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Abstract

This paper describes an energy efficiency improvement of the IMA accelerometer-based method for estimating the level

of physical activity of a person. The sensor sampling and data processing requirements are significantly reduced by

duty-cycling sensor sampling, thus making implementation and long-lasting operation possible on resource-constrained

devices as sensor nodes. By duty-cycling, the system maintains adequate bandwidth, while still reducing the effective

number of samples taken per unit of time. We analyze in detail the impact of duty-cycling on the accuracy of the method

and show that we can reduce the duty-cycle to as little as 10 %, incurring a mean error of only about 4 %. This translates

into energy saving of up to 60% on the sensor node.
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1. Introduction

In recent years, monitoring the level of daily human activity has gained interest for various medical

and wellbeing applications, mainly because health condition and quality of life are directly influenced by

the amount and intensity of daily physical activity [1]. This is particularly relevant to persons with chronic

conditions, such as Chronic Obstructive Pulmonary Disease (COPD), cardiovascular disease, obesity, osteo-

porosis, and diabetes [2, 3]. The reason is that persons suffering from chronic conditions can enter a vicious

circle: being active causes discomfort for these persons, making them reduce their level of activity, thus

making them progressively more sedentary, which in turn deteriorates their health even further. This vicious

circle can be broken by monitoring the level of daily activity and by providing feedback and assistance to

better manage their physical condition, e.g. by stimulating them to perform exercises. Apart from these

medical applications, measuring the level of daily activity also has applications in (professional) sports [4]

and personal fitness [5].

The activity level of a person is best assessed in terms of energy expenditure [6]. This is a relatively

complex and intrusive process, because the rate of human metabolism needs to be measured in a lab. As
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an alternative, we can estimate the energy expenditure rather than measuring it explicitly. Estimation can

provide an unobtrusive alternative, which assesses the level of activity without affecting the subject’s well-

being and freedom of movement. The energy expenditure is commonly estimated by measuring the amount

of motion a person performs during daily life. A proven method is to use a triaxial accelerometer to record

the bodily motion, which can provide a measure that usually correlates well with the actual energy expendi-

ture [6]. Most accelerometer-based solutions produce a value that correlates well with the amount of motion,

i.e. the motion signal energy, sensed within a certain period of time. The produced value is dimensionless

in most cases and calculated directly from the accelerometer output, e.g. by summing the absolute values of

all sensor axis measurements within the specified time period.

An important consideration is the sample frequency of the accelerometer: to obtain a reliable result,

the sample frequency should account for the bandwidth of (voluntary) human motion [6]. This dictates a

certain minimum sample frequency, which is in most cases specified between 20 to 40 Hz [6]. It is tempting

to choose a sufficiently high sample frequency with a considerable margin, to guarantee maximum perfor-

mance. However, especially when a person’s level of physical activity needs to be monitored continously

throughout the day, the energy consumption of the device needs to be reduced as much as possible in or-

der to maximize battery life. The chosen sample frequency directly influences the energy consumption

of the device, since higher sample frequencies increase the sensor’s power consumption and require more

CPU processing. Therefore, for choosing a proper sample frequency, a trade-off exists between the energy

consumption and the reliability of the measurement.

Because a certain minimum sample frequency is necessary to maintain good performance, another ap-

proach is necessary to reduce the energy consumption further. We observe that a person’s level of activity

is unlikely to change very quickly. This suggests that it is sufficient to measure the level of activity only

intermittently, avoiding the need to sample continuously and allowing the system to enter sleep mode on

a regular basis, thereby conserving energy. Therefore, we propose a duty-cycling approach in which the

system measures the level of activity only at a fraction of the time.

In this paper, we evaluate this idea by assessing the impact of duty cycling on the performance of a rep-

resentative accelerometry-based algorithm for estimating a person’s level of physical activity. We simulate

the performance at various algorithm configurations using data collected from an experiment involving real

daily activities. We also compare duty cycling with the impact of reducing the sampling frequency directly.

We first briefly survey the available methods for measuring a person’s level of physical activity and we

describe in detail how this is achieved with an accelerometer. Then, we describe our duty-cycling method,

which we subsequently evaluate in a series of simulations.

