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ABSTRACT EUV pellicles are needed to support EUV lithography in high volume manufacturing. We 
demonstrate progress in cap layer design for increased EUV transmission and infrared emission of the 
Polysilicon-film. In our research lab we obtained EUV transmission of 90% and good emissivity for a fully 
capped pSi film. We also discuss results on next generation EUV pellicle films. These include metal-silicides 
and graphite. Next-gen film performance is compared to the current generation pSi film. These films are 
expected to be stable at higher operating temperature than pSi. Metal-silicides have the advantage of sharing a 
similar process flow as that of pSi, while graphite shows ultimate high temperature performance at the 
expense of a more complicated manufacturing flow. Capping layers are needed here as well and capping 
strategies are discussed for these film generations. 

 

1. THEORETICAL CONSIDERATIONS FOR PELLICLE FILMS 

Pellicles are primarily developed for use in EUV lithography for logic1 and product specifications and the nature of EUV 
absorption require that EUV pellicles are incredibly thin2-10. Not many materials allow ‘good’ EUV transmission10 as 
seen in figure 1, which shows why Si was historically chosen as EUV pellicle film. Note that while Ru has fairly low 
EUV transmission, it is relatively stable under EUV and hydrogen conditions and can be used as IR emission enhancing 
cap layer. Note also that oxidation or oxygen impurities will negatively impact EUV transmission. 

 

Figure 1: Materials thicknesses needed for 90% EUV transmission as obtained from CXRO10 database. 
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The <50nm thin pellicle film spans an area of >130cm2 and resides just 2mm above the reticle. A minimum tension is 
required such that it does not get too close to the reticle. In practice pSi pellicle films must have a tension of the order of 
100-200MPa and for other materials similar values hold. We aim for a yield strength that is 10x higher, hence around 1-
2GPa. This value prevents that EUV pellicles are made of polymers, or of metals, because of low yield strength at high 
temperature. For this reason, spectral purity filters that suppress infrared consist of multilayer structures and not just pure 
metals11. It is well established in literature and shown in figure 2 that Si becomes ductile at high temperatures, and its 
yield strength becomes comparable to the required pre-tension. This limits the operating temperature of pSi based 
pellicle films in thermal cycling situations. In contrast, materials such as graphitic carbon, boron, SiN and metal silicides 
all have good high temperature mechanical properties even up to 1000oC. For mechanical reasons, the ductile to brittle 
transition temperature (DBTT), typically 2-3x lower than the melting temperature, is a realistic operational upper 
temperature limit for a pellicle. 

 

Figure 2: Left: Literature values for fracture toughness and yield strength of various materials. The temperatures indicate the ductile to 
brittle transition temperature (DBTT). Right: Yield strength of materials versus temperature. Most data provided here is for bulk 
materials, and serve an indicative role. The graphene/graphite (grC) data shown here is for very small samples13. 

 

EUV pellicles operate in near vacuum conditions. Although the contribution of cooling by the approximately 3Pa H2 gas 
is not negligible, most absorbed heat is released by radiation. The needed infrared emission sets the requirements for the 
infrared optical properties of EUV pellicles. EUV pellicles should be semi-metallic, or have thin metal layers (figure 3). 
We note that thick metal layers reflect IR and hence give a low emissivity.  It has been found6 that the maximum 
emissivity that can be obtained for continuous sub-wavelength thin films is 0.5. Note however that emissivity goes to 
zero for grazing angles, so the angular integrated emissivity of a EUV pellicle is limited to a value close to 0.4. Knowing 
this we can estimate temperatures using the Stefan-Boltzmann’s law. As an example, for an NXE3400 and a 250W 
source, typically a pellicle with 85-90% EUV transmission will absorb around 1-1.5W/cm2 of EUV. If the film has 
emissivity of around 0.4, then the temperature reached is about 400-500oC. 
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Figure 3: Emissivity of materials versus thickness based on literature bulk optical data. While the graph suggests maximum emissivity 
of 0.3 for Ru, in reality surface and grain scattering of electrons can give slightly different optical constants for ultrathin films6 
resulting in higher IR absorption/emission than thought possible based on bulk optical properties. For example with 2-3nm Ru it is 
possible to get to hemispherical integrated emissivity of 0.4 for real deposited films6. 

