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ABSTRACT: Metal−organic framework (MOF) thin films show unmatched promise as
smart membranes and photocatalytic coatings. However, their nucleation and growth
resulting from intricate molecular assembly processes are not well understood yet are
crucial to control the thin film properties. Here, we directly observe the nucleation and
growth behavior of HKUST-1 thin films by real-time in situ AFM at different
temperatures in a Cu-BTC solution. In combination with ex situ infrared (nano)-
spectroscopy, synthesis at 25 °C reveals initial nucleation of rapidly growing HKUST-1
islands surrounded by a continuously nucleating but slowly growing HKUST-1 carpet.
Monitoring at 13 and 50 °C shows the strong impact of temperature on thin film
formation, resulting in (partial) nucleation and growth inhibition. The nucleation and
growth mechanisms as well as their kinetics provide insights to aid in future rational
design of MOF thin films.

Metal−organic frameworks (MOFs) are versatile materials
with high porosity, built up from metal clusters and

organic linkers. The ability to vary linker, metal, and synthesis
conditions leads to a great deal of flexibility to tailor the
material properties and behavior, making them attractive for a
diverse set of applications.1,2 In particular, surface-mounted
MOFs (SURMOFs) find use as smart membranes for gas
sensing, separation, and storage, as well as photocatalytic
coatings, photovoltaics, and electronics.3−18 SURMOFs can be
grown on Au using self-assembled monolayers (SAMs) as
anchoring points for secondary building units from solution,
serving as heterogeneous nucleation points. More particularly,
film formation can be achieved via direct synthesis using a
solution containing both metal and linker reagents or in a
stepwise layer-by-layer (LbL) fashion in which the metal and
linker solutions are separated. For both methods, the selected
substrate and its functional groups play a crucial role during the
film nucleation and growth as well as determining the final film
properties.20−22 Although the LbL method generally yields
SURMOFs with low surface roughness and controlled growth
coordination, the method consists of a multistep approach and
is inconvenient to scale up compared to a “one-pot” direct
approach. It is thus important to better understand the
nucleation and growth mechanisms during direct SURMOF
synthesis to more precisely control the thin film growth and

properties. Atomic force microscopy (AFM) provides a
powerful tool to monitor these materials23 and has been used
to study LbL nucleation and growth processes ex situ22,24−26

and MOF-on-MOF crystal growth in situ over submicron
length scales.19,27,28 Yet, to the best of our knowledge, there are
no reports of in situ AFM monitoring of the heteroepitaxial
nucleation and growth of MOF thin films during direct
synthesis.
Here, we report the nucleation and growth behavior of

HKUST-1 thin films by real-time in situ AFM. More
particularly, Cu-1,3,5-benzenetricarboxylic acid MOF (Cu-
BTC) thin film formation is probed by liquid-phase AFM
(Figure S1) at different synthesis temperatures. A 10 × 10 μm
single spot on a 16-mercaptohexadecanoic acid (MHDA)-
functionalized Au substrate in a metal-linker solution was
continuously scanned (Figure 1a). The Au substrate was not
varied for any experiments to ensure that the temperature was
the only variable. Over time, the mixture of Cu precursor and
BTC linkers nucleate and grow into HKUST-1 grains (Figure
1b).
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Scanning frequencies yielding approximately one time frame
per 15 min were used, and time frames were plotted using the
starting time of the AFM. To ensure the in situ AFM
measurement itself did not interfere with the HKUST-1
growth, probes with a low force constant were used at low
(∼9 kHz) resonance frequencies. This was confirmed by
scanning a HKUST-1 sample after 120 min of synthesis by
comparing the settings above with more severe scanning
settings (Figure S2). To study both the nucleation and growth
behavior, we analyzed the in situ measurements using two
different methods. First, we used a tailor-made script to label all
features above a certain height threshold and track their height
over time (see Supporting Information section 2).29 Such a
method has been often used to analyze the growth of surface
nanobubbles and nanodroplets.30 Rimer et al. reported
comparable AFM studies on zeolites showing that the loss of
resolution due to the change in tip geometry is less than 2.2%
for the height (z-plane).31 However, the x/y resolution tends to
decrease. As a consequence of this result, only the height, and
not the volume, of HKUST-1 grains was analyzed. Second, we
used an open-source modular SPM program (Gwyddion) to
filter all grains observed in the AFM image of one time frame
and plot their heights as a “grain size distribution” over time.32

In situ AFM maps and the selected grains can be found in
Figure S3 for experiments at temperatures of 13, 25, and 50 °C.
The height of all grains was plotted over time (Figure S4). To
test if similar behavior was observed in other regions of the
sample, two more spots were scanned postsynthesis (17 h) in

