes the joint influence of aerosol optical depth
uncertainty and albedo amplitude on the spectral quality of the esti-
mated reflectance cube and on the fractional abundances derived from
it.

For the forward modeling of dark and bright target surfaces, low
scattering (aerosol optical depth=0.14) and high scattering (aerosol
optical depth=0.48) are considered, whereas column water vapor is
fixed to 1.5 g⋅cm−2, resulting in four at sensor radiance cubes. AC is
evaluated for two discrete sets of samples of the aerosol optical depth in
the ranges (1.42–0.28) and (0.16–0.13), corresponding to visibility
ranges 6–27 km and 51–69 km, respectively.

4.4. Experimental setup for a bivariate analysis

The bivariate analysis applied to the vegetation dataset analyzes the
joint effect of column water vapor and aerosol optical depth on atmo-
spheric correction. Column water vapor and visibility are varied within
the ranges 1.35–1.65 g⋅cm−2 and 15–45 km, corresponding to aerosol
optical depth values between 0.48 and 0.18, with reference column
water vapor and visibility set to 1.5 g⋅cm−2 and 30 km, respectively.
These experiments are repeated for data without correlated noise and
for data perturbed by correlated noise with SNR of 50 dB, 40 dB, and
30 dB. This atmospheric setting is also used to analyze the propagation
of uncertainty to abundance mapping.

4.5. Uncertainty propagation

To quantitatively assess the propagation of uncertainty we use the

signal-to-reconstruction-error SRE ̂≡
−

E x
E x x

[ ]
[| ]

2
2

2
2 for both the estimated

reflectance and fractional abundances. Here, x is the reference signal
and ̂x is an estimation of x. SRE provides more information on the
power of the signal w.r.t. the power of the error than, e.g., the Root
Mean Squared Error (RMSE) (Iordache et al., 2011). In all experiments,
we report SRE measured in dB: SRE(dB) = 10 log10(SRE).

In addition, to quantify the pixelwise uncertainty in the estimates of
reflectance and abundance maps, we measure two other quantitative
errors: Normalized Root Mean Square Error =

−
(NRMSE) x x

RMSE
max( ) min( )

and Mean Absolute Percentage Error ̂
= ∑ ×

=
−(MAPE) 100t

n x x
x1

t t
t

.

5. Experimental results

5.1. Univariate analysis of aerosol optical depth

Fig. 8 shows results of univariate analysis of aerosol optical depth
for the geological dataset with distinct endmembers with different de-
grees of correlated noise added to the dataset. The maximum perfor-
mance is achieved if visibility is close to the true value. The rate of
degradation in performance is higher, shown by the steeper slope, if
visibility is underestimated and is smaller if overestimated. This per-
formance trend is valid for all visibility scenarios. The maximum
achievable performance varies among the datasets and depends upon
the true value of visibility. For the true atmospheric conditions, i.e. the

Table 1
Visibility (km) and corresponding aerosol optical depth ranges to generate various at-
mospheric combination to perform univariate analysis of aerosol optical depth for geo-
logical scenario datasets with distinct and similar endmembers, respectively. The sam-
pling rate is 2 km and column water vapor is fixed at 1.5 g⋅cm−2.

Scattering
condition

Aerosol optical
depth range

True aerosol
optical depth

Visibility
range

True
visibility

High to
moderate

1.42–0.28 0.47 4–26 15

Moderate to low 0.45–0.18 0.28 16–45 28
Low 0.18–0.11 0.14 45–72 60

Table 2
Column water vapor ranges (g⋅cm−2) to generate various atmospheric combination to
perform univariate analysis of column water vapor for the geological datasets with dis-
tinct and similar endmembers. The sampling rate is 0.05 g⋅cm−2 and the visibility is fixed
at 15 km (i.e. aerosol optical depth equals 0.48).

Absorption condition Column water vapor range True column water vapor

Low to moderate 0.1–1.0 0.5
Moderate to high 1.0–2.25 1.5

Fig. 8. SRE (dB) values for univariate analysis of aerosol optical depth for the geological dataset with distinct endmembers with and without correlated (corr.) noise, when the true
visibility is set to: a) 15 km; b) 28 km, and c) 60 km.
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same atmospheric conditions for forward and inverse radiative mod-
eling, the minimum performance is achieved if true visibility equals
15 km, whereas the maximum performance is achieved if true visibility
equals 60 km. Ideally, the performances should not vary if atmospheric
conditions are kept constant for the forward and inverse radiative
modeling. This difference is attributed to surface albedo and is further
investigated in Section 5.3.