2. Background

The problem of measuring a person’s level of activity has gained much attention in recent years, mostly

because there is a direct relation between a person’s level of physical activity and his or her health con-

dition [1, 3]. Regular physical activity can prevent or delay the onset or the progress of certain chronic

deceases, such as Chronic Obstructive Pulmonary Disease (COPD), for which low levels of physical ac-

tivity are related to a higher risk of hospital readmission and shorter survival [1]. Other examples include

cardiovascular disease, obesity, osteoporosis, and diabetes [2, 3]. Apart from medical applications, mea-

surement of physical activity also has applications in sports [4] and personal fitness [5].

Doubly-labeled water (DLW) and calorimetry methods are often used in research as a ‘gold standard’ ref-

erence [1, 6, 2]. These methods measure the body’s energy expenditure by measuring the rate of metabolism.

These are very expensive and obtrusive measurement processes, which can only be performed in a lab. An-

other important disadvantage is that that such methods do not provide any information about the duration,

frequency and intensity of the performed physical activity [1].

Pitta et al. [1] explore the available methods for assessing the level of physical activity of COPD patients.

The survey explores subjective methods, like questionnaires and diaries, and motion sensor-based methods

using pedometers or accelerometers. The survey concludes that questionnaires and diaries can be unreliable,

are influenced by the persons involved, are unsuitable to measure low-intensity activities and are affected
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by the subject’s memory limitations. Questionnaires mainly have value determine the level of physical

activity for a group rather than individuals. As an alternative, the survey considers motion sensors such as

pedometers to provide an objective measurement. However, pedometers are only capable of detecting step

counts and not the true intensity of the activity. This is particularly a problem for slow-walking patients.

According to Pitta et al. [1], multi-axial accelerometers can provide more detailed information on activity

patterns, time and intensity of activities.

In a more broad survey, Warren et al [3] include the possibility of using heart rate monitoring to measure

physical activity. Although such measurements are relatively cheap to obtain, have a good association with

the body’s energy expenditure and also provide information about the intensity of the activity, this technique

is not suitable for light activity and is influenced by the fact that a person’s heart rate can vary due to causes

other than physical activity. Warren et al. also describe an option to combine accelerometry and heart rate

monitoring, thereby combining the advantages of both techniques and negating some of the disadvantages,

with the penalty of additional complexity and cost.

Probably due to its ease of operation, unobtrusiveness and low cost, accelerometry is a very popular

technique. Much research is conducted with commercially available devices such as the ActiGraph, the Ac-

tiCal, the RT3, the IDEEA, and the SenseWear accelerometers and others [7, 8, 9]. An important problem to

solve is how to extract a useful measure for the level of physical activity from the accelerometer data. Also,

the produced value needs to be calibrated using reference experiments, involving a treadmill for example,

to find the mapping between the accelerometer activity value and the actual level of physical activity or the

bodily energy expenditure. Common algorithms are surveyed by Twomey et al. [10] and Godfrey et al. [9].

A good example of such an algorithm is provided by Bouten et al. [6]. Their extensive experiments

show that a person’s energy expenditure can be accurately estimated using a triaxial accelerometer and their

algorithm. The estimate is based on an activity value that is calculated from the accelerometer signal in the

period T starting at t0 as follows:

IMA = IMAtot =

t0+T∫

t=t0

|ax(t)| dt +

t0+T∫

t=t0

|ay(t)| dt +

t0+T∫

t=t0

|az(t)| dt (1)

This IMA (‘integral of the modulus of the accelerometer output’) activity value correlates with the signal

energy of all the accelerometer axes over the period T 1. It therefore corresponds well with the amount of

motion the sensor experienced within the period T . Before integration, the signal is limited to a bandwidth

of 0.11 to 20 Hz, to remove the DC (mostly gravity) part and vibration components that are not part of

voluntary human motion [11]. Therefore, apart from the remaining noise, the calculated IMA value is very

close to zero when there is no activity. In the activity recognition field, a very similar integral is known

as the Signal Magnitude Area (SMA) and is used to distinguish between static and dynamic activities [12].

This feature value does not, however, necessarily include any filtering beforehand. The activity value period

T for the IMA integral is chosen depending on application requirements. For the work by Bouten et al. it is

set to one minute.

