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A B S T R A C T

Water availability and high soil fertility make inland valley landscapes suitable for sustainable rice-based
cropping. In this study, Random Forests statistical analysis was used on a database of 499 surveyed inland
valleys in four study zones in three West African countries. The goal of the study was to assess parameters that
indicate (are predictors for) high potential for development of rice-based systems in inland valleys. These
parameters are related to the biophysical (hydrology, soil, climate, and topography) and socio-economic (de-
mography, accessibility, and markets) environments. Farmer group surveys and secondary data from existing
publicly available spatial data sets were used.

The analysis revealed that, across the four research areas, the following parameters were relevant predictors
for rice development: (1) distance from the inland valley to the nearest market; (2) distance from the inland
valley to the nearest rice mill; (3) population density in the immediate environment of the inland valley; (4) total
nitrogen in the top 20 cm of the soil profile; (5) land elevation; and (6) soil texture on the upper slope of the
inland valley. Several predictors were highly important for specific research areas, but not for all, thus showing
the diversity in the studied agricultural landscapes. These predictors included soil fertility management, source
of irrigation water, and the percentage of female farmers in the inland valley. The identified relevant predictors
will be used to map the potential rice production development of the inland valleys. This will help development
agencies to assess their zones based on quantitative analysis for inland valley potential development.

1. Introduction

Crop yields are generally poor in West Africa; crop production is
insufficient and West Africa depends on food imports (Niang et al.,
2017; Seck, Diagne, Mohanty, & Wopereis, 2012). Thus, food insecurity
is a major problem. It was estimated that there were 239 million hungry
people in sub-Saharan Africa (SSA) in 2010 (Meijer, Catacutan, Ajayi,
Sileshi, & Nieuwenhuis, 2015; Xie, You, Wielgosz, & Ringler, 2014).
West Africa has some of the most severe hunger in the world (Brown,
Hintermann, & Higgins, 2009; Sasson, 2012). Consequently, West
Africa remains a major food buyer, importing large quantities of rice
(AfricaRice, 2014) and even local food staples such as millet and maize
(Brown et al., 2009). To mitigate food insecurity in this region would
require better use of resources, for example, by promoting agricultural

use of inland valleys (IVs). These agro-ecosystems conserve moisture
and have good soil fertility – good agricultural resources in the face of
increasing drought induced by climate change (Van Oort & Zwart,
2018). Various studies (e.g. (Obalum, Nwite, Oppong, Igwe, &
Wakatsuki, 2011; Rodenburg et al., 2014; Seck, Tollens, Wopereis,
Diagne, & Bamba, 2010; Windmeijer and Andriesse, 1993)) have re-
vealed that West African countries have large untapped IV resources
that could be used for rice development. In the face of climatic varia-
bility and the effects of climate change, IVs are potential ‘bread basket’
areas in SSA. The IVs are the main rice cultivation agro-ecosystems in
developing countries of SSA (Dossou-Yovo, Baggie, Djagba, & zwart,
2017; McCartney & Houghton-Carr, 2009; Rodenburg et al., 2014; Seck
et al., 2012; Worou, Gaiser, Saito, Goldbach, & Ewert, 2012).

Lowland rice cultivation is mainly rainfed and requires stable water
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supply. Thus, large-scale irrigation developments have been promoted
on a large scale in West Africa, because of the irrigation potential
(Gruber, Kloss, & Shopp, 2009; Musa, 2009; Worou et al., 2012). Un-
fortunately, many of these implemented irrigation schemes in West
Africa have failed or perform below their potentials. (Djagba,
Rodenburg, Zwart, Houndagba, & Kiepe, 2014; Inocencio et al., 2007;
Nwite, Obalum, Igwe, & Wakatsuki, 2016; Obalum et al., 2011). IVs are
the principal rice cultivation agro-ecosystems and the identification of
suitable IVs for future rice development is highly important. To know
which areas are suitable for rice cultivation requires knowledge of the
conditions that favor sustainable rice production development, while
limiting environmental impacts (Danvi, Giertz, Zwart, & Diekkrüger,
2018; Djagba, Zwart, Houssou, Tenté, & Kiepe, 2018b). Study of these
conditions enables to identify many environmental factors (hydro-
logical, soil, topographical, climatic), socio-economic parameters (ex-
tension services, population density, accessibility to road, market, set-
tlement), and farm management practices (e.g. chemical fertilizers,
farm technologies) that are important (Abe, Buri, Issaka, Kiepe, &
Wakatsuki, 2010; Danvi, Jütten, giertz, Zwart, & Diekkruger, 2016;
Gumma, Thenkabail, Fujii, & Namara, 2009; Laborte, Maunahan, &
Hijmans, 2012; Masoud, Agyare, Forkuor, Namara, & Ofori, 2013; Qin
& Zhang, 2016; Rodenburg et al., 2014). Given the diversity of para-
meters and factors (variables) that may influence the potential for rice
production development in IVs, the most appropriate method for se-
lecting the most important variables must be used. Not all of these
parameters and factors contribute to IV agricultural potential to the
same degree – some parameters and factors could be more suitable than
others. For example, descriptive methods for mapping IVs with agri-
cultural production potential based on expert knowledge were devel-
oped and applied (Gumma et al., 2009), but are subjective and may
include or exclude parameters or define underestimate or overestimate
the importance of a parameter.