For critical dimension uniformity (CDU) control, EUV pellicles cannot reflect too much EUV to the wafer. While Si and 
SiN meet this specification, many materials that are interesting as emission enhancement or protective layers intrinsically 
reflect more than this (figure 4). For these materials it may be advantageous that they are deposited on a slightly rough 
surface, or in an anti-reflection configuration where the core or cap thickness is controlled to a multiple of 6.7 or 13.5nm. 
The tolerances depend on the amount of intrinsic reflection of the material in question. 

 

Figure 4: EUV reflectivity of materials versus layer thickness. While some materials may reflect too much EUV, also anti reflection 
conditions can be found by tuning the coating thickness. Some roughness can also reduce EUV reflection 

Pellicle films are under tension and are not allowed to shrink under heat load, because that will increase the tension in the 
film. For a 1% shrink in the film the forces can already exceed several GPa as typical Youngs moduli are between 100 
and 300GPa for films. A stress change of 100MPa can be tolerated, which translates in ~0.1% tolerable density change in 
the film during operation. No thin film characterization process can guarantee that the density of the film is that close to 
optimal (or bulk) values. In order to optimize the density of the pellicle film, the film will need to see temperatures 
during production that are similar to or higher than the expected operating temperature in the scanner. Offline heat 
exposures are needed to see if the films have the required stability. Figure 5 shows the result for films with good and too 
low density to illustrate what happens under exposure.  
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Figure 5: Left a pellicle film with good density under EUV exposure. Right a pellicle with too low density under EUV exposure will 
shrink. If the pellicle shrinks, local stresses can exceed several GPa and lead to tearing of the film. Film shrink is allowable only if it 
leads to tensile forces in the order of 100MPa, this means that volumetric shrink must be limited to the order of 0.1%. 

2. FULLY CAPPED POLYSILICON FILMS WITH HIGH EUV TRANSMISSION  

Current pSi based pellicles with SiN and Ru capping layers have EUV transmission around 80% and can support tools in 
the field. Higher source power can be supported by pSi based pellicles with improved EUV transmission. For the current 
pellicle with Ru cap this can be done by oxide removal after pellicle release, before cap deposition. Oxidation is 
undesired and has no function in the pellicle film. About 3-5% EUV transmission can be gained by removing the oxide 
(figure 6). Oxide can be removed without breaking vacuum just before the cap layer deposition, using vacuum based 
cleaning techniques. This can yield Ru capped pellicles with EUV transmission 83-85%. For higher EUV transmission it 
is necessary (figure 6) to use more transparent materials. We developed a new protective and emissive cap based on 
metal+Boron.  Boron has very thin native oxide12 as already shown by Luxel corp. in 1985. We have tested the potential 
of the Boron based concept on 1x1cm2 samples. EUV transmission of >89% is experimentally obtained (fig. 7), and 
stability was assessed in EUV exposures (fig. 8) and heat load testing using lasers. Further thinning of the polysilicon 
film has resulted in EUV transmission beyond 90% on 1x1cm2 samples, but scalability and use of a thinner pSi film in 
production has to be proven. 

 

Figure 6: This graph shows were most EUV is lost in the pellicle film. Better EUV transmission can be gained by removing the (native 
and release process induced) oxide in current production films. Additional gains in EUV transmission can be obtained with B based 
capping layers. HF dipping before coating can remove excess oxide induced by the process. Oxide cleaning in vacuum is needed to 
also remove native oxide before cap deposition. A thinner pSi core is needed for EUV transmission beyond 90%. 
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