From Fig. 8, it can be seen that the performance degrades if the data
are affected by noise. This observation is valid for all datasets, and the
decrease in the performance is stronger if the noise level increases. To
quantify this effect, we compute the ratio (R) between the maximum
performance for SNR = 30 dB and the maximum performance without
correlated noise (Table 3). A low ratio indicates a high degradation.
Each noise level limits the maximum achievable performance even at
the true value of visibility. This affects the slope between the perfor-
mance achieved at the true value of visibility and at all other points. For
instance, if the true visibility is 15 km and without correlated noise the
maximum performance is close to 49 dB and the minimum performance
is close to 20 dB, thus the slope is approximately 3.2. With 30 dB cor-
related noise, the maximum achievable performance is limited to 30 dB
and the slope is approximately 1.3. For the two geological scenario
datasets, performance of FCLS and FCLS-TV is quantified using re-
ference abundance cubes i.e. ground-truth abundances used to generate
those datasets.

Fig. 9 shows the performance of FCLS for noiseless data. Results
reveal that for both FCLS and FCLS-TV (not presented), the perfor-
mance trend is similar to that of reflectance estimates, but its magni-
tude is lower than the reflectance estimates. The different spectral
compositions of the scenes may cause differences in performance be-
tween the geological datasets with distinct and similar endmembers.
Another explanation may be the difference in surface albedo between
the datasets. Further, peak performances are observed at the true value

of visibility and at the next higher value of visibility i.e. the perfor-
mance is insensitive to visibility values between these two points. For
the geological dataset with similar endmembers, peak performances are
unavailable at the true values and appear at the next lower value of
visibility.

Fig. 10 shows the variation of SRE (dB) with respect to λTV for the
geological dataset with distinct endmembers for all scattering scenarios
affected by various levels of noise.

For no correlated noise, 50 dB correlated noise and 40 dB correlated
noise, the performances of FCLS and FCLS-TV are comparable, whereas
FCLS-TV performs better with increasing noise level.

To explore propagation of the uncertainty to the abundance maps,
we quantify NRMSE to generate various other results. First, in Fig. 11 a
bar graph representing NRMSE of the geological dataset with distinct
endmembers is shown. Note, the larger errors are occurring for low
visibility values.

Fig. 12 shows propagation of uncertainty in terms of mean NRMSE
estimates of endmember-4 abundance maps obtained by varying visi-
bility between 6 and 26 km and their corresponding standard deviation
maps. The true visibility is set to 15 km. The mean NRMSE corresponds
to a map with the mean values at every pixel computed by an average of
NRMSE at each visibility value between 6 and 26 km, with a sampling
rate of 1 km.

5.2. Univariate analysis for column water vapor

As for aerosol optical depth, the maximum performance is obtained
at the true value of column water vapor. Unlike for aerosol optical
depth, however, the performance degradation is sharp and less de-
pendent upon column water vapor overestimation or underestimation.
For higher column water vapor ( > 2.0 g⋅cm−2) the performance tends
to saturate. Further, the maximum attainable performance is in-
dependent of the true column water vapor values. This is as expected
and different from aerosol optical depth where differences in perfor-
mance are observed for visibility values of 15 km and 60 km.
Performances are higher for geological scenario dataset with similar
endmembers. With the increase in noise level, the performance de-
grades but the peak of the performance remains at the true values i.e.
no shift is observed.

For the two geological scenario datasets with distinct and similar
endmembers, and for both FCLS and FCLS-TV, the performance trend is
similar to that of reflectance estimate, whereas the magnitude of the
performances is lower. Unlike aerosol optical depth, no significant
variation in performance is observed due to changes in the spectral
property i.e. changes of the datasets.

Table 3
Performance ratios for the geological dataset with distinct endmembers (Gdist.) and the
geological dataset with similar endmembers (Gsim.). P1 corresponds to noisy data with
SNR=30 dB, while P2 corresponds to noiseless data. The lower the ratio values, higher
the performance degradation during the univariate analysis of the reflectance product.

