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1 Introduction

Models are reference points in thinking, where paradoxes invite to think further. It

goes without saying that Expected Utility (EU) is the reference point of unrivaled

importance in Decision Theory. Famous paradoxes, in particular those of Allais and

Ellsberg, have directed the attention to structural aspects of human decision making

that deviate from it. Whereas these paradoxes have ignited many developments in

the field of behavioral modeling, which by now has left EU as intermediate station

since long, they were less successful in pointing a direction in which the quest for

normative modeling could proceed. Many contributors to behavioral modeling em-

phasize that their findings contrast with rational decision making. To quote Tversky

and Kahneman (1992), “Prospect Theory has departed from the tradition that as-

sumes the rationality of economic agents”. It has become common nowadays to

attribute the divergence from normative models primarily to bounded rationality.

Quite strikingly, this boundedness turns out to have systematic effects, already in

the simplest experiments. Is it really bounded rationality, or is rationality bounded?

One of the factors that hinders the development of normative modeling, in our

opinion, is the common interpretation of a mathematical preference ordering, un-

der which f � g entails willingness to accept f in exchange for g. In particular,

indifference means interchangeability.

This aspect is essential in the classic Dutch book arguments that lead to EU as

the only normative model for complete preference orderings. Furthermore, it makes

completeness such a strong assumption, that its validity in normative modeling is

debatable. In the words of Binmore (2017), it means “... always be ready to take

one side or the other of any bet. [...] One cannot but wonder whether there has ever

been a financier or industrialist who felt subject to such a constraint!”. This is one

of the reasons why Gilboa (2015) distinguishes between subjective and objective

rationality, where completeness is a requirement in the first and declined for the
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latter. With or without completeness, however, the aforementioned interpretation

is mostly taken for granted in the analysis of rational choice. The following small

paradox zooms in on this point.

A strictly risk-averse decision maker (DM) cannot set a suitable price for

the symmetric lottery e with outcome ±1 dollar with equal probability.

Indeed, a zero price is in conflict with her risk attitude, but a negative price for e

is inconsistent: it means a positive price for −e, ‘the other side of the bet’. However,

the both sides, ±e, are identical lotteries, hence should have the same price.

We take the paradox as an indication to retrace our steps, and to revise the

interpretation of f � g well before reaching the more complex paradoxes of Allais

and Ellsberg. Assume, for the sake of argument, that the DM sets prices of lotteries

equal to their certainty equivalent (ceq), according to a complete preference ordering

�, with outcome, say, minus 20 cents for e. So she charges 20 cents for taking the

long position e, as well as for taking the short position −e. In brief, she assigns to e

a long-ceq −0.20 and a short-ceq +0.20, or, in one word, a ‘thick’ value [−0.20, 0.20].

This restores the symmetry, and preserves completeness.

We believe that there is a rock-solid consistency in this thickness, as effect of the

same risk aversion working in opposite directions for opposite directions of trade.

This direction is not a property of e itself, which justifies two value aspects for the

same thing. Dutch book opportunities against the DM have no chance, since she

buys and sells at more favorable prices than expected value.

The symmetric lottery is just an icebreaker to crack an overly tight link between

conditional value and conditional choice. When e is a sub-lottery of a lottery f ,

there is no compelling reason anymore to assume that the lower value of f depends

on no other aspect of e than its lower value. The update rule produces just lower

and upper conditional values, but conditional choice depends on more.

This brings us to the heart of the matter, the paradox of conditional thinking:
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mutually exclusive events separate possibilities, not considerations.

When casting a die, for instance, risk emerges from states in parallel (ex ante),

but is non-existent per state separately (ex post). That there is no risk anymore

ex post, is not a reason to exclude risk aversion. Risk aversion is a well-accepted

consideration that cannot be understood per possible outcome.

The key question is: should conditional choice be understood per condition? We

combine two viewpoints in the literature that seem to exclude each other: yes, the

update of a preference ordering should be consequentialist, like the initial preference

is, and no, plan consistency outside the STP requires that ex post conditional choice

depends on bygone exposure.

The backbone of our framework is a consequentialist update rule, entirely based

on the principle that values should be in the range of their conditional versions

(sequential consistency, axiom S1). Existence and uniqueness of such an update is

characterized by two static axioms, which are equivalent for upper and lower values.

We call it the (central) update of an initial preference. It is produced by a simple

fixed point rule, also known as Pires’ rule (Pires 2002).

On the other hand, plan consistency requires full alignment of forward and back-

ward reasoning. We argue, however, that this puts no further restriction on pref-

erence orderings, but only on their interpretation: the ex ante replacement value

of a sub-act should be its anticipated value ex post, and hence govern conditional

choice. This defines embedded updates, the ‘ribs’ of our framework, so to speak.

These ‘side-updates’ correspond to the non-consequentialist update principle pro-

posed in Machina and Schmeidler (1992).

The reconciliation comes from the observation that the central update only de-

termines the ‘willingness to conditionally pay’, while the side updates determine the

‘conditional willingness to pay’. The fixed point update rule pins down when they

amount to the same - where the ribs are attached to the backbone. We illustrate
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this rationalization of dynamic choice by the Allais and Ellsberg paradoxes.

The interpretation gives rise to a rigorous reassessment of the normative content

of mainstream descriptive models. To make a start, we interpret the axioms for

capacities, and indicate how the principles of Rank Dependent Utility (RDU) and

Cumulative Prospect Theory (CPT) apply to consistent choice.

This paper is organized as follows. Section 2 describes the mathematical setting

and scope (axioms A1-4). The three axioms for updating (axioms S1-3), and the

fixed point update rule, are in Section 3. Section 4 is devoted to axiom S4 and

absence of arbitrage. Dynamic consistency is discussed in Section 5. In Section 6

we analyse the relationship with RDU and CPT. A discussion of related literature

is largely postponed to Section 7, and conclusions follow in Section 8.

2 Scope and notation

We consider acts of the form f : Ω → X, with Ω a finite outcome space, and X

a finite interval [w, b] ⊆ R of monetary outcomes, with standard cases [0, 1] and

[−1, 1]. The set of all acts is denoted by A. The interval [min f,max f ] is denoted

as range(f). If an act f has f(ω) = c ∈ X on Ω, it is called a constant (act),

and then we use the symbol c also for f . An act is also called a lottery when an

externally given probability measure on Ω is specified.

Our scope is the class P of preference orderings satisfying the usual basic axioms.

Definition 2.1 P is the class of preference orderings � ⊂ A×A that satisfy

A1 (Weak order) � is complete and transitive.

A2 (Monotonicity in final outcomes) If f(ω) ≤ g(ω) on Ω, then f � g.

A3 (Strict monotonicity for constants) For c, d ∈ X: c < d implies c ≺ d.
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A4 (Continuity) For all f ∈ A, the upper set {g ∈ A | g � f} and the lower set

{g ∈ A | g � f} are closed.

Orderings in P are called regular. The equivalence f ∼ c if and only if V (f) = c

defines a one-to-one correspondence between P and the class of value functions

V : A → X that are continuous, monotone, and normalized, i.e., have V (c) = c.

This V is called the (normalized) value function of � , or the certainty equivalence

function of �. Proofs of these elementary facts are left to the reader. We will often

simply refer to the certainty equivalent (also ceq) of an act as its value.