The ‘Random Forests’ model is an approach to map in an unbiased
manner the parameters and their importance that contribute or explain
a variable (Cutler et al., 2007; Díaz-Uriarte & Alvarez de Andrés, 2006;
Hapfelmeier & Ulm, 2013). Random Forests was used by the Interna-
tional Rice Research Institute (IRRI) to map potential rice areas in Laos
with a view to limiting environmental degradation due to rice pro-
duction (Laborte et al., 2012). Elsewhere, Random Forests has been
shown to give good accuracy without overfitting and it is relatively
robust to outliers and noise (Breiman, 2001; Gislason, Benediktsson, &
Sveinsson, 2006; Prasad, Iverson, & Liaw, 2006). Random Forests,
considered for classification of multi-source geographic data, presents a
comprehensive methodology to assess and analyze classification un-
certainty based on the local probabilities of class membership (Gislason
et al., 2006; Loosvelt et al., 2012).

The overall aim of this paper was therefore to explore the Random
Forests approach to define the best predictors of rice production de-
velopment in IVs in the diverse landscape of the West African context.
An improved understanding of the relevant parameters supports na-
tional government agencies, donors and developers in the selection
specific IVs or regions and thus increase the chance of success of agri-
cultural development interventions. The specific objectives of this study
were: (1) to identify the relevant factors or parameters that define an
IV's potential for rice development; and (2) to select the most important
parameters as predictive variables, which will then be used to map the
potential of IVs for rice production.

The methodological approach, including the Random Forests
method that was used in this study is presented in section 2, after the
presentation of study area and explanation of heuristics for obtaining
the candidate predictors. In section 3, the results on the effectiveness of
variable importance measures and the selection of the most relevant
predictors among the large number of candidate predictors for the four
study areas are reported. In section 4, the methodological approach and
the results are discussed, and finally conclusions are presented. The
appendix provides the exhaustive list of candidate predictors.

2. Materials and methods

2.1. Study areas and sampling of inland valleys

This study was carried out in four regions located in Benin, Mali,
and Sierra Leone (Fig. 1). A geo-located database was built covering a
total of 499 IVs distributed in the four targeted study areas, with 100,
149, 100, and 150 IVs in Mono and Couffo departments (Benin), Ouémé
River upper catchment (Benin), Sikasso and Kadiolo circles (Mali), and
Bo and Kenema districts (Sierra Leone), respectively.

The selection of IVs was based on many criteria. The first was to
locate areas where IV agro-ecosystems are most numerous in West
Africa, as in the countries targeted for this study. The specific study
regions were selected on the basis of available databases on IVs per
country. For Benin, the databases of IMPETUS (a German research
project, 2005–2010) and RAP-IV project (Realizing the agricultural
potential of IV lowlands in sub-Saharan Africa while maintaining their
environmental services, based in Africa Rice Center, 2009–2014) cov-
ered the upper of Ouémé River catchment and Mono and Couffo
départements, respectively (Sintondji et al., 2016). These projects in-
vestigated the potential of IVs in target areas. In Mali and in Sierra
Leone, the national agricultural research systems (NARS) – Institut
d’économie rurale (IER) and Sierra Leone Agricultural Research In-
stitute (SLARI) – have available information on the potential of IVs,
their location, and general characteristics (Dossou-Yovo et al., 2017).