Figure S5. As can be observed in Figure 1b, the heterogeneous
nucleation and subsequent growth are of the Volmer−Weber
type, reported previously in homoepitaxial growth studies and
similar to what is seen in the in situ experiments.19,22,25,28 Over
the time scale of the experiment, nucleated HKUST-1 seeds
grow into distinct 3-D islands on the SAM/Au substrate, rather
than forming a uniform 2-D film. Such island formation is
suggested to affect the eventual film roughness and uniformity
and therefore ultimately relies on the observed nucleation and
growth phenomena. The growth rates of individual grains could
be derived from a linear fit of their height versus time. Boxplots
of all growth rates at each temperature are shown in Figure 2a.
The median rates show faster growth rates at higher

temperatures, which is the expected behavior for this material.
The growth rates at 13 °C are low, with a median of 6.6 nm·
h−1. Also, some grains do not grow at all. The median growth
rate almost doubles at 25 °C (11.4 nm·h−1), and increasing the
temperature even further to 50 °C results in a median growth
rate of 15.6 nm·h−1. A 3-D representation of the grain height
distribution over time (for 25 °C) can be found in Figure 2b.
Similar plots for 13 and 50 °C are found in Figure S6. Note that
these are distributions of the entire 10 × 10 μm2 AFM frame
and not exclusively the selected grains from Figure S2.
Nucleation plots are derived by plotting the number of grains
over time (Figure 2c). Similar to the observed growth behavior,
the synthesis temperature of 13 °C did not display an increase
in the number of grains during the monitored time frames. The
synthesis at 25 °C shows an increasing amount of nuclei over

Figure 1. (a) Schematic of a MHDA-functionalized Au substrate continuously scanned with AFM over time (10 × 10 μm2) while residing in a
mixture of metal and organic linker solution; (b) AFM topographical scan of the same spot at 30, 100, and 160 min; and (c) zoom-in AFM
topographical scan. This process was performed at 13, 25, and 50 °C (25 °C shown as an example), providing information on the influence of
temperature when synthesizing a HKUST-1 thin film using a direct synthesis approach. The white scale bar is 1 μm, and the black scale bar 100 nm.
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time, even after these 2.5 h of synthesis time. Because this keeps
occurring, not only the higher, well-defined grains grow rapidly
but also a background layer of HKUST-1 material
surrounding the larger grainsis formed, which we define as
a HKUST-1 “carpet”. Clearly, as shown in Figure 2c, the
nucleation behavior at 50 °C is completely different. After only
two time frames does the nucleation of new particles stop.
Examining these maps (t = 20 and 36 min, Figure 2d) reveals
the formation of circular-like patches on the surface, and the
formation of these patches is on the same time scale at which
nucleation stops. These patches are very thin, having an
approximate height of 2 nm (Figure 2e), which corresponds to
the reported height of a MHDA layer.33 This is explained by
partial desorption of the MHDA from the Au substrate, leading
to remaining islands of SAMs, instead of a monolayer. Although

the Au−S bond is known to withstand such temperatures, it has
been shown before on gold nanostars in aqueous solution that a
partial desorption occurs around such temperatures.34 To
confirm the patches to be MHDA, AFM was used to study a
Au, a fresh MHDA/Au, and a MHDA/Au substrate aged in an
ethanol−H2O mixture at 50 °C for 17 h, on multiple spots
(Figure S7). Only the last substrate showed similar formation
of patches, confirming the partial desorption of MHDA into
solution at these elevated temperatures.
To interrogate the chemical nature of the deposited HKUST-

1, a sample synthesized at 25 °C was measured with XRD and
SEM-EDX (Figures S8 and S9). Typical HKUST-1 peaks are
present in the diffractogram, where the presence of the (111),
(200), and (220) peaks highlights the nonuniform orientation
of the film.35 SEM-EDX maps and corresponding energy

Figure 2. (a) Growth rates of all grains represented in boxplots at each temperature. (b) Grain size distribution (heights vs counts) as a function of
time for HKUST-1 nucleation at 25 °C; plots for 13 and 50 °C can be found in Figure S6. (c) Total amount of grains plotted over time for different
temperatures (13 °C, blue; 25 °C, orange; 50 °C, red); for 50 °C, the nucleation is quenched at t = 36 min. (d) AFM maps at 50 °C show circular
patches, which are formed between 20 and 36 min. (e) Height profile for the dashed line over two patches in (d); the difference in height is
approximately 2 nm, reported before as the thickness of a MHDA layer.
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dispersive curves shows carbon, oxygen, and copper to be
present on larger grains, corroborating the presence of
HKUST-1, although SEM-EDX is not sufficiently sensitive to
detect Cu or C in the carpet or small grains.
IR spectroscopy provides chemical information on the

coordination of BTC linkers to the metal nodes of the
deposited material. Bulk infrared reflection−absorption spec-
troscopy (IRRAS) is ideal for the characterization of thin film
materials grown on reflective (gold) substrates. IRRAS spectra

of samples synthesized at different temperatures (17 h) are
shown in Figure 3 (dashed lines).
These spectra show characteristic sharp bands at ∼1380 and