Updates are defined with respect to a state space S, identified with a partitioning

of Ω. The sub-act of an act f ∈ A in s ∈ S is denoted as fs, and As denotes the set

of all sub-acts in state s. A (state) update of � in s is a preference ordering on As,

denoted as �s. For the vectors (As)s∈S and (�s)s∈S, we use the notation A1 and

�1, but (fs)s∈S is simply identified with f . The (vector of) preference ordering(s)

�1 is referred to as a (vector) update of �. The definition of regularity extends to

updates in the obvious way. We write fsh for the result of pasting sub-act fs in

state s into act h.

S is the subclass of P with well-defined sequentially consistent updates with

respect to a given state space S. Notation related to comparison with specific

models is introduced where it is used.

3 Updating without the STP

The following axiom is the cornerstone of our framework. Axioms apply to f, g ∈ A

and c, d ∈ X.

S1 (Sequential Consistency) If fs ∼s c on S, then f ∼ c.

The notion of sequential consistency has been developed and analyzed in a long-
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standing research line on risk measures and valuations, see Section 7.1. It is equiv-

alent, in P , to the condition

c �1 f �1 d ⇒ c � f � d. (3.1)

In other words, values should be in the range of their updates. This replaces the

common notion of monotonicity,

f �s g on S ⇒ f � g. (3.2)

Our object of study is the following class.

Definition 3.1 S is the subclass of preferences in P with unique regular sequen-

tially consistent updates.

The class S is characterized by the following static axioms.

S2 (Equal Level Principle) If fsc ∼ c ∈ range(fs) on S, then f ∼ c.

S3 (c-Sensitivity) If fsc ∼ c, then fsd � d for d < c and fsd ≺ d for d > c, for all

s ∈ S and c, d ∈ range fs.

Axiom S2 is the weakening of the STP that characterizes existence of consistent

updates, under the sensitivity condition in axiom S3 that guarantees their unique-

ness.

As shown in the theorem below, updating in S amounts to the following mech-

anism, which we call fixed point updating (fpu):

fs ∼s c :⇔ fsc ∼ c with c ∈ range(fs). (3.3)

We call �s a fixed point update of � (in state s) if it satisfies the forward implication

in (3.3); it satisfies (3.3) if and only if it is the unique one.
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Theorem 1 A preference ordering � in P has unique fixed point updates �s on

S if and only if � satisfies axiom S3, and then �s is given by (3.3), and regular.

The (vector) update (�s)s∈S =:�1 is then sequentially consistent (axiom S1) if and

only if � also satisfies axiom S2, otherwise � has no regular sequentially consistent

update.

Proof

We first prove that (3.3) defines a unique update �s under axiom S3, for each

s ∈ S. Let V denote the (normalized) value function of �. Consider, for given

fs ∈ As, the mapping ρ : c 7→ V (fsc) on the domain range(fs) =: [l, r]. Since V is

continuous and monotone, ρ is continuous, ρ(l) ≥ l and ρ(r) ≤ r. So ρ has a fixed

point c′ on this domain, i.e., there exists c′ satisfying the right-hand side (rhs) of

(3.3). Axiom S3 guarantees that such c′ is unique, and hence that �s is uniquely

determined by (3.3). This means that �1 is indeed unambiguously defined by (3.3).

This proves the if-part of the first claim of the theorem. The only if-part is

obvious from the formulation of S3.

Regularity of �s, under axiom S3, follows straightforwardly from regularity of

�. In particular, �s is continuous, because for a series fks → fs in As, with ck the

unique solution of the rhs of (3.3) for fks , any converging subseries (ck)k∈I⊂N → c′

yields V (fsc
′) = c′ ∈ range(fs), by continuity of V ; so c′ must be the unique solution

of the rhs in (3.3), and hence the full series (ck)k∈N is converging to c′.

To see that �1 defined by (3.3) is sequentially consistent if � satisfies axiom S2,

consider f ∈ A with f ∼1 c. Then (3.3) implies that for all s ∈ S, fsc ∼ c with

c ∈ range(fs), and by axiom S2, f ∼ c, so that axiom S1 follows.

It remains to show, under axiom S3, that if� has a regular sequentially consistent

update �1, then � must satisfy axiom S2. Let an act f ∈ A be given with fsc ∼ c

and c ∈ range(fs) for all s ∈ S. We have to prove that f ∼ c. Consider an s ∈ S.

As �1 is regular, there exists c′ ∈ range(fs) such that fs ∼s c′, and hence fsc
′ ∼1 c

′.
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But then fsc
′ ∼ c′ by axiom S1, while also fsc ∼ c by assumption, and axiom S3

implies that c′ = c. Since s ∈ S was arbitrary, fs ∼s c for all s ∈ S, and, again by

axiom S1, indeed f ∼ c. �

So S is the class of regular preferences that satisfy axiom S2 and S3. In this sense,

these axioms are equivalent to axiom S1. It may be illuminating to compare the

implications of axiom S2 and the STP for a strictly monotone preference ordering �

on acts with three outcomes, (x, y, z), and two states (s, s′), corresponding to resp.

the first two outcomes and the third. The STP requires that (x, y, z) ∼ (c, c, z)

either for all z or none. Axiom S2 amounts to the implication that if (x, y, c) ∼ c

and (c, c, z) ∼ c, then (x, y, z) ∼ c, which is void, since z = c when (c, c, z) ∼ c. Note

that axiom S3 is satisfied, for instance, when the induced value function V (x, y, z)

has both the third partial derivative strictly bounded by 1, as well as the sum of

the first two.

We conclude this section by a remark on compatibility of updates. The notation

and preceding results generalize from states s ∈ S to events E in a partition of S

in the obvious way. In particular, under the analogues of axiom S2 and S3, the

consistent update �E is then determined by (3.3), with s replaced by E. This

satisfies a compatibility property, called commutativity in Gilboa and Schmeidler

(1989), which requires that �s can also be obtained as the update of �E with s ∈ E.

4 Twin preferences and absence of arbitrage

As explained in the introduction, � only compares taking long positions. The fourth

axiom addresses the relation with the preference ordering for taking short positions,

denoted by �∗, with value function V ∗. We first assume it is another externally

given ordering in S, but we explain later on how it can also be derived from �. Our

normative claim hence does not rely on the introduction of a second ordering. For
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reasons explained below, we call �∗ a twin preference.

S4 (Twin order) If f ∼ c, then f �∗ c.

It states that the willingness to obtain something cannot be less than the will-

ingness to keep it. Intuitively speaking, it would be absurd to buy something for

100 that one finds only worth 80 to keep. In other words, value cannot have nega-

tive thickness. The reason to allow it to be strictly positive, has been given in the

introduction.

Now it is relatively easy to cope with arbitrage opportunities in our framework.

In this context, we interpret V (f) as the price the DM is willing to pay for f ,

expressed in units of a certain outcome 1. Axiom A2 already rules out the most

direct form of arbitrage: the DM paying a positive amount for an act with only non-

positive outcomes. Depending on the context, also series of acts f1, . . . , fK have to

be excluded that have the same net effect, i.e., with non-positive sum yet positive

sum of values. For K = 2 this amounts to excluding round trip arbitrage, with f1

and f2 two opposite positions, and this is precisely what axiom already S4 does. A

rigorous way to exclude arbitrage, for all K, is to impose

V ≤ L ≤ V ∗, (4.1)

with L a linear operator that is arbitrage-free when values are thin. This is a stan-

dard assumption in bid-ask price modeling, cf. Section 7.3. The DM then always

trades at more favorable prices than the arbitrage-free ones. Since it involves unlim-

ited asset aggregation, tuned to price setting in competitive markets, we consider

it too restrictive to include as standard axiom in our framework, in which � in

principle applies to single acts, not their sum. We remark that in the examples on

the paradoxes, (4.1) is met.
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4.1 Twins by reflection

Twin preferences �∗ can also be seen as a logical implication of �, when a short

position is identified with a long position in the opposite outcomes,

f �∗ g ⇔ −g � −f. (4.2)

We call this the reflection principle. Of particular interest is the case with symmetric

outcome range X = [−b, b], since then also �∗ is a preference ordering on A. As �∗

shares many properties with �, we call them twin preferences. None of the axioms

A1-4 and S1-3 can tell the difference. Correspondingly, we call V ∗(f) = −V (−f)

the twin value of f induced by �. Notice that V ∗(c) = c = V (c).