The identification of IVs systems was carried out by survey of lea-
ders and key informants at village level. IV location was determined
using GPS on the ground or Google Earth to map the boundary. Field
surveys were also carried out at IV scale. Another criterion was the
spatial distribution of IVs in the target areas. For the established sample
of IVs, agricultural use, use for paddy, and crop diversification in IVs
were also considered (Table 1).

2.2. Candidate predictors

The binomial variable ‘presence or absence of rice cultivation in IVs’
was used as the dependent variable in this study. Many factors and
parameters, defined as variables (p), could explain the suitability of an
IV for rice production. The project aim was to identify the relevant
conditions that suggest rice production potential in IVs and to map the
IVs most suitable for rice cultivation development. Using an empirical
technique based on expert knowledge and literature review (e.g.
(Gumma et al., 2009; Laborte et al., 2012; Masoud et al., 2013; Sakané
et al., 2011), a total of 64 variables was proposed. These variables were
highly diverse and from many sources (see Appendix). Environmental
variables covered hydrological, topographical, climatic, and soil fac-
tors. Socio-economic variables related to accessibility and, demo-
graphic factors, and IV-use data. Many were also related to farm
management practices.

In this study, candidate predictors were identified via three routes:
(1) geographical location of IVs and rice sector development elements
such as rice mills, markets, and agricultural input stores, and digitizing
boundaries of IVs; (2) farmer surveys in IVs to collect environmental,
socio-economic, and agricultural use data; and (3) spatial data related
to topography, hydrology, climate, soil, accessibility, and population
density. In this sub-section, the candidate predictors of rice cultivation
potential in IVs are identified and the strategies which could enable
their collection in the field or their derivation them from metadata are
defined (Fig. 2).

2.2.1. Candidate predictors of location and accessibility
The first step was to identify prospective IVs in the study areas while

geo-locating them using GPS. Markets, rice mills, and input stores were
also located in the study areas and geographic coordinates were taken.
Downloaded, extracted, and symbolized Open Street Map (OSM) data
provided much of the location and accessibility data. From OSM nodes,
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locations of villages, hamlets, towns, and all other settlements such as
buildings and residential areas, and some markets were exported. From
OSM nodes, all available roads – primary, secondary, tertiary, re-
sidential, service, paths, and tracks – were exported and classified.
These accessibility and location data were not complete. Digitizing of
other roads and other settlements not available in OSM was done
manually in Google Earth. To determine the accessibility predictive
variables, the numeric values such as the nearest distances from IV to
major road (primary road), to other road (all other categories), to
marketplace, to input store, and to village, hamlet, town, and all other
settlements were calculated using ArcGIS software (see Fig. 2).

2.2.2. Field surveys
Environmental variables recorded were topographical (IV shape),

related to soils (major soil types), related to hydrological functioning
(water flow, emerging water table and shallow water table, and IV

drainage). Major soil types and IV shapes were obtained by direct field
observations or from key informants who use the IV or live close by
(Fig. 2). Socio-economic candidate predictors concerned IV users, land
exploitation, access to road, market, village, seeds, other inputs, ex-
tension services, and land, and farmer organizations. For farm man-
agement practices, crops, cropping system, and land development
system were recorded. All socio-economic and agricultural practice
variables were collected via questionnaires and observations.

2.2.3. Spatial candidate predictors
The spatial predictive variables (refer to Fig. 2 and Appendix)

concerned flow accumulation (hydrological data), elevation (topo-
graphical data), rainfall (one component of climate), soil physical and
chemical properties (organic carbon content, total nitrogen, ex-
changeable bases, pH in H2O, sand and clay fractions), and population
density (demographic data). All these were derived from online and

Table 1
Sampling of study sites (inland valleys, IVs) and criteria.

Study area

Mono and Couffo departments, Benin Upper Ouémé catchment, Benin Sikasso and Kadiolo circles,
Mali

Bo and Kenema districts, Sierra Leone

IVs with agricultural use: 98 145 99 129
Paddy cultivation 43 138 86 114
Vegetable crops 86 68 53 82
Other crops 86 66 41 46
IVs without agricultural use 2 4 1 21
Total IVs surveyed (n) 100 149 100 150

Fig. 1. Location of the four study areas: Mono and Couffo departments, Benin (1), Upper Ouémé catchment, Benin (2), Sikasso and Kadiolo circles, Mali (3), and Bo
and Kenema districts, Sierra Leone (4).
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freely available data sources using spatial analysis in ArcGIS and ex-
tracted using the geographic location of the IVs.