1650 cm−1, which represent the symmetrical and asymmetrical
COO− stretches of the BTC linker coordinated to the copper
cluster, respectively. The turquoise boxes in Figure 3 cover the
region including the asymmetrical COO− stretches around
1650 and 1550 cm−1 (vide infra) as well as the symmetric
COO− stretch around 1380 cm−1, which we refer to as the “Cu-
BTC” bands, as they are generally accepted by literature.36−38

Figure 3. IR nanospectroscopy with AFM topography maps (a,c,e) and corresponding PiFM point spectra (b,d,f) for samples grown at 13, 25, and
50 °C for 17 h, respectively. The spectra are grouped related to their position: on grains (red), on carpet (blue), and on the formed patches (green).
IRRAS spectra (dashed) are included for each temperature, share the same intensity scale, and offer a bulk comparison to the point spectra.
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The band at ∼1450 cm−1 is assigned to the BTC benzene
breathing vibration (yellow box). The broad (and less intense)
band at ∼1700−1750 cm−1 belongs to the −COOH stretching
vibration of uncoordinated MHDA (green box), as corrobo-
rated by the IRRAS reference spectrum of bare MHDA/Au in
Figure S10. To gain complementary chemical information with
nanometer resolution to link IRRAS and in situ AFM data,
nanoinfrared spectroscopy, in the form of photoinduced force
microscopy (PiFM), is used. The PiFM technique is able to
avoid the diffraction limit by measuring the physical interaction
of a laser-induced dipole and its mirror image in the Au-coated
AFM tip, resulting in an IR spectra with a spatial resolution
down to the nanometer level.38−40 In addition to bulk IRRAS
spectra, Figure 3 displays AFM topography maps and nano-IR
point spectra for SURMOFs grown at 13 °C (Figure 3a,b), 25
°C (Figure 3c,d), and 50 °C (Figure 3e,f). Spectra are plotted
together based on location (red, on a grain; blue, on the
carpet). Because of a decrease in laser power between 1660 and
1620 cm−1, most of the asymmetrical COO− stretch was not
observed. Also, as detailed in the SI (section 4), additional
effects can perturb the peak features recorded by PiFM, as
compared to IRRAS. Nevertheless, the combination of IRRAS
(mm-scale) and PiFM (nm-scale) respectively provides
averaged, bulk chemical information complemented by local
spectral snapshots of the formed islands and carpet at given
synthesis conditions.40

The sample synthesized at 13 °C (Figure 3a,b) shows weak
Cu-BTC bands and relatively strong MHDA bands for IRRAS
as well as for PiFM measurements on both the grains and the
carpet. This demonstrates the minor formation of HKUST-1
clusters, even after 17 h, as we already observed during our in
situ AFM measurements (Figure 2a,c). The synthesis at 25 °C
yields more HKUST-1 material, as is reflected in the Cu-BTC
band intensities (blue region) in Figure 3d. The dominant band
at ∼1550 cm−1 partially originates from the HKUST-1
asymmetrical COO− stretch and has been reported before on
Cu(NO3)2-based HKUST-1.41 The MHDA band is less intense
in the spectra (IRRAS and PiFM) measured on the carpet and
is hardly observed in point spectra taken on grains. This shows
the large amount of HKUST-1 formed on these spots as the
probing depth of both techniques was insufficient to measure
the MHDA signal through the SURMOF. The carpet still has a
well-defined MHDA band, but it is less intense than the band
observed in the 13 °C synthesis. Again, this confirms our AFM
measurement, where we observed continuous nucleation at 25
°C (Figure 2c). Finally, the synthesis at 50 °C shows lower
intensity for both Cu-BTC and MHDA bands (Figure 3e,f). In
this case, we split the carpet into “patch” (green spectra) and
“off-patch” (blue spectra) regions. Both grains and patches
show similar MHDA and Cu-BTC band intensities, with
relatively less MHDA than for 13 °C but more than for 25 °C.
Here we observe a minor MHDA band intensity on the off-
patch points, verifying that MHDA desorbed at these spots and
substantiating our claim that the formed patches are due to
SAM desorption (Figure 2). The combined information shows
that the synthesis at 13 °C yields very little HKUST-1 due to
slow nucleation and growth, while at 25 °C, more HKUST-1 is
formed as both islands and (disordered) carpet, and finally, at
50 °C, little HKUST-1 is formed due to detachment of the
SAM.
In summary, real-time in situ liquid-phase AFM has been

performed on the formation of SURMOFs at different
temperatures, using HKUST-1 as a showcase. Besides the

growth of larger HKUST-1 islands, which were individually
studied, we found that the direct synthesis method also yielded
a thin layertermed carpetsurrounding the more rapidly
growing grains. Combining this in situ approach with a
postsynthesis PiFM analysis, we show that both grains and
carpet are HKUST-1, and their growth is strongly influenced by
the synthesis temperature. The powerful combination of these
techniques with high spatial resolution offers promising
perspectives for studies on growth mechanisms of similar
SURMOFs or even other thin film materials.