Axiom S4 now becomes a static axiom for �.

S4′ (Twin order under reflection) If f ∼ c, then −f � −c, i.e., f �∗ c.

This allows us to refer to V and V ∗ as resp. the lower and upper value induced

by �, following the terminology in e.g. Walley (1991).

5 Dynamic consistency

The challenge of updating without the Sure Thing Principle is the interpretation of

pairs of acts f, g, of the form fsh, gsh, for which

fsh � gsh yet fs ≺s gs. (5.1)

This suggests that the planned choice for fs will not be kept in state s if there is a

free option to switch to gs. It is inevitable that such pairs exist, under consequen-

tialist updating, and we agree that such a predictable switch would be inconsistent.

However, we deny that (5.1) implies a change of plans. We call it a reversal, rather

than a dynamic inconsistency, since we defend it as normative: that what reverses

does not reverse plans.
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To summarize a long quest for a fifth axiom on dynamic choice consistency: we

probably searched for nothing. We believe that no additional axiom is needed, as

the key is in the semantics, not in the syntax.

We take starting point in a preference ordering in S, represented by V , which is

interpreted as the DM’s willingness to pay (WTP), and first take a closer look at

the interpretation of Vs. According to the fpu, Vs(fs) is defined as the constant d

for which V (fsd) = d, which means that the DM is willing to pay d for fsd. This

can also be interpreted as the willingness to pay d for fs only in case s obtains, since

otherwise he gets back exactly what he is willing to pay. The fpu hence identifies

Vs(fs) with the willingness to conditionally pay (WTCP) for fs in case s obtains.

This gives Vs in s exactly the interpretation that V has initially: it governs the

‘fresh’ choice between taking a long position in fs or gs, as if s is the starting point.

It is not independent of consequences outside s by assumption, but by definition, in

the same way as the WTCP for fsh is independent of h.1

Furthermore, axiom S2 identifies d also with DM’s WTP for fsh in case V1(h) =

d. We call such h a neutral embedding. Notice that the reversal (5.1) is impossible

when h is the constant Vs(fs) (or Vs(gs), or some value in between).

In a similar way, the conditional twin preference V ∗s is related to the willingness

to conditionally accept (namely a payment as compensation) for taking a ‘fresh’

short position. The central updates Vs and V ∗s govern conditional choice in s when

there has been no bygone exposure, or when it was is neutral.

The bite is in the third category: non-neutrally embedded choice, with V1(h) not

equal to d. Then a reversal (5.1) is quite possible. However, as argued in Machina

(1989), this does not resemble a conflict between ex ante and ex post conditional

1In fact, we could also have taken starting point in WTCP as definition of updating, and then

derive the fpu as a consequence. This again confirms the fpu as fundamental update principle,

independently of axiom S1.
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choice in s, but rather an influence of the counterfactual exposure h on both.

Alignment of ex ante and ex post conditional choice is straighforwardly achieved

by the update principle, mentioned in e.g. Machina and Schmeidler (1992),

gs �hs fs if and only if gsh � gsh, (5.2)

where �hs denotes the ex post preference ordering in state s. As a rational DM can

choose a risk aversion level for a static bet, so he can choose how ex post values in

s depend on the bygone embedding h.

Our contribution to this standard idea is to attach this principle to consequen-

tialist updating when h is neutral. Concretely, with �hs represented by V h
s , denoting

the DM’s conditional willingness to pay (CWTP), axiom S2 implies that

V h
s (fs) = Vs(fs) when V1(h) = Vs(fs). (5.3)

In words, CWTP may depend on bygone exposure, but should amount to WTCP

when that exposure is neutral.

To further enhance the comparison between V h
s and Vs, let us rephrase the

principle (5.2) in terms of replacement values.

Definition 5.1 (Replacement value) For given V , r ∈ X is called a replacement

value of sub-act fs ∈ As embedded in act h ∈ A, when fsh ∼ rsh.

For the sake of argument, we adopt the state sensitivity condition

(r + δ)sh � rsh (δ > 0, r, r + δ ∈ X, h ∈ A), (5.4)

so that replacement values are unique, and the replacement operator, denoted by

Rh
s , is well defined.2 It is easily verified that Rh

s represents a regular preference

2In general, fs can be assigned an interval of replacement values {r | fsh ∼ rsh}, and our line

of reasoning can be adjusted in an obvious way.
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ordering on As, namely the one characterized by the equivalence (5.2). In other

words, (5.2) is the requirement that

V h
s = Rh

s . (5.5)

This complies with (5.3), since the replacement value Rh
s (fs) =: r can only be

different from its ceq Vs(fs) =: d when h is not neutral, and fs not constant. Non-

consequentialism is hence restricted to the influence of non-neutral bygone exposure

on the valuation of still several possible consequences.

Notice that the equality (5.5) does not pose additional restrictions on the class

S, but only on the interpretation of the induced replacement values. We call it free

induction, also because it is liberated from the STP that chains the ex post value

V h
s (fs) =: v to the long-ceq d.

Definition 5.2 (Free Induction) The principle of free induction requires that ex

ante replacement values are interpreted as anticipated ex post conditional values,

and vice versa.

To summarize, we relax the STP requirement d = r = v, by imposing the first

equality only for the case with V1(h) = d, which renders the second equality a

matter of interpretation. This way we combine the central update Vs, which is by

definition consequentialist, with the side-updates V h
s , which by definition guarantee

plan consistency, without compromise. We believe they reinforce eachother. The

simplicity of the fixed point update that defines Vs can only be appreciated in

combination with V h
s . Conversely, the non-consequentialist nature of V h

s is better

understood with Vs as anchor point.

We illustrate these ideas by the Allais and Ellsberg paradoxes.
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5.1 Application to the Ellsberg paradox

In the Ellsberg paradox (Ellsberg, 1961), a ball is drawn from an urn with 90 balls,

30 of which are red, and 60 black or yellow, in unknown proportion. In line with

Ellsberg’s exposition, we assume that the DM has a preference ordering represented

by a value function V of the form

V = ρV est + (1− ρ)V min, (5.6)

with V est the expected value under symmetric assumptions, V min the expected value

under the worst possible distribution of yellow and black balls, and ρ the ‘degree of

confidence’. We choose, somewhat arbitrarily, ρ = 2/3, so that

V (r, b, y) = min{r/3 + 2b/9 + 4y/9, r/3 + 4b/9 + 2y/9} (5.7)

= µ− |b− y|/3 with µ := (r + b+ y)/3. (5.8)

By the reflection principle, V ∗(r, b, y) = µ+ |b− y|/3, so the exposure to ambiguity,

|b− y|, determines the thickness of value. All axioms A1-4′ and S1-3, are satisfied,

and also (4.1). The paradox concerns choice sets of the form

Cy = {(1, 0, y), (0, 1, y)}.