Label True visibility (km) P1 P2 Ratio

Gdist. 15 29.94 48.95 0.612
Gsim. 15 29.98 56.87 0.527
Gdist. 28 29.99 56.39 0.532
Gsim. 28 30 58.88 0.51
Gdist. 60 30 59.21 0.507
Gsim. 60 29.98 59.70 0.502

Fig. 9. SRE values for FCLS with the
geological dataset with distinct end-
members (Gdist.) and the geological da-
taset with similar endmembers (Gsim.)
without correlated noise.
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Fig. 13 shows a reference spectrum and various spectra of the same
material, derived via AC that are distorted due to the uncertainty in
visibility and column water vapor. These results illustrate the effect of a
parameters' deviation on the spectral quality and depict how deviation
in the parameter affect the shape of the spectra, which is an important
input for unmixing.

5.3. Univariate analysis of dark and bright targets

Table 4 shows results of the experiment related to the dark and
bright targets if no noise is added to the reflectance cubes. For illus-
tration, only performances for the true atmospheric conditions of 15 km
and 60 km are shown. At reflectance level, we noted that the perfor-
mance for the dark targets is lower than the one for the bright targets
irrespective of the atmospheric conditions. This trend propagates to the
abundance level estimation as well, as shown in Fig. 14. As the un-
mixing performance follows the trend of the SRE(dB) computed for
reflectance, it can be concluded that the abundance maps obtained via

unmixing for bright scenes are less affected by uncertainty in the at-
mospheric correction parameters than those obtained for dark scenes.

5.4. The bivariate analysis for column water vapor and aerosol optical
depth

blackThe performance analysis for reflectance and abundance maps
is given in Fig. 15. As observed from the univariate analysis experi-
ments, high performance around the true values of column water vapor
and visibility is obtained. If the values of the two parameters deviate
from the true values, the performance degrades. A general pattern is
that the performance tends to saturate, after a relatively low decrease, if
visibility is higher than 30 km (overestimation), whereas, if visibility is
lower than 30 km (underestimation), the performance sharply declines.
For column water vapor, however, performance declines sharply for
both overestimation and underestimation.

Fig. 16 shows SRE (dB) of reflectance estimates and abundance
estimates under high noise conditions, i.e. 30 dB correlated noise. This

Fig. 10. Variation of SRE(dB) with respect to λTV values for FCLS-TV in geological dataset with distinct endmembers for the true visibility equals 15 km (a), 28 km (b), and 60 km (c). The
optimal value of λTV corresponds to the maximum value of SRE (dB).

Fig. 11. NRMSE for each endmember of the
geological dataset with distinct endmembers
for a visibility range 6–26 km when the true
visibility is set to 15 km.
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noise level strongly influences the performance at both estimates in two
ways: 1) the overall amplitude of the performance degrades as com-
pared to the performances observed at 40 dB and 50 dB noise levels; 2)
comparing the trend of the performances with the noiseless case, the
distinct peak of the performances is not visible anymore i.e. the highest
performance can be obtained around the true values of the parameters

and not necessarily when the parameters are correctly set. These find-
ings are more clearly visible for unmixing estimates.

For correlated noise with SNR of 40 and 50 dB, the decrease in the
performances is smoother if column water vapor is overestimated as
compared to if it is underestimated. Further, the distinct peak of the
performances is also not achieved for 40 and 50 dB as compared to the
noiseless case.

A comparison between the unmixing solutions reveals that FCLS-TV
has superior performance than FCLS in noisy scenes. The superior
performance of FCLS-TV is less important if noise decreases, confirming
the previous results. This is valid for all combinations of atmospheric
parameters. The optimal λTV values under various noisy conditions are
given in Table 5.

6. Discussion and conclusions

This paper aimed to quantify the uncertainty propagation from

Fig. 12. Mean NRMSE estimates of endmember-4 for no noise (a), 50 dB noise in (b) and 30 dB noise in (c) obtained due to variations in visibility between 6 and 26 km. The
corresponding standard deviation are shown in plots (d)–(f) for no noise, 50 dB, and 30 dB noise levels, respectively.