The algorithm by Bouten et al. is simple and feasible for implementation on hardware with few process-

ing and memory capabilities, such as sensor nodes. That is why our research builds upon this work and uses

the same algorithm. We implement this formula almost exactly, except for the fact that we employ a simple

high-pass filter in stead of the prescribed bandpass filter.

3. Energy-Efficient IMA

We aim to provide an efficiency improvement on the IMA accelerometer-based energy expenditure esti-

mation method by Bouten et al. [6], as described by the IMA formula of Equation 1. We focus on reducing

the sampling frequency fs, thereby lowering the system’s processing requirements and energy consumption.

1The ‘tot’ subscript of IMAtot in the original publication [6] refers to the total of all axes, but we simply refer to it here as IMA.
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Fig. 1. Overview of duty cycled sampling scheme.

However, a certain minimum sampling frequency is necessary to obtain a reliable result. This means that

at some point, reducing the sample frequency further would impair the reliability and accuracy of the IMA

output too much. This is mostly due to the fact that a certain minimum bandwidth is required to capture the

most significant spectral components of the movement signal, which according to Bouten et al. are located

roughly between 1 Hz and 20 Hz.

However, we could still improve efficiency in the time domain: it is probably not strictly necessary to

keep sampling continuously. If we duty cycle the accelerometer sampling, we could achieve a higher level

of efficiency, while maintaining sufficient bandwidth. Assuming that the level of physical activity does not

change much in the inactive periods of the duty cycle, i.e. when the system is not sampling, the impact on

performance would be minimal. Also, during the inactive periods, the system could enter a sleep mode to

conserve energy. For this optimization, the IMA algorithm itself is not altered in any way and its band-pass

filter is not reset at any point in time.

The defining parameters of a duty cycling scheme are the duty cycle D, i.e. what fraction of time the

system is active, and the duty cycle period (TD) or frequency ( fD = 1/TD), which dictates how often the

system switches between activity and inactivity per unit of time. Figure 1 schematically shows the proposed

duty cycled sampling procedure for one activity value period T . Two alternatives are displayed. The top plot

shows a duty cycle period that matches the period T , meaning that all samples are collected at the beginning

of that period. The duty cycle is set to 20 %. The bottom plot shows a similar scheme, but the period T is

devided in multiple duty cycle periods (three in this case). The bottom alternative has the advantage that the

samples are spread more evenly over the period T , which makes the chance of missing short but important

significant activity smaller. The IMA output is probably going to be less reliable when the duty cycle period

is very long, simply because the chance that the activity level changes significantly in the inactive period is

higher. However, choosing a very short duty cycle period is also not beneficial, since the act of switching to

and from sleep mode will claim system resources as well. The length of the duty cycle period is therefore

an important design choice.

Note that when fD is very high relative to the sampling frequency at moderate duty cycle, the net effect

will be very similar to just reducing the sampling frequency. As an extreme example, when fD is equal to

half the sample frequency and the duty cycle is 50 %, every other sample is dropped, which means that the

effective sample frequency is equal to half the sample frequency. Even when fD is set to a more useful value,

we can still calculate the effective sample frequency fs,e f f , which is equal to the actual amount of samples

collected per second ( fs,e f f = D fs). We use this as a measure for the amount of effort involved in the IMA

calculation. Obviously, when the duty cycle D is 100 %, fs equals fs,e f f .

Summarizing, the following parameters are important for our implementation of the IMA algorithm:

• Activity value period (T): the interval between successive IMA activity values.

• Sample frequency ( fs): the sampling rate of the accelerometer at the active periods of the duty cycle.
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This is what the hardware is configured to and the true rate at which samples enter the system when

active.

• Duty cycle (D): The fraction of time the system is sampling. The effective sample frequency, which

indicates how many samples are actually collected per unit of time, depends on this parameter and is

equal to fs,e f f = D fs.

• Duty cycle frequency ( fD): The frequency at which the system switches between active and inactive

within the duty cycle scheme. The activity value period (T ) should be an integer multiple of the duty

cycle period (TD = 1/ fD).