Contrary to the STP, we have for y = 0 and y = 1,

V (1, 0, 0) = 1/3 V (0, 1, 0) = 2/9

V (1, 0, 1) = 5/9 V (0, 1, 1) = 2/3.

The state space {E, Ē} is the partitioning of the outcome space in ‘not yellow,

yellow’ (here we follow the notational convention to denote state s as event E).

The DM’s willingness to conditionally pay for (r, b, y) in E, is the value d for

which V (r, b, d) = d - we could also write d = V (r, b, -), to stress the independency

of y. This is the fixed point update rule that determines the central update VE, and

yields

VE(1, 0) = 3/7 VE(0, 1) = 2/5.
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The DM’s conditional willingness to pay for (r, b, y) in E, is the value r′ for which

V (r′, r′, y) = V (r, b, y). This is the definition of the replacement value Ry
E(r, b), and

yields,

R0
E(1, 0) = 3/5 ≤ R0

E(0, 1) = 2/5

R1
E(1, 0) = 3/7 ≤ R1

E(0, 1) = 4/7.

Now it is either way: there was an agreement on the prize y before the truth

value of E is known, and the DM chooses on the basis of Ry
E when E obtains, in

line with free induction, or there was no such agreement, and the DM’s criterion is

VE, in fact also in line with free induction, since VE(r, b) = V (r, b, -). In either case,

the DM sticks to his initial plan.

We conclude that there is no inconsistency of choice: the DM sticks to his plan,

all values are in the range of their updates, Dutch book arguments have no chance

in view of (4.1), and all replacement values and certainty equivalents derive from

one and the same value function V .

Nevertheless, there are still several questions to be addressed.

5.2 Additional topics

Firstly, should updates be in the same class as initial preferences? The example

suggests that this is a reasonable condition for the central update, but less so for

the side-updates: they are different by nature. The central update takes the form

VE(r, b) = min{3r/5 + 2b/5, 3r/7 + 4b/7}, (5.9)

which coincides with full Bayesian updating of the ‘priors’ in the expression (5.7)

of V . This keeps the central update in the class MEU. However, there are many

ways to express VE in the form (5.6). A subtle point is the choice of V est
E , since the

symmetry between black and yellow is broken by the information that E obtains.

Therefore, the DM can give V est
E more weight on black than red, lower ρ, and also
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measure the ambiguity exposure V min asymmetrically in red and black. Note that

this also means that the replacement value 4/7 is no proof of a switch to ambiguity

loving, since V est
E can be given more weight on black by the DM than 4/7. Our

approach, however, provides a shortcut to updated values, avoiding the complicated

route via updating taste and belief.

Keeping track of beliefs and taste is even more complicated for replacement

values, since the dependency on y induces an additional subjective degree of freedom.

The replacement values of (r, b) in E for r < b are given by

Ry
E(r, b) =


d y ≤ d

5d/7 + 2y/7 d ≤ y ≤ b

d∗ y ≥ b

,

where d∗ denotes the upper conditional value V ∗(r, b). For r > b,

Ry
E(r, b) =


d∗ y ≤ b

7d/5− 2y/5 b ≤ y ≤ d

d y ≥ d

This no longer belongs to MEU, as function of r, b, y, which in Hanany and

Klibanoff (2007) is seen as a reason to exclude (5.2) as update principle. In our

interpretation, however, there is no reason to impose such a closedness property.

Ribs are less like V than the backbone. More fundamentally, V applies to acts as

one whole, whereas Ry
E carves out a part of its domain, and the class to which V

belongs need not be closed under this form of dis-aggregation.

Another question we like to address, concerns a methodological issue. If non-

neutral embedding influences conditional valuation, should it not also be taken into

account in unconditional valuation? Indeed, this could be done, and, in fact, perhaps

has been done by the DM. The considerations to take ρ = 2/3 in V may very well

be influenced by, say, the fact he obtained the right on choosing one of the bets in
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Cy as a compensation for bygone exposure to the possibility of a loss. As observed

in Machina (1989), this, in turn, raises the issue how far we should go back in time,

once non-consequentialism is allowed in updating. In principle, one could say, until

a neutral starting point is found, whatever that may be. Note, however, that our

notion of neutral embedding given V does not require neutrality of V .

Thirdly, in view of our emphasis on the principle that values should be in the

range of their updates, should this not also hold in terms of replacement values?

After all, according to free induction, the DM perceives an act f ∈ A as something

of value Rf
s (f) when s obtains, and it would be counterintuitive if V (f) is not in

the range of the entries in the vector Rf
1(f).

Indeed, but, roughly speaking, this is already guaranteed by axiom S2. More

precisely, when V satisfies this axiom also for the binary state spaces {s, s̄}, with s̄

the complement of s in S. In fact this implies the somewhat stronger property, that

central and embedded updates are always at the same side of initial value in each

state. Recall that we also assume (5.4) to ensure uniqueness of replacement values.

Lemma 5.3 Under the assumptions above, the differences Rf
s (fs)−V (f) and Vs(fs)−

V (f) cannot have opposite signs.

Proof Assume Vs(fs) =: d > c := V (f). Define r := Rf
s (fs), so rsf ∼ c. By axiom

S2 for {s, s̄}, then Vs̄(fs̄) =: d′ ≤ c. Again by axiom S2, and (5.4), if d′ < c, then

r > c, and if d′ = c, then r = c. So d > c implies r ≥ c. Similarly, d < c implies

r ≤ c. Finally, when d = c, then also d′ = c, and hence r = c. �

So bygone exposure never turns a sub-act that is ‘good’ on its own (with V1(fs) >

V (f)) into a ’bad’ one (with Rf
1(fs) < V (f)), but only affects its degree of goodness.

Finally, what is the role of ambiguity, as compared to risk? The Ellsberg paradox

makes clear that bygone exposure can be objectively relevant for conditional choice:

it matters, even ex post, whether (0, 1) completes an unambiguous bet or not. Hence
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it is problematic not to discriminate between Ry
E and VE, at least in principle.

How then about the Allais paradox, where probabilities are known? What if the

urn contains 10 red, 1 black and 89 yellow balls, and we have to justify

(1, 1, 1) � (5, 0, 1)

(5, 0, 0) � (1, 1, 0)?

When E obtains, it remains to compare the sure amount 1 with the lottery (5,0),

with known probability 10/11 on outcome 5. The lottery is completely independent

of the prize y on yellow.

However, even ex post there still is subjective interaction, due to e.g. borne

risk, and regret, as argued in Machina (1989). In the Allais paradox, the effect

of conservatism takes the form of a subjective risk premium, which may be non-

consequentialist due to subjective interaction effects. This leaves ample room for

accommodating the Allais preferences. In fact, virtually all examples in the liter-

ature satisfy axioms S2 and S3, since they are hardly restrictive for lotteries with

three outcomes, cf. the introduction. Many of them also satisfy (4.1). For in-

stance, one can take worst expected value of outcomes for probabilities that are up-

or down-scaled by at most factor 10 (or factor 2.5, combined with utility function

u(x) = x1/4).

In absence of Dutch book arguments, again due to (4.1), there is no objection

to choose the risk premium on the sub-lottery (5,0) depending on y. What remains

is the perfect illustration by the Allais paradox how intuitive it is to do so.