Fig. 13. Deviation in the spectral quality due to the uncertainty in visibility in (a) and CWV in (b). The visibility is varying between 6 and 26 km with a true visibility at 15 km and CWV
is varying between 1.0 and 2.25 g⋅cm−2 with a true value at 1.5 g⋅cm−2.

Table 4
Effect of dark and bright targets on the performance with true visibility conditions for
reflectance estimates.

Albedo Visibility (km) Aerosol optical
depth

SRE (dB) NRMSE MAPE (%)

Dark 60 0.14 64 4.2e−04 3.8e−02

Bright 60 0.14 72 3.0e−04 9.4e−03

Dark 15 0.47 52 1.7e−03 1.6e−01

Bright 15 0.47 58 1.5e−03 5.7e−02
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aerosol optical depth (AOD) and column water vapor to the fractional
abundance estimates via reflectance estimates. It was applied to the
HyMap hyperspectral sensor and there is no reason why it should also
not be effective on other hyperspectral sensors. The method is simple to
implement and can be extended to encompass other atmospheric trace
gases and other atmospheric condition parameters.

One of the important contributions of this study is that the effect of
uncertainty was analyzed and quantified. The results shown provide a
useful insight into how a given uncertainty affects the performance at
reflectance level and at subsequent applications (spectral unmixing).
For instance, 30% degradation in performance (SRE) was observed
under the high scattering conditions. This degradation came down to
6% under the moderate scattering conditions. The steepness in perfor-
mance degradation significantly changes when the noise corrupts the
data, especially under the high noise conditions. This indicates that the
atmospheric settings, noise, and the parameter's deviation have a
combined effect on the propagation of the uncertainty. Thus, an in-
depth analysis of performance degradation due to the uncertainty in
aerosol optical depth and column water vapor was performed for dif-
ferent atmospheric scenarios, covering low, moderate, and high scat-
tering and absorption conditions for various noisy setups. The analysis
identified performance degradation trends that were actually caused by
the gradual shift in parameter values from their true value within the
uncertainty limits (ranges) defined in the experiments.

We noted that the variability in aerosol optical depth influenced the
amplitude of the retrieved spectra. Its influence was not linear, in the
sense that deviations from the reference spectra depend upon the sur-
face reflectance of the target, the wavelength, and the scattering con-
ditions (Seidel et al., 2012). This observation is consistent with our
previous work (Bhatia et al., 2015). For high aerosol optical depth
values and high surface reflectance ( > 0.3), the estimated reflectance
was higher than the reference reflectance, whereas for low surface re-
flectance ( < 0.3) estimated spectra were lower than reference spectra.
This consistently happened for spectra of all considered endmembers.
An opposite pattern was observed for low scattering conditions. In
Fraser and Kaufman (1985), a threshold =Pc ρ λ

AOD
( )t

was introduced as a
critical parameter to determine how the estimated reflectance changes
due to aerosol scattering. Applying this threshold we found that if
Pc>1, then the estimated surface reflectance was underestimated,
otherwise it was overestimated. The changes in the estimated re-
flectance were negligible when aerosol optical depth approaches the
reflectance value.

Variation in column water vapor influenced the retrieved spectra
mainly in the bands around the atmospheric water vapor absorption
features. Uncertainty in column water vapor affected the performance
more severely than uncertainty in aerosol optical depth, because var-
iation in column water vapor significantly distorted the spectral shape.
This was evident from the low performance obtained for maximum

Fig. 14. The NRMSEs (%) obtained for the five endmembers quantify the effect of dark and bright targets with true visibility and column water vapor conditions for abundance estimates.

Fig. 15. SRE (dB) values for bivariate analysis of column water vapor and visibility for reflectance estimates (a) and abundance estimates (b) without correlated noise.
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deviation in aerosol optical depth as compared to maximum deviation
in column water vapor. The uncertainty in aerosol optical depth,
however, strongly influenced the quality of the abundance maps if the
endmembers were spectrally similar, especially if high atmospheric
scattering occurred.

Further, the performance of reflectance estimates was always higher
than that of abundance estimates. This might be due to the inherent
limitations of the unmixing method and their numerical approxima-
tions. Without noise FCLS and FCLS-TV are comparable because spatial
homogeneity in the datasets introduces only negligible improvements
of the fractional abundance values in noiseless scenes.