Worldwide High-resolution Shuttle Radar Topography Mission
(SRTM 30m) was used to establish the hydrological and topographical
data sets. The maximum flow accumulation and the mean elevation in
and around each IV were recorded. Daily rainfall data covering the
period 1983–2015 from African Rainfall Climatology (ARC) Version 2
for Famine Early Warning Systems were used to prepare the rainfall
data (Dembélé & Zwart, 2016; Novella & Thiaw, 2013). The annual
average rainfall was aggregated by calculating annual sums of daily
rainfall grids. Soil properties were obtained from AfSoilGrids250m of
Africa Soil Information Services (AfSIS) were aggregated (Hengl et al.,
2015). Using the composite of grids for 0–5 cm, 5–15 cm, and 15–30 cm
depths, means of pixel values for depth 0–30 cm for soil pH, fractions of
sand and clay, total exchangeable bases (Ca, K, Mg, Na), soil organic
carbon, and the total nitrogen for a depth of 0–20 cm were determined.

The Gridded Population of the World (GPW) Version 4 of 2015 with
an output resolution of 30 arc-seconds provided the population density
(persons/km2). This was considered the maximum population density
per administrative unit in which each IV is located – ‘arrondissement,’
‘commune,’ and ‘chiefdom’ in Benin, Mali, and Sierra Leone, respec-
tively.

2.3. Methodological approach and data processing

2.3.1. Random Forests
The statistical method Random Forests is an ensemble learning

technique that builds multiple ‘trees’ based on random bootstrapped
samples of the training data (Breiman, 2001). Having the ability to
identify informative variables (Hapfelmeier & Ulm, 2013), Random
Forests shows excellent performance compared to other classification
methods (Zhou, Hong, Luo, & Yang, 2010). It is known as a variable
selection method based on the algorithmic approach (Sandri &
Zuccolotto, 2006), Random Forests can be applied when many potential
predictors exist, and has good predictive performance (Tang et al.,
2009). Random Forests provides measures for each variable's predictive
importance (Yang & Gu, 2009).

In medicine, extensions of this method have been proposed, and
aimed at identifying variables important to the trait of interest (Barco
et al., 2012; Boulesteix, Janitza, Kruppa, & König, 2012; Casanova

et al., 2014; Chang & Yang, 2013; Chen & Ishwaran, 2012; Chen & Wu,
2012; Díaz-Uriarte & Alvarez de Andrés, 2006; Tang et al., 2009; Zhou
et al., 2010). In ecology, Random Forests has been used to deliver some
significant results through satellite images using remote sensing and
GIS techniques (Cutler et al., 2007; Gislason et al., 2006; Li, Tran, &
Siwabessy, 2016; Loosvelt et al., 2012; Mellor, Haywood, Stone, &
Jones, 2013). It has also been extensively used in agriculture (Hengl
et al., 2015; Jeong et al., 2016; Laborte et al., 2012; Ozdarici-Ok, Ozgun
Ok, & Schindler, 2015; Vintrou et al., 2012; Watts & Lawrence, 2008).

The objectives of variable selection are: (1) to find important vari-
ables strongly related to the response variable for interpretation pur-
poses; and (2) to find a small number of variables sufficient for a good
prediction of the response variable (Genuer, Poggi, & Tuleau-Malot,
2010). The performance of Random Forests to select important vari-
ables (Gregorutti, Michel, & saint-Pierre, 2017) has been tested in
comparison with other classical means of variable selection (Genuer
et al., 2010; Ozdarici-Ok et al., 2015; Sandri & Zuccolotto, 2006; Tang
et al., 2009; Yang & Gu, 2009). Each variable in its original data set
could be evaluated many times within different groups of variables.
Globally, important variables could be selected after many repetitions
(Yang & Gu, 2009). Consequently, Random Forests procedure returns a
small set of predictors which have high importance and jointly give
good prediction rate.