6 RDU and CPT in the class S

The question now arises how large the gap is between the class S and mainstream de-

scriptive models. We concentrate on the role of rank-dependent preference orderings,

with value functions defined in terms of non-additive probabilities, or capacities. The
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corresponding class is known under the names Rank Dependent (Expected) Utility

(RDU) and Choquet Expected Utility (CEU) (Quiggin, 1982; Schmeidler, 1989),

and is a cornerstone of CPT (Tversky and Kahneman, 1992).

6.1 Some basic examples and constructions

We first formulate some preliminary results regarding axioms S1-3. For V = EQ,

the expected value under a probability measure Q on Ω, axiom S3 requires Q(s) > 0

on S, and then axiom S2 is always satisfied. Updating is Bayesian.

It may be noted here that axiom S3 reduces to the more straightforward sensi-

tivity condition

(f + δ)s0 � fs0 for (some) δ > 0, (6.1)

for the class of translation invariant preferences, i.e., with

V (f + c) = V (f) + c. (6.2)

Characterizations for the class of expected utility, V = u−1EQ(u◦f), are directly

obtained from the following result.

Lemma 6.1 All axioms A1-4 and S1-3 are invariant under a strictly increasing

utility transformation of X, and fixed point updating commutes with such a trans-

formation.

Proof Let u be a such a utility function, and define V̂ := u−1V (u ◦ ·), so that

V = uV̂ (u−1 ◦ ·). Then V̂ (fsc) = c if and only if V (f̂sĉ) = ĉ for f̂s = u ◦ fs
and ĉ = u(c). All axioms A1-4, S1-3 pose the same condition on V as on V̂ , and

V̂s(fs) = V (f̂s). �

To provide some intuition for the type of restrictions that axiom S2 imposes, we

consider the minimum and maximum of two value functions.
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Lemma 6.2 Let V and V ′ be two preference orderings in V. If V and V ′ satisfy

axiom S3, then also V ∧ V ′ and V ∨ V ′. Their fixed point update in state s is resp.

Vs ∧ V ′s and Vs ∨ V ′s .

Proof Consider V (fsc) = c, V ′(fsc
′) = c′, with c′ ≤ c, and define V̂ := V ∧V ′ (the

case with c′ ≥ c and/or V̂ := V ∨ V ′ is similar). Then V̂ (fsc
′) = c′. By axiom S3

for V ′, V ′(fsd) < d for d > c′, hence also V̂ (fsd) < d in that case. For d < c′, both

V ′(fsd) > d and V (fsd) > d, by axiom S3, and hence V̂ (fsd) > d. It follows that V̂

satisfies axiom S3, and that V̂s = Vs ∧ V ′s . �

So fixed point updating per state commutes with taking the maximum or min-

imum. However, axiom S2 constitutes a substantial restriction to ensure that the

vector of these updates satisfies axiom S1. To illustrate the issue, consider S = {s, s̄}

and f with

Vs(fsc) = c, Vs̄(fs̄c) > c, V ′s (fsc) > c, V ′s̄ (fs̄c) = c.

Then V̂1(f) = c, with V̂ = V ∧ V ′, but under suitable sensitivity conditions both

V (f) > c and V ′(f) > c, hence also V̂ (f) > c : a sequential inconsistency. The

point is that the entry-wise minimum of V1 is not achievable as a joint minimum of

V1, which is what axiom S2 has to exclude. This issue has been extensively analysed

for classes of concave value functions, see Section 7.2.

6.2 RDU in the class S

A capacity ν is characterized by the properties ν(Ω) = 1, ν(∅) = 0, and ν(A) ≤ ν(B)

when A ⊂ B. For a capacity ν, and an act f = (x1, . . . , xn), now with indices

rearranged so that x1 ≤ x2 ≤ . . . xN , define

ν · f := π1x1 + π2x2 + · · · + πNxN , with πj := ν(x ≥ xj) − ν(x > xj) (6.3)

RDU is the class representable by V of the form ν·u◦f , with u a strictly monotone
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utility function. In view of Lemma 6.1, we can ignore utility transformations in the

characterizations of axioms S1-3. We first characterize axiom S3.

Lemma 6.3 A capacity ν on Ω satisfies S3 if and only if

ν(A ∩ s) + ν̄(Ā ∩ s) > 0 on S (A ⊂ Ω) (6.4)

Proof Without loss of generality we can assume 0, 1 ∈ X. Take A ⊂ Ω, and

consider f = 1A. The fpu criterion (3.3) for this f in state s is

ν(A ∩ s) + ν((A ∩ s ∪ s̄)− ν(A ∩ s)) c = c,

which can be rewritten as

ν(A ∩ s) = (ν(A ∩ s) + ν̄(Ā ∩ s)) c. (6.5)

Since axiom S3 requires a unique solution for c, it implies (6.4). To derive sufficiency

of (6.4), assume, contrary to axiom S3, fsc ∼ c and fsd ∼ d for some fs ∈ As and

c > d. By translation invariance (6.1), then ν · (f − c′)s0 for all c′ ∈ [c, d], i.e.,

ν · (f − c)s0 = 0 = ν · (f − c− δ)s0 (δ ∈ [0, d− c]).

For δ > 0 sufficiently small, both acts are comonotone, and hence for A := {fs >

c} ⊂ s, δ(ν(A) + ν̄(A ∩ s)) = 0, so (6.4) does not hold. �

It follows from (6.5) that for binary acts f of the form 1A, the fpu Vs must

coincide with the conditional capacity νs defined by

νs(A ∩ s) =
ν(A ∩ s)

ν(A ∩ s) + ν̄(Ā ∩ s)
(A ⊂ Ω). (6.6)

So if the update of ν in s is a capacity, then it is νs. As shown in Horie (2013),

however, this is generally not the case, even when ν is convex. To see why, we give

an expression for the fixed point update.
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Lemma 6.4 A capacity ν on Ω that satisfies S3, has fixed point update Vs in state

s given by

Vs(fs) =
ν · (1Af)s0 + ν̄ · (1Āf)s0

ν(A) + ν̄(Ā ∩ s)
for A := {fs � Vs(fs)}.

Proof The fpu rule (3.3) defines Vs(fs) as c being the unique solution of (f−c)s0 ∼

0, hence of the equality

ν · ((1Af − c)s0) + ν̄ · ((1Āf − c)s0) = 0.

This can be rewritten as

ν · ((1Af)s0) + ν̄ · ((1Āf)s0) = (ν(A) + ν̄(Ā ∩ s)) c,

and the formula for Vs(fs) follows. �

So this is the only update compatible with the rule that values should be in

the range of their updates. The reason that it is generally not a capacity, is that

comonotone sub-acts fs, f
′
s need not have comonotone neutral embeddings fsc, f

′
sc
′,

since the rank of c in fsc need not be the same as the rank of c′ in f ′sc
′. This

suggest to weaken the notion of comonotonicity, by imposing the property for pairs

(f, V (f)), (f ′, V (f ′)).

Concerning axiom S2, we focus on the simplest case for which it poses a substan-

tial restriction: acts with four outcomes, and state-independent capacity ν. Since

ν(A) only depends on #A, it can be represented by the three parameters (ν1, ν2, ν3)

for events consisting of resp. 1, 2 and 3 elements of Ω. The corresponding weights

are given by π1 = ν1, π2 = ν2 − ν1, π3 = ν3 − ν2, and π4 = 1 − ν3. The axioms S2

and S3 now apply to all partitions S of Ω.