■ EXPERIMENTAL METHODS
AFM measurements were performed on an NT-MDT
NTEGRA Spectra system using NSG01 probes (ex situ, in
air, F = 5.1 N/m) in tapping mode with a resonance frequency
of 150 kHz or Bruker SNL-D tips (in situ, in liquid, F = 0.06
N/m) in tapping mode with a resonance frequency of
approximately 9.5 kHz. PiFM AFM-IR measurements were
performed on a VistaScope instrument at Molecular Vista in
San Jose, CA. Topography and IR measurements were
performed in tapping mode using PPP-NCHAu tips (F = 42
N/m, resonance frequency = 330 Hz), applying a Bloch QCL
laser ranging from 1300 to 1800 cm−1 (with a noticeable dip in
laser power in the range of 1620−1660 cm−1). Additional
liquid-AFM, IRRAS, XRD, SEM-EDX, and script details can be
found in the SI.
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(9) Heinke, L.; Gu, Z.; Wöll, C. The Surface Barrier Phenomenon at
the Loading of Metal-Organic Frameworks. Nat. Commun. 2014, 5,
4562.
(10) Seo, J.; Whang, D.; Lee, H.; Jun, S.; Oh, J.; Jeon, Y.; Kim, K. A
Homochiral Metal−Organic Porous Material for Enantioselective
Separation and Catalysis. Nature 2000, 404, 982−986.
(11) Yaghi, O. M.; Li, H.; Eddaoudi, M.; O’Keeffe, M. Design and
Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic
Framework. Nature 1999, 402, 276−279.
(12) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.;
O’Keeffe, M.; Yaghi, O. M. Systematic Design of Pore Size and
Functionality in Isoreticular MOFs and Their Application in Methane
Storage. Science 2002, 295, 469−472.
(13) Kitagawa, S.; Kitaura, R.; Noro, S. Functional Porous
Coordination Polymers. Angew. Chem., Int. Ed. 2004, 43, 2334−2375.
(14) Ameloot, R.; Vermoortele, F.; Vanhove, W.; Roeffaers, M. B. J.;
Sels, B. F.; De Vos, D. E. Interfacial Synthesis of Hollow Metal−
Organic Framework Capsules Demonstrating Selective Permeability.
Nat. Chem. 2011, 3, 382−387.
(15) Xu, G.; Otsubo, K.; Yamada, T.; Sakaida, S.; Kitagawa, H.
Superprotonic Conductivity in a Highly Oriented Crystalline Metal−
Organic Framework Nanofilm. J. Am. Chem. Soc. 2013, 135, 7438−
7441.
(16) Zhao, J.; Nunn, W. T.; Lemaire, P. C.; Lin, Y.; Dickey, M. D.;
Oldham, C. J.; Walls, H. J.; Peterson, G. W.; Losego, M. D.; Parsons,
G. N. Facile Conversion of Hydroxy Double Salts to Metal−Organic
Frameworks Using Metal Oxide Particles and Atomic Layer
Deposition Thin-Film Templates. J. Am. Chem. Soc. 2015, 137,
13756−13759.
(17) Liu, J.; Zhou, W.; Liu, J.; Fujimori, Y.; Higashino, T.; Imahori,
H.; Jiang, X.; Zhao, J.; Sakurai, T.; Hattori, Y.; et al. A New Class of
Epitaxial Porphyrin Metal−Organic Framework Thin Films with
Extremely High Photocarrier Generation Efficiency: Promising
Materials for All-Solid-State Solar Cells. J. Mater. Chem. A 2016, 4,
12739−12747.
(18) Wu, G.; Huang, J.; Zang, Y.; He, J.; Xu, G. Porous Field-Effect
Transistors Based on a Semiconductive Metal−Organic Framework. J.
Am. Chem. Soc. 2017, 139, 1360−1363.
(19) Shoaee, M.; Anderson, M. W.; Attfield, M. P. Crystal Growth of
the Nanoporous Metal−Organic Framework HKUST-1 Revealed by

In Situ Atomic Force Microscopy. Angew. Chem., Int. Ed. 2008, 47,
8525−8528.
(20) Shen, C.; Cebula, I.; Brown, C.; Zhao, J.; Zharnikov, M.; Buck,
M. Structure of Isophthalic Acid Based Monolayers and its Relation to
the Initial Stages of Growth of Metal−Organic Coordination Layers.
Chem. Sci. 2012, 3, 1858−1865.
(21) Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.;
Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R. A.; Wöll,
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