2.3.2. Variable importance measures and selection of predictors
The selection of important variables is based on recursive elimina-

tion of variables (Hapfelmeier & Ulm, 2013). The importance of each
variable is calculated by taking the difference between the prediction
accuracy with and without permuting the variable, and then averaging
this difference over all trees and normalizing by the standard error. The
variables are ranked on the basis of this importance measure, with the
variables having the highest decrease in accuracy resulting from the
permutation identified as the most important. Variables with the lowest
ranking (i.e. least important predictors) at a certain threshold are
subsequently removed from the predictor set and Random Forests re-
trained (Laborte et al., 2012). Selection results are based on the scaled
Mean Decrease in Accuracy (MDA) measure of variable importance
(Calle & Urrea, 2010; Cutler et al., 2007; Jeong et al., 2016; Rodriguez-
Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez, 2012; Stevens,
Gaughan, Linard, & Tatem, 2015).

Fig. 2. Flow chart depicting collection and deriving of data flow.
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The training followed several steps as advised in the recursive fea-
ture elimination (RFE) algorithm for variable selection, which has been
shown to be efficient for selecting a small number of variables that
together have a good prediction error (Gregorutti et al., 2017). At the

start (step 1), the classification process was repeated many times. Data
training was computed repeated 50 times (Genuer et al., 2010; Vintrou
et al., 2012). Average MDAs were calculated per variable. All variables
with MDA values of 0.05 or less were removed (Hapfelmeier & Ulm,

Fig. 3. Predictors' importance measures based on Mean Decrease in Accuracy (MDA). A: Mono and Couffo départements, Benin; B: Upper Ouémé catchment, Benin; C:
Sikasso and Kadiolo circles, Mali and; D: Bo and Kenema districts, Sierra Leone.
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2013). In step 2, the reduced data set of important variables with MDA
values superior of 0.05 was subjected to a repeat of the process of the
first step. The process was repeated many times until no variables with
MDA ≤0.05 were obtained. The short list of important variables was
therefore selected and the new dataset contained only the selected
important variables. Among these ‘important variables’ to come out of
step 2, several could be highly auto-correlated. The final step (step 3)
therefore tested the correlation and Principal Components Analysis
(PCA) of these important variables to remove the correlated variables
from the list (Genuer et al., 2010; Gregorutti et al., 2017; Millard &
Richardson, 2015; Nicodemus, Malley, Strobl, & Ziegler, 2010; Strobl,
Boulesteix, Kneib, Augustin, & Zeileis, 2008). The significant variables
in the final short list were ranked as very important, moderately im-
portant, and of little importance by considering last values of MDA.

2.3.3. Prediction performance evaluation
Random Forests returns a measure of error rate based on the out-of-

bag cases for each fitted tree, the OOB error. The OOB error was used to
evaluate the effect of changes in parameters of Random Forests on its
classification of variables (Díaz-Uriarte & Alvarez de Andrés, 2006).
OOB error was used (1) to compare Random Forests outputs instead of
assessing models, (2) to give fair estimation compared to the usual al-
ternative test set error it is considered somewhat optimistic, and (3)
because it is a default output of Random Forests technique (Genuer
et al., 2010; Millard & Richardson, 2015). The mean values of OOB
error per study region were subjected to statistical test by submitting
OOB error of training series to Two-way analysis of variance (ANOVA).

The Random Forests model training considers a part of the sample
(n) which represents the predicted value. This predicted value can vary
by increasing (which is an improvement of predicted value rate) of a
training series to another one according to data subset or may be stable
whatever the size or the variation of data subsets.

3. Results

3.1. Variable importance measures

3.1.1. Variable classification and relevant predictors
The clustered bar charts presented in Fig. 3 show the classification

per region of parameters measured according to their importance. Fig. 4
presented the series of 50 training per region before obtaining these
classifications exhibited by clustered bar charts; five series of runs for
Mono and Couffo départements in Benin, Upper Ouémé catchment in
Benin, and Sikasso and Kadiolo cercles in Mali and four series of runs for

Bo and Kenema districts in Sierra Leone. This variation in numbers of
training runs was due to the threshold of the value of MDA used to
select important variables. This criterion of selection also explains the
variation in number of important variables per region. Except for Bo
and Kenema districts in Sierra Leone where the first series of training
favored the removal of fewer candidate predictors (3% of the initial
data set), some 35%, 39%, and 47% of variables for Mono and Couffo
départements, Upper Ouémé catchment, and Sikasso and Kadiolo cercles,
respectively, were removed from the initial data sets. Subsequent
training series on the Upper Ouémé catchment data set resulted in the
removal of more variables and the candidate important predictors for
this region were around a third (36%) of the initial data set, fewer than
in other cases. Some 47%, 58%, and 93% of the initial data set were
identified as relevant variables for Sikasso and Kadiolo cercles, Mono
and Couffo départements, and Bo and Kenema districts, respectively, and
were submitted to correlated test before final selection of predictors
(Fig. 4).