Proposition 6.5 A state-invariant capacity ν = (ν1, ν2, ν3), applying to the case

#Ω = 4, satisfies axiom S3 if and only if ν1 > 0 or ν3 < 1. Then it satisfies axiom
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S2 if and only if there exist α, β ∈ [0, 1] such that

(ν1, ν2, ν3) = (αβ, α, α + (1− α)(1− β)).

Equivalently,

(π1, . . . , π4) = (αβ, α(1− β), (1− α)(1− β), (1− α)β).

The capacity ν is convex if and only if α, β ≤ 1/2, and satisfies axiom S4′ if and

only if α ≤ 1/2. The conjugate ν̄ corresponds to (1− α), (1− β).

Proof The first claim directly follows from the previous lemma. Axiom S2 only

poses a restriction for S consisting of two states s, s′, each with two outcomes. In

obvious notation, consider f = (x, y, x′, y′) with x ≥ y and x′ ≥ y′. Axiom S2

requires that when (x, y, 0, 0) ∼ 0 and (0, 0, x′, y′) ∼ 0, then f ∼ 0. The premise

implies π1x + π4y = 0 and π1x
′ + π4y

′ = 0, so (x, y) = λ(π4,−π1) and (x′, y′) =

λ′(π4,−π1) for λ, λ′ ≥ 0. For λ < λ′, V (f) = ν · f = π2x + π3y + π1x
′ + π4y

′, so

axiom S2 requires π1π2 = π3π4. The other cases, λ = λ′ and λ > λ′ do not lead to

other restrictions, and it follows that the equality for π characterizes axiom S2. We

can write (π1, π4) = β(α, 1− α), and the claim follows.

For the claim on convexity of ν, i.e., ν(A) + ν(B) ≤ ν(A ∪ B) + ν(A ∩ B),

consider (i) A,B disjoint singletons and (ii) disjoint pairs. For (i), convexity implies

that 2αβ ≤ α, and for (ii) that 2α ≤ 1. So it is necessary for convexity that

α, β ≤ 1/2, and sufficiency can be verified straightforwardly. Finally, the claim on

S4′ follows from the fact that the twin V ∗ is represented by ν̄.

�

Some remarks are in order here. The update Vs is indeed the conditional capacity

νs in (6.6), but only if axiom S2 holds true. It is remarkable that axiom S2 coincides

with the condition that updates remain capacities. Secondly, the combination of

state independence, RDU and axiom S2 turns out to be overly restrictive for N > 4;
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it can be shown that it only tolerates expected utility under the uniform distribution.

Relaxing state independence leads to combinatorial complexities that we leave as

topic of further research.

Thirdly, there is an aspect of non-recursiveness in the example that deserves

more attention. Recursiveness is only imposed by axiom S2 for (x, y, x′, y′) flat, i.e,

with both sub-acts of the same value. In RDU, this implies recursiveness also for any

nested sub-acts, i.e., with [x, y] ⊂ [x′, y′] or vice versa. However, for other orderings,

such as x′ > x > y′ > y, or x′ > y′ > x > y, no longer the aspect π1x + π4y

matters in V (f), but π2x + π4y, or π3x + π4y. So different contexts (x′, y′) make

that different aspects of (x, y) matter in valuation, rather than that the weight of

of its ceq π1x + π4y changes (although mathematically it can always be expressed

that way).

6.3 Gains, losses, and the reflection principle

To prepare for the comparison with CPT, we have to pay more attention to the

reflection principle (4.2). Since 0 now is an intrinsic reference point, we consider a

symmetric outcome range, [−1, 1], with zero the boundary between losses and gains.

Let V + and V − denote the restriction of V to the domain of respectively gains

and losses, and V +− the restriction to mixes, i.e., acts with mixed signs. Further-

more, f+ := f ∨ 0 and f− := f ∧ 0 denote the nonnegative and non-positive part

of f . We take starting point in V + satisfying axioms S1-3, and sketch the set of

extensions to V admitted by axioms S1-4.

The first step concerns the choice of V −. One possibility is to choose V −(f−) =

−V +(−f−). Then V ∗(f+) = V (f+), so this choice of V − leads to thin values for

gains (and also for losses). This is in line with the principle that indifference, f ∼ c,

means interchangeability, −f ∼ −c, which is only the limiting case of what axiom

S4′ allows. Any (V ∗)+ ≥ V + that satisfies axiom S1-3 is allowed, and this determines
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V − by V −(f−) = −(V ∗)+(−f−).

A remark on utility transformations is in order here. They now act on gains

and losses, and satisfy u(−1) = −1, u(0) = 0, and u(1) = 1. By Lemma 6.1, they

leave axioms S1-3 invariant for V + and V − separately. However, care has to be

taken with regards to the reflection principle, since it can now be applied to the

original units, or the transformed ones, and this difference is relevant for axiom S4.

We stick to the reflection principle in the original, monetary units. In extensions

to non-monetary settings, the reflection principle would involve a suitable choice of

utils so that (4.2) makes sense for u ◦ f .

The second step concerns the extension to mixes, completing the domain of V .

We sketch the picture for acts with only two outcomes, N = 2. In view of the

comparison with CPT, we emphasize the choice of zero level curves L0 of V . L0

can be chosen, for instance, on the basis of gain-loss separability, also called double

matching in CPT, which requires that V (f) is a function of only V (f+) and V (f−).

The choice of L0 can then be parametrized by a monotone loss-utility function z on

[0, 1] that determines L0 as the solution of

V (f+) = z(−V (f−)). (6.7)

This also determines the twin zero-level curve L∗0 of V ∗, as {f |V (−f−) = zV (f+)}.

Axiom S4′ requires that L∗0 is nowhere above L0, which implies z(`) ≥ `. In other

words, within an act, losses require compensation by gains of higher value.

Once L0 has been determined, the level curves in V + and V − can be extended to

mixes in still many ways. For both parts, axiom S1-3 apply separately, but axiom

S4′ compares opposite level curves at c and −c. The idea is depicted in Figure 1.

This sketch for N = 2 suffices for the comparison with CPT below. In higher

dimensions, the space of gain-loss connectors V +− expands rapidly. Under gain-loss

separability, however, the 2D picture remains representative for choosing V +−.

In brief, consistently extending V + on [0, 1] to V on [−1, 1] amounts to choosing
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value thickness (V ∗)+−V +, then choose the zero-level curves of V , which amounts to

choosing loss-utility z if gain-loss separability is imposed, and subsequently complete

V by choosing level curves of mixes with either positive or negative value.

Figure 1: Sketch for N = 2. Dashed level curves of V ∗ are the reflection in the

origin of the solid level curves of V .

(−1,−1)

(1, 1)

V = 0V ∗ = 0

V = c

V ∗ = c

V = −c

V ∗ = −c

6.4 The empirical CPT model and the class S

Our aim is to compare the principles of CPT with the axioms for S, and in particular

to identify in what way the estimated descriptive model deviates from the class S.