The effect that these parameters have on the system’s performance and efficiency are evaluated in Sec-

tion 4. Note that when the bare output from integral formula of Equation 1 is used, its magnitude does not

depend only on the level of activity. Parameters like the sample frequency fs, the activity value period T
and the duty cycle D also have a significant influence on the resulting value. Therefore, we always normal-

ize the activity values before any comparison is made, scaling it such that the theoretical (and practically

unattainable) maximum IMA activity level will just fit into a 16 bit unsigned integer (= 216 − 1).

4. Experiments and Results

To assess the impact of our efficiency improvement on the accuracy and reliability of the IMA activity

value, we perform a series of experiments. We compare the output of the original unoptimized system at

the highest sample frequency with the output of the system at various different optimized configurations. To

be able to simulate different algorithm configurations using exactly the same conditions, we need to collect

raw accelerometer data. This means that the actual experiments need to be performed just once and that

the algorithm itself is executed offline in the simulation. Because the output is only compared between

different algorithm configurations, and not between different activities or users, the absolute values of the

system output are of little importance. This means that we can suffice with only one user, provided that a

sufficiently broad set of activities is performed.

For this experiment, we use the ProMove inertial sensor node platform [13]. We collect raw three-

dimensional accelerometer data at 200 Hz from one person performing daily activities. The sensor range

is configured at ±6g. We collect approximately one hour of data involving activities like cycling, walking,

standing and sitting. The sensor node is mounted at the user’s waist on his belt. The data is logged to the

node’s on-board flash memory and downloaded wirelessly at the end of the experiment.

The accelerometer data from the experiment is shown in the top plot of Figure 2. The data is logged

from a bicycle errand to the local city. The first 2.5 minutes involve sitting at a desk, walking down some

stairs and out of the building. After that time, a short cycling trip is started, which ends at the person’s home.

At round the 6 minute mark, the trip ends and the person’s activities involve walking around his home and

standing still to talk to people. At minute 10, the actual bicycle trip to the city is started, which ends at the

minute 27. At minute 24, the person needs to stop at a traffic light. Starting at minute 27, the person walks

a significant distance which ends at the 31 minute mark at the counter of a shop. Up until minute 46, the

person waits, which mostly involved standing and short walking activity. After that time the person walks

back to his bike. Close to the 50 minute mark, the person reaches his bike and cycles back to the office. This

trip involved a long stop at a traffic light starting at minute 52 and the person arrives at the office building at

the 62 minute mark. The log ends with the person walking back into the building and taking a seat behind

his desk.

The middle plot of Figure 2 shows the resulting IMA activity values for three different simulated sample

frequencies. The IMA values are produced at an activity value interval (T) of 10 s and normalized as

explained in Section 3. The sample frequency is reduced from 200 Hz to lower frequencies by down-

sampling the raw accelerometer data; this also involves low-pass filtering to prevent aliasing effects. At the

full 200 Hz, the IMA values are the most accurate. When the sample frequency is reduced to 100 Hz or

even 50 Hz, the IMA values do not differ very much from the 200 Hz case (not shown in the plot). When
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Fig. 3. Frequency and duty cycle performance statistics

the sample frequency is reduced further to 10 Hz, the difference first becomes significant, especially for the

more intense activities, such as walking. Notice that the produced IMA value is consistently lower than the

equivalent at 200 Hz, which is to be expected since some spectral components that contribute to the signal

energy are lost at lower sample frequencies. However, even though the IMA values differ significantly from

the 200 Hz case, the overall trend is mostly maintained, which means that the activity intensities retain

similar relative magnitudes. Finally, for a sample frequency of 2 Hz, this trend is lost for the most part.

This is evident from the fact that walking (e.g. at minute 30) and riding a bicycle (e.g. at minute 25)

become indistinguishable in terms of activity level. Apparently, some important frequency components for

distinguishing physical activity levels are located above 1 Hz.

Figure 3(a) shows error statistics for a whole range of sample frequencies. The plot shows the mean

error, expressed as the difference with the ‘ideal’ IMA output at 200 Hz. The error magnitude is shown

as a fraction of the maximum IMA value encountered in the 200 Hz simulation. We notice that the error

is relatively small when the sample frequency is above 40 Hz and becomes very significant when it drops

below 10 Hz.