3.1.2. Prediction performance: quality of fit and predicted values
The internal model performance evaluation was focused on two

model outputs: the quality of fit expressed by ‘out-of-bag estimate error’
rates (OOB error) and the predicted values of observations (samples).
The OOB errors used to identify the optimal subset of predictive para-
meters per study area and per training series are presented with their
standard deviations and ANOVA results in Table 2. The mean values of
OOB errors for Mono and Couffo départements of 24.4–28.1% were re-
latively higher than those of other regions, while the training series of
Bo and Kenema districts, Sierra Leone present the lowest OOB error
mean values (4.11% without any variation). For Upper Ouémé catch-
ment, the mean values of OOB error ranged between 5.83 and 7.63%
and those for Sikasso and Kadiolo cercles were 11.4–13.1%. The ANOVA
showed that means of OOB error of Mono and Couffo départements and
those of Upper Ouémé catchment and Sikasso and Kadiolo cercles were
significantly different, while the means of Bo and Kenema districts were
not different. However, the OOB error of training series per region in
these three study regions (Mono and Couffo départements, Upper Ouémé
catchment and Sikasso and Kadiolo cercles) were not always sig-
nificantly different.

Percentages of predicted values per training series and per study
region are shown on Fig. 5. Note that the departure situation of ob-
servations' size (n) does not undergo the change. Indeed, the predicted
values from training series of subsets of different study regions were
close to 70% or 100% from the first training series. For the Mono and
Couffo départements subset, percentages of predicted values were

Fig. 4. Number of relevant predictors per training series.
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between 68% and 76%, and the Upper Ouémé catchment subsets pre-
sented values between 69% and 81%. The percentages for Sikasso and
Kadiolo cercles changed very little (91–95%) and only for first training
series, while those of Bo and Kenema districts subsets were not im-
proved at all (97%). The percentages for Bo and Kenema districts being
highest and constant are in accordance with the OOB errors from that
region's training series, which were lowest and constant.

3.2. Selection of inland valley rice production predictors

Variables determined as important by Random Forests could be
categorized in three classes – ‘highly,’ ‘moderately,’ and ‘weakly’ im-
portant. Table 3 gives all the variables considered highly important.
Socio-economic and farm management practices factors were

numerically more relevant than physical parameters (soil, hydrology,
and topography) for predicting the potential of IVs for rice production
development. Socio-economic data essentially related to accessibility,
such as the distance from the IV to the nearest market or road. The
population density close to the IV, the gender (sex, ethnic group) of IV
users, and sometimes availability of inputs (seeds, fertilizers) were also
useful in prediction. Except for the Upper Ouémé catchment study re-
gion, farm management practices such as irrigation water resources,
soil fertility management, area of vegetable crops, and type of farmer
organization were also highly relevant for predicting production po-
tential. As for physical parameters, only total soil nitrogen was highly
important in the two study regions in Benin, and the soil sand fraction
was highly important in Bo and Kenema districts. The water duration in
IV in Upper Ouémé catchment, the water flow source in Bo and Kenema

Table 2
Out-of-bag (OOB) estimates error rates (%).

Study area Training series (S) F Bonferroni test

S1 S2 S3 S4 S5

Mono and Couffo départements 28.1 (2.6) 25.4 (2.9) 24.4 (2.2) 24.5 (2.1) 24.7 (2.6) 19.53*** S1#S2; S1#S3; S1#S4; S1#S5; S2=S3; S2=S4; S2=S5;
S3=S4; S3=S5; S4=S5

Upper Ouémé catchment 5.83 (0) 7.63 (0) 7.50 (0) 7.50 (0) 7.57 (0.2) 2860.22*** S1#S2; S1#S3; S1#S4; S1#S5; S2#S3; S2#S4; S2#S5;
S3=S4; S3#S5; S4#S5

Sikasso and Kadiolo cercles 13.1 (0) 12.1 (0.7) 11.9 (0.6) 12.1 (0.6) 11.4 (0.9) 49.25*** S1#S2; S1#S3; S1#S4; S1#S5; S2=S3; S2=S4; S2#S5;
S3=S4; S3#S5; S4#S5

Bo and Kenema districts 4.11 (0) 4.11 (0) 4.11 (0) 4.11 (0) – –

() indicate Standard Deviation values.
*** indicate significant differences at p≤ 0.05 between OOB error means of training series.