A CPT value function takes the form V̂ (f) = V̂ (f+) + V̂ (f−) with

V̂ (f+) = ν+ · u+ ◦ f+, V̂ −(f−) = ν− · u− ◦ f−. (6.8)

The descriptive model, estimated in (Tversky and Kahneman, 1992), has

u+(x) = xα u−(x) = −λ(−x)β, α = β = 0.88, λ = 2.25
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The capacities are specified in terms of probability weighting functions,

w+(p) =
pγ

(pγ + (1− p)γ)1/γ
, w−(p) =

pγ

(pγ + (1− p)γ)1/γ
, γ = 0.61, δ = 0.69,

by the law-invariant rule

ν+(A) = w+(P (A)), ν+(A) = w+(P (A)) (A ⊂ Ω),

where P is a given probability distribution on Ω. The corresponding certainty

equivalent function is u−1V̂ (f), i.e.,

V (f+) = u+−1
V̂ (f+), V (f−) = u−

−1
V̂ (f−). (6.9)

The question arises how this estimated model relates to S. To start with, axiom

S2 and S3 pose restrictions on ν+ and ν− separately, given a choice for the state

space S. The criterion (6.4) for axiom S3 is met, assuming non-zero probabilities

for all outcomes. Concerning axiom S2, recall that it is not restrictive for N ≤ 3,

as explained in Section 3. Since the experiments for the CPT only involve lotteries

with two outcomes, they cannot provide direct evidence against axiom S3. We leave

the analysis of CPT for the case N ≥ 4 as a topic of future research. Points of

considerations are the role of law invariance, and the choice of state spaces S for

which axiom S2 is imposed.

Next we investigate the implications of axiom S4′, first for the relationship be-

tween V + and V −. To this end, we compare V (f) and V ∗(f), for f of the form µ1A

with P (A) =: p and µ ∈ (0, 1]:

V (f) = u+−1
V̂ (f) = µ(w+(p))1/α (6.10)

V ∗(f) = u−
−1
V̂ (−f) = µ(w−(p))1/β. (6.11)

This reduces to the simple condition w+ ≤ w−, since α = β. It is remarkable that

this is indeed the case, approximately, cf. (Tversky and Kahneman, 1992, Figure
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3). It should be noted here that the slight violation of axiom S4′, for probabilities

below 0.24, may be due to the chosen functional form of the weights.

Finally, we consider the implications of axiom S4′ for V +−. It is only here that

the loss aversion parameter λ becomes relevant. We now consider f of the form

f = µ1A − µ′1B, with µ, µ′ ∈ (0, 1], P (A) := p, p(B) := p′, in line with the CPT

experiments. At the zero level curves for V , we have gain/loss ratio

µ

µ′
=

(
λw−(p′)

w+(p)

)1/α

,

whereas at the zero level curves of V ∗,

µ

µ′
=

(
w+(p′)

λw−(p)

)1/α

,

where we used that α = β. The corresponding loss-utility function z, defined by

(6.7), is simply z(`) = λ`. This is clearly in line with the requirement z(`) ≥ `

imposed by axiom S4′. We interpret the high value of λ, 2.25, as a strong indication

that the thickness of value the axiom allows for, is essential in bridging the gap with

descriptive models.

The choice of V +− in CPT, given V (f+) and V (f−), is characterized by the com-

bination of double matching and comonotonicity, which amounts to sign-comonotonic

tradeoff consistency (SCTC), cf. also Wakker and Tversky (1993). Our analysis in-

dicates that these principles are compatible with the axioms for S, but far from

indispensable. We consider further exploration of the boundaries of S in more ad-

vanced versions of CPT, and in the variety of other behavioral models that do not

rely on comonotonicity and double matching, important topics of future research.

Summarizing, we find no indications that the principles of CPT are in conflict

with the axioms of S, and find strong confirmation of the distinction we make

between upper and lower values in the empirical findings underlying CPT.
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7 Related literature

We first explain the background of this paper. Then we discuss related literature on

two central topics: updating, and the distinction between buying and selling prices

that we based on the reflection principle.

7.1 Background

The central notion in our framework, sequential consistency, has been introduced

in Roorda and Schumacher (2007), and further developed in mathematically more

advanced settings in Roorda and Schumacher (2013, 2016) (henceforth RS07; RS13;

RS16). A common assumption in these papers is that value functions V are transla-

tion invariant (6.2). Sequential consistency then amounts to the criterion in axiom

S1 restricted to c = 0. These papers describe axiomatic frameworks with sequen-

tial consistency as basis for unique updating, applicable to both a pricing context,

with V (f) the bid price of f , as well as a regulatory context, with EP (f) − V (f)

a required capital buffer against extreme losses.3 The fixed point update rule (3.3)

closely relates to the conditionally consistent updating rule in RS07 and the refine-

ment update introduced in RS13. Compatibility for iterated updating is addressed

in (RS13, Prop. 4.6) and (RS16, Prop. 6.7). It turned out that the fixed point up-

date rule already was present in the literature on preference orderings, as discussed

below.

3There is a continuous spectrum from pricing with small risk premiums (close to expected val-

ues) to so-called risk measures (much closer to worst-case), which explains that axiomatic frame-

works in both domains are strikingly similar. For instance, the seminal paper Artzner et al. (1999)

advocates coherent risk measures, which corresponds to MEU with linear utility u(x) = x and a

negative sign convention. The class of monetary risk measures have V translation invariant and

monotone, its subclass of convex risk measures has −V (ordinarily) convex, see Föllmer and Schied

(2011).
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For a general introduction to sequential consistency, and other forms of non-

recursive, so-called weak time consistency concepts we refer to the aforementioned

papers and the references therein. In a multiple prior setting, for instance, it means

the relaxation of the rectangularity condition in Epstein and Schneider (2003), into

a ‘junctedness’ condition that only requires that conditional probabilities from S

occur in some probability measure towards S. That recursiveness is problematic in a

regulatory context has been signaled in RS07, Ex. 8.8. Similar, yet less pronounced,

concerns about recursive pricing have been indicated in RS13, Ex. 3.9. The observed

preference reversals described in these examples gave rise to further investigation at

the level of complete preference orderings, of which the current paper is a reflection.

As compared to this previous work, the scope of the current paper is expanded

significantly, by relaxing translation invariance and the implicit assumption of linear

utility. Most aspects of the normative interpretation we present are entirely new,

including the connection with the paradoxes. In RS16 the role of sequential consis-

tency in reconciling long and short term modeling has been emphasized. This has

led to a model for tuned risk aversion, in which risk premiums interact across time

steps (Roorda and Joosten, 2015). These topics are not addressed in this paper.

7.2 On the fixed point update rule

The fixed point update rule (3.3) (fpu) is not new. It is essentially the same as the

notion of conditional ceq consistency in Eichberger et al. (2007), building on Pires

(2002, Axiom 9), which is the forward implication in (3.3). In Siniscalchi (2001)

it appears as constant-act dynamic consistency, and is interpreted as fixed point

criterion. Its close connection with the Generalized Bayesian Rule in Walley (1991)

and the Full Bayesian Updating Rule in Jaffray (1994) is well understood for the

Gilboa-Schmeidler framework with Multiple Priors, also called Maxmin Expected

Utility (MEU), see Pires (2002). In Eichberger et al. (2007) this connection is
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addressed at the level of capacities, and applied to the class of Choquet Expected

Utility (CEU), also where it lies outside MEU (see also Horie (2013) for a correction).

In line with the latter reference, our findings question the idea that updating can

be well-understood within the class of capacities.

Our main intended contribution concerning the fpu is to establish it as a funda-

mental principle of updating outside the STP. To our knowledge, the underpinning

of the rule, by axiom S1 and by the notion of WTCP, both without any reference to

probability or utility, is new. Furthermore, in contrast to Eichberger et al. (2007)

and many other references, we claim that it does not lead to dynamic inconsisten-

cies, since it is fully compatible with the non-consequentialist update rule (5.2) in

Machina and Schmeidler (1992). Conversely, we are not aware of other frameworks

that accept the latter rule without giving up consequentialism for the ‘true’ central

update.