In the next simulations, we explore what happens when the duty cycle is varied. We fix the simulated
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Fig. 4. Duty cycle performance statistics at varying duty cycle periods

sample frequency at an appropriate level of 50 Hz. The activity values are again produced with an interval

T of 10 s, which is now also the duty cycle period (TD). The normalization of the IMA value also accounts

for the effect of the duty cycle. The bottom plot of Figure 2 shows the resulting IMA activity values for

three different simulated duty cycles. As the plot indicates, the main effect of duty cycling is that the IMA

output is less stable. This is to be expected, since the system is sampling only at a fraction of the time, and

at those instances the amount of motion may be significantly higher or lower than the motion that is skipped

and thus not included in the result. The largest deviations happen at those instances where a brief dip or

peak in the activity level happens just in the sample period of the sensor. Obviously, this effect is reduced

when the duty cycle is higher and less samples are skipped. This effect is visible in Figure 2 for example at

minute 40. An important difference with the reduction of the sampling frequency, as explored in the earlier

simulations, is that the overall magnitude of the IMA output does not change, indicating that the system

retains sufficient bandwidth. Figure 3(b) shows error statistics for a whole range of duty cycles 0.01 % and

100 %. As shown, between 10 % and 100 %, the impact of duty cycle on performance seems close to linear.

However, when the duty cycle drops below 10 %, the difference grows much faster.

For the results in Figure 3(b), the duty cycle period TD was set equal to the activity value period T of

10 s. As explained in Section 3, this may not be optimal since 10 s is a long time. Therefore, we investigate

what value for TD would be optimal. To extend the range of possible values a little, we increase T to

one minute. We investigate duty cycle periods TD that are integer divisors of T . The results are shown in

Figure 4. The sample frequency fs is still set to 50 Hz. The horizontal axis of the plot shows the effective

sample frequency, which directly maps to the chosen duty cycle ( fs,e f f = D fs), as explained in Section 3.

Clearly, reducing TD is beneficial, as the error drops consistently for almost the whole spectrum of effective

sample frequencies. However, reducing TD below 2 s shows no more clear improvement (not shown in the

plot), which suggests that this is the optimum value in this case.

It is now interesting to check how the reduction of the duty cycle - and thereby the reduction of the

effective sample frequency - compares to the reduction of the real sample frequency shown in Figure 3(a).

Figure 4 also includes a plot for the performance of varying the sample frequency directly, while keeping the

duty cycle at 100 %. The comparative performance impact of reducing only the duty cycle versus reducing

only the real sample frequency is clearly visible in the plot. Particularly to attain a low effective sample

frequency (well below 25 Hz) to minimize processing effort, the use of duty cycling can be beneficial.

For example, we could aim to achieve an effective sample frequency of 5 Hz. We can do this by setting

a duty cycle of 10 % at a real sample frequency of 50 Hz, which incurs an error of only about 3-5 % at a

duty cycle period below 15 s. In contrast, reducing the sample frequency directly to 5 Hz incurs an error of

more than 10 %, which is up to three times worse. Conversely, approximately the same 3 % error is incurred
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at a real sample frequency of 15 Hz, which means that, at that same level of error, the amount of samples

that needs to be taken and processed can be decreased by about three times (i.e. 66 % less) using a proper

duty cycling scheme. Also, at a duty cycle of 10 % the system can enter sleep mode up to 90 % of the time

and, at a moderate duty cycle period of a few seconds, it can sleep for long consecutive periods, avoiding

the burden of frequent sleep-wakeup cycles. This amounts to a very significant efficiency improvement,

yielding estimated energy savings of around 60 % (including some additional overhead) when compared to

reducing the sample frequency directly.

5. Conclusion

In this paper we investigated improving the IMA algorithm in terms of its efficiency. We achieve this

by effectively reducing the amount of accelerometer samples taken per unit of time. This is done by duty-

cycling the sensor sampling in stead of reducing the (hardware) sampling frequency directly. This preserves

the system’s bandwidth, while still reducing the sampling and processing needs. We perform simulations

with the IMA algorithm for various possible configurations using data collected from a real-life experiment.

The simulations show that a reduction in the energy consumption of up to 60 % is feasible using the duty-

cycling method, with only a minor (up to 5 %) difference from the results produced at very high sample

frequencies with no duty cycling.

Future work includes building an actual implementation of this optimization and verifying the results at

a broad set of activities performed by different people. Also, the actual energy savings can then be measured

directly.
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