Fig. 5. Percentage of predicted values of training series per study areas.

Table 3
Predictors: highly important variables by study areaa.

Factors Mono and Couffo départements Upper Ouémé
catchment

Sikasso and Kadiolo cercles Bo and Kenema districts

Socio-economic, including
accessibility

Popden, Ethnig, Market,
Pavedrd, Store

Male, Market, DistRd Popden, Female,
Ivmarketdis

Female, Male Seeds, Otherinput Pavedrd,
Vilgmarket, Vilgmarketdis

Farm management practices Irrigation, Soilmngt, objective Soilmngt, Rsvegarea,
Rsocroarea

IVarea, Irrigation, Organizatyp

Soil nto20 nto20 sand30
Hydrological Waterdur, wtablshb Watersou, wtablemb, wtablemf
Topographical Elevation

a The description of variables is clearly displayed in the Appendix of this manuscript just after References.
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districts, and the mean elevation of IVs in Sikasso and Kadiolo cercles
were likewise highly important. Beyond these predictors, correlated
highly important variables were also identified. These were the distance
from the IV to the nearest paved road (Pavedrd) and the distance from
the IV to the nearest store for inputs (Store) in Mono and Couffo dé-
partements; wet-season crops (other than paddy and vegetable fields)
cultivation area (Rsocroarea) in Sikasso and Kadiolo cercles; and the
number of male farmers using the IV (Male), source of chemical inputs
(Otherinput), duration of an emergent water table in the IV bottom
(wtablemb), and duration of emergent water table on the IV fringe
(wtablemf) in Bo and Kenema districts.

The ranking criteria used were the variable's importance level (high,
moderate, weak) and the representativeness of each important variable
in the four study regions (either important in all study regions or im-
portant in three study regions). Table 4 presents the most relevant and
representative predictors from this study. Ranking of predictors took
into account the removal of correlated variables, while retaining the
more important and non-correlated variables. Thus, the distance from
the IV to the nearest market (Market) and the population density
(Popden) were revealed as the best predictors (first order) whatever the
geographical location of the IV, despite the diverse socio-economic and
bio-physical conditions (Table 4). The second order comprised total soil
nitrogen (nto20) and the mean elevation of the IV (Elevation). The third
order comprised the number of female farmers working in the IV (Fe-
male) and the soil texture (clayey, sandy, or intermediate) upper slope
of the IV (Soilupslop). The fourth-order predictors were the source (in
village or 25 km, or so far) of seeds (Seeds), soil fertility management –
whether or not fertilizer was used (Soilmngt), the irrigation water re-
source (Irrigation) which are either river diversion or natural spring or
mixed, and the soil sand fraction (sand30). Distance from the IV to the
nearest road (DisRd), from the IV to the nearest market (Ivmarketdis),
type of farmer organization (Organizatyp), flooding duration in the IV
bottom (Floodurb), soil pH, soil texture in the IV bottom (Soilbot), and
estimated average width of the IV (Widthest) were relevant and re-
presentative at fifth order.

Variables such as the distance from the IV to the nearest rice mill
(Ricemill) and the estimated annual average rainfall, which were also
important and representative but are correlated with another variable,
were removed from the list of predictors. Moreover, in each study re-
gion, predictors were revealed highly important and without any cor-
relation with another variable, but not representative across all study
areas. These location-specific predictors included the production ob-
jective (objective) and the major ethnic groups (Ethnig) in Mono and
Couffo départements; the number of male farmers working in the IV
(Male), water flow duration in the IV (Waterdur), and the duration of
shallow water table in the IV bottom (wtablshb) in Upper Ouémé
catchment; the wet-season vegetable cultivation area (Rsvegarea) in
Sikasso and Kadiolo cercles; and the distance from the IV to the nearest
paved road (Pavedrd), the village to market distance (Vilgmarketdis),
the state of the road between the village and the market (Vilgmarket),
the water flow source (Watersou), and the total area of the IV (IVarea)
in Bo and Kenema districts.