A difference in maximum attainable performance observed for high
scattering conditions could be attributed to the presence of bright and
dark targets in a scene. Bright targets reflect more radiation energy than
dark targets. Thus, the majority of the at sensor radiance consists of
photons that are not scattered. In contrast, most of the photons for the
dark targets are scattered (Lindstrot et al., 2012). This contribution
amplifies under high scattering conditions resulting in performance
degradation. In this paper, we do not explicitly explore the effect of
albedo on the parameters estimation. From our experience working
with the real images in the CDPC, we found that surface albedo affects
the parameters estimation by widening the parameters uncertainty. The
surface albedo becomes a source of the parameters uncertainty. As an
outlook of this work, a sensitivity analysis can be performed to ap-
portion the contribution of sources of uncertainty to reflectance esti-
mates.

Effective ranges of column water vapor and aerosol optical depth
were within the 90% confidence interval from their true values. Thus,

for the bivariate analysis, we varied visibility and column water vapor
values within relatively narrow ranges: 15–45 km and
1.35–1.65 g⋅cm−2, respectively. Outside this interval, the performance
strongly degraded and saturated to a low value. Such effective ranges
could be a useful measure for calibrating the value of the two para-
meters in optimizing the performance under uncertainty. Under high
noise conditions (SNR=30 dB), both spectral quality and unmixing
performance are strongly degraded, whereas the effect of scattering
becomes less important. A high noise level therefore has a weaker in-
fluence on the performance trend for column water vapor than for
aerosol optical depth, resulting in a distinct peak of the performance.
Thus, in the presence of high noise in airborne data, uncertainty in
atmospheric correction parameters and data noise affect the final pro-
ducts jointly.

Because of the asymptotic decreasing relation between aerosol op-
tical depth and visibility, care should be taken when using visibility as a
substitute to aerosol optical depth, especially under high scattering
conditions where aerosol optical depth is highly sensitive to visibility
values (see Fig. 7). Ideally, estimation of aerosol optical depth can be
obtained from the AErosol RObotic NETwork (AERONET) stations
(Holben et al., 1998). However, most of the airborne campaigns and
many satellite images do not include an AERONET site location. Al-
ternatively, aerosol optical depth measurements can be taken from
handheld instruments. This requires ground measurements at the time
of satellite or airborne image acquisition, which is often hard to collect
and is impossible to obtain for archived imagery. Two measures that are
often used for visibility are horizontal extinction coefficients derived
from the horizontal visibility measured at airport stations and image
based methods. Horizontal based visibility estimation leads to in-
accurate values because of the dependency of estimates to the viewing
direction. Lower values of visibility are reported when looking in the
direction of the sun due to the strong forward scattering radiation
(Schlapfer, 1998). It results in errors in horizontal visibility that are
significantly higher than those derived from image based methods and
standard satellite products. Airborne campaigns are also normally not
acquired under high scattering conditions. Therefore, errors seen at
0–10 km visibility in Wilson et al. (2015) are unlikely to be experienced
with operational remote sensing.

The present study can be further extended to take other atmospheric
correction parameters into account. Effects of adjacency can be in-
vestigated in scenes where heterogeneity and/or topographic effects are

Fig. 16. SRE (dB) for the vegetation dataset with correlated noise (SNR=30 dB) for reflectance estimate (a), for the abundance estimate with FCLS solution (b), and with FCLS-TV
solution (c) for variations in column water vapor and visibility.

Table 5
Optimal λTV for different noise levels and for various combinations of column water vapor
and visibility.

Noise level (dB) Column water vapor (g⋅cm−2) Visibility (km) Optimal λTV

No-noise 1.35–1.65 15–45 0
30 1.35 15 0.03
30 1.40–1.65 20–45 0.01
40 1.35 15 0.03
40 1.40–1.65 20–45 0.01
50 1.35–1.45 15 0.01
50 1.50–1.65 20–45 0
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important to include. It would be interesting to compare different un-
mixing methods while considering the reflectance uncertainty due to
atmospheric condition parameters. Moreover, as uncertainties were
also introduced by the applied unmixing method, a comparison be-
tween unmixing methods can be extended with inclusion of model
uncertainty. Experiments with spectral libraries containing a large
number of spectral signatures are recommended, as those were beyond
the scope of the current study.
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