The dynamic consistency principle proposed in Hanany and Klibanoff (2007,

2009), also requires that updated preferences must support any ex-ante optimally

chosen plan given the choice set. They reject (5.2), however, because it lacks the

closedness property that updates are in the same class as initial preferences. We

have argued why we do not require this property for side-updates.

The main alternative to this forward-oriented approach is the principle of consis-

tent planning (Strotz, 1955; Siniscalchi, 2011) and behavioral consistency (Karni and

Safra, 1990), also phrased as the slogan that ‘bygones are bygones’. We recognize

this idea, by leaving room for (consequentialist) backward induction when states are

reached without a preceding agreement, hence without real bygone exposure. We

have argued that otherwise the influence of bygone exposure is quite intuitive, and

does not lead to Dutch book opportunities, nor to plan inconsistency.

The aforementioned approaches have controversial aspects, such as the depen-

dency of updates on the choice set. Our update rule, however, remains incredibly
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simple, despite the doubts that have been expressed that such a universal update

principle can exist outside expected utility models (Wakker, 2010; Machina and

Viscusi, 2013).

Concerning its generality, we have shown that the fpu applies to all regular

preference orderings that satisfy the sensitivity condition of axiom S3, and that any

alternative rule brings a conflict with axiom S1. The rule abstracts from convexity

and concavity, risk and ambiguity, probability and utility, taste and belief. So, when

the rule is adopted that values should be in the range of their updates, the fpu

provides the only candidate for consistent updating for virtually all known classes

of complete preference orderings.

7.3 On the reflection principle and bid-ask prices

One of the cornerstones of our framework is the observation that acts have not just

one value, but (at least) two. This is well recognized in the literature, in several

ways, under the heading of e.g. first order risk aversion, endowment effect, the WTP-

WTA bias, and the law of two prices. An overview is beyond our scope, and we

only discuss a few representative examples, with a focus on the given interpretation

of bid-ask spreads.

The reflection principle is a standard way to relate bid and ask prices, in par-

ticular in monetary settings. It is used for instance in conic finance, introduced in

Madan and Cherny (2010) as a new way to model markets with bid-ask spreads.4

Also the way in which loss aversion and probability weighting induce bid-ask spreads,

as described in (Wakker, 2010, Ex. 6.6.1 and 9.3.2),5 is in line with the reflection

4The term conic refers to cones as the acceptance set of so-called coherent risk measures, which

have been introduced by Artzner et al. (1999).

5Loss aversion in CPT is a form of first-order risk aversion, which corresponds to utility functions

with a kink in a reference point, commonly at zero, cf. (Segal and Spivak, 1990).
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principle. In fact, the findings in Birnbaum and Stegner (1979) already point in

this direction. It links bid-ask spreads to so-called configural weighting, in the con-

text of estimating used car prices. They find that “Judges instructed to take the

buyer’s point of view gave greater weight to the lower estimate, whereas judges who

identified with the seller placed a greater weight on the high estimate,” and they

emphasize the point that it is the same cautiousness that results in different prices

for opposite directions of trade.

To discern two prices for the same thing is hence by no means new, nor to base

it on reflection, but we think that the consequences for interpretation and rational-

ization have not yet been fully recognized. Firstly, in conic finance, recursiveness is

still commonly imposed in bid and ask prices separately (Madan, 2016), so that the

induced (dynamic) preference reversals are avoided. However, as we have indicated

in RS13, Ex. 3.9, this may lead to a market in which round trip costs can always

be avoided. An exception is Bielecki et al. (2013), which applies a notion of weak

time consistency (their definition D7) to conic finance that corresponds to sequential

consistency; the special role of the fpu is however not addressed, nor the idea of a

joint recursion involving bid and ask prices.

Secondly, common terms in the empirical literature, like WTP-WTA bias (Machina

and Viscusi, 2013, Chapter 4), endowment effect (Kahneman et al., 1990), (static)

preference reversal (Karni and Safra, 1987), failure of procedure invariance (Tversky

and Thaler, 1990) indicate that two values for the same thing is primarily viewed

as irrational by nature.

Thirdly, our ‘twin view’ emphasizes the importance of keeping ‘looking through’

sub-acts, rather than perceiving them as represented by just one ‘thin’ value and

then concentrate on the weight of that value. This focus on weights is also the

primary perspective in Buchak’s extensive plea for adopting risk dependent value

weights in normative models (Buchak, 2013). We do agree that such weights are
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‘configural’, ‘risk weighted’, but we go one step further, and say that there are also

more types of value in play. Our interpretation is not so much that a configuration

influences the weight of a sub-act’s (long)-ceq in total value, but rather that it

shifts the focus to another aspect of the sub-act, as illustrated for RDU in Section

6.2. This is a subtle difference, since mathematically both interpretations are valid,

but nevertheless evoke different pictures. Another difference with the arguments in

Buchak for relaxing the STP is that we do not invoke the idea that revealing a state

can be ‘misleading’.

8 Conclusions

We gave three reasons to adopt the fixed point rule as universal principle of updating:

the axiom of sequential consistency, the interpretation of willingness to conditionally

pay, and the fact that it combines with free induction, which governs the non-

consequentialist aspects of consistent choice outside the STP. We found no clear

contradiction between our framework and the classic behavioral findings reflected

in the CPT model. This indicates that there is possibly more sense in intuitive

decision making than generally believed.

Several important themes fell largely out of the scope of this paper. Our frame-

work is about the syntax of choice, rather than the semantics. This syntax does not

discern belief from taste, leaving the deeper question at this point open, how value

is synthesized from these two aspects. Nevertheless, our results provide an anchor

point, as a kind of shortcut towards a normative structure in which updating given

V is straightforward.

We took our starting point in completeness of preference orderings. Although

its restrictiveness is softened by the thickness of value to a great extent, it may be

problematic in applications to larger, complex worlds. An interesting connection
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can be made with how Bewley’s incomplete preferences are used in Gilboa (2015)

to model objective rationality, by observing that twin preferences also induce an

incomplete preference ordering, that compares the lower value of an act with the

higher value of another.

There is also the fundamental problem of defining and interpreting states, in

applications beyond the level of dice and urns. We followed the standard that

Ω specifies all possible states, and that all risk and uncertainty is resolved when

ω is known. Both assumptions have problematic aspects, and in particular their

combination. A problem of an a priori fixed Ω is that in reality information not just

reduces the number of possibilities, but also can expand the world in directions we

are simply not aware of (see e.g. Karni and Vierø (2015)). To assume that all risk

resolves in Ω leads to the anomaly of ending up in overspecified states. We refer to

Gilboa et al. (2018) for a recent account on this topic.

This issue clearly goes beyond our scope, but there is one remark to make. In

analogy with an observation in RS16, we can extend our framework by treating Ω

at the same footing as the intermediate states S, and allow also for thickness of

value of f(ω), to reflect unmodeled risk after Ω. In this way models carve out a

part of reality with a richer interface with the outside world, rather than starting

to incorporate the entire world in the model.

We conclude with a word on the epistemological aspect of choice. This is partic-

ularly relevant in game theoretic applications, in which opponents play their part

in risk and uncertainty. It is clear that the distinction between fresh and embedded

choices questions the validity of subgame perfectness under our interpretation. Our

findings suggest that the idea of thickness of value loosens the chains of backward

induction, and gives more room for undetermined epistemological aspects of a game

under the assumption of rationality. Still many paradoxes pose a challenge, in par-

ticular that of the centipede game, and the related surprise examination paradox,

36



see e.g. Binmore (1997). These are clear invitations to think further.
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