4. Discussion and conclusions

4.1. Random Forests for selection of inland valley rice production predictors

According to Genuer et al. (2010), one advantage of Random Forests
is that it performs well for both classic problems (where n > p), the
case of this study, and for problems of high dimension (where n < p),
where n is the size of the sample and p the number of variables. For all
variable importance measures in Random Forests processing, two in-
dices – MDA and mean decrease Gini (MDG) – are available to be used
to classify variables. The choice depends on the study area and the
objectives of the study. Most studies that apply Random Forests
methods use MDA for measurement of the importance of variables. In Ta
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bioinformatics, it was concluded that variable importance rankings
based on MDG show sensitivity to within-predictor correlation and are
more robust to small perturbations of the data (Boulesteix, Bender,
Bermejo, & Strobl, 2011; Calle & Urrea, 2010; Nicodemus, 2011). The
literature indicates that MDG is more often applied in medicine and
bioinformatics. Many studies have revealed that MDG is affected by
bias (Strobl, Boulesteix, Zeileis, & Hothorn, 2007; Sandri & Zuccolotto,
2008, 2010). For this reason, MDA index was chosen to measure vari-
able importance by eliminating less relevant variables from the data set
of each study region in this study.

About the technique of recursive feature elimination of variables,
Díaz-Uriarte and Alvarez de Andrés (2006) eliminated, at each step, the
20% of predictors with the lowest MDA values and build a new ‘forest’
with the remaining variables. They finally selected the subset of pre-
dictors leading to the smallest OOB error. This technique to eliminate
the 20% least relevant variables did not seem the most statistically
sound method. However, the elimination of unimportant variables
using the threshold average MDA value of 0.05 applied was not always
efficient. This was the case, for example, for the database from Bo and
Kenema districts in Sierra Leone. Means of OOB errors from the training
series were not statistically different: MDA averages of training series
for this region varied little. This is a major limitation of Random Forests
selection by defining the threshold between predictive and non-pre-
dictive variables (Sandri & Zuccolotto, 2006). Despite a good classifi-
cation of predictors of IV rice production development for this region,
the method did not eliminate variables to distinguish the most relevant
predictors. That could be due to many reasons, such as the natural or
socio-economic environment of the IVs not enabling to obtain data for
good modelling. A different approach might be more efficient for re-
moving less-important variables after each training series until ob-
taining the most important, especially in the case of Bo and Kenema
districts in Sierra Leone IV rice production development predictors.

4.2. Selected predictors for mapping inland valley rice production potential

The suitability of an area for rice production development in SSA
can depend on many factors and parameters. It should be viewed from a
deeper perspective taking account of technology, policy, and socio-
economic factors. The IV agro-ecosystems considered here also have
their own specificities related to the physical environment (Gumma
et al., 2009; Laborte et al., 2012; Masoud et al., 2013; Nwanze,
Mohapatra, Kormawa, Keya, & Bruce-Oliver, 2006). For predicting the
potential for development of rice production in an IV agro-ecosystem
efficiently, consideration must be given to the socio-economic, bio-
physical, and farm management conditions within a natural, economic,
agro-ecological, or political region. More than 60 variables (Appendix)
which were assessed according to their importance for rice production
in a natural West African environment were considered.

The distance from the IV to the nearest market, nearest road in
general, and nearest paved road in particular, and the distance from
village to market are all accessibility parameters that were revealed as
highly important variables and therefore main predictors (Table 3).
Certain distances (Market and Pavedrd) were estimated from spatial
analysis. Others (DistRd, Ivmarketdis, and Vilgmarketdis) were esti-
mated on the basis of farmers' knowledge. These parameters of distance
although estimated differently are highly important for predicting the
suitability for rice production development of an IV. Distances com-
plement one another and the parameter ‘distance’ from rice cultivation
area to market and to roads would be more relevant predictors close to
the population density around the IV, total soil nitrogen, and land
elevation of the IV, which are also highly relevant predictors. Studies
have shown that access to roads favors agricultural intensification in
IVs (Erenstein, 2006; Erenstein, Oswald, & Mahaman, 2006). In rural
environments with good road access, farmers plant fewer crops, pur-
chase more fertilizer, and hire more labor (Qin & Zhang, 2016). In the
case of IVs used for agriculture and even rice production, farmers easily

reach markets and stores for buying agricultural inputs (seeds and
chemical fertilizers) and selling agricultural products; they can also
access agricultural technologies such as rice mills, improved varieties,
irrigation or water control techniques, soil management knowledge,
farmer organizations, and can take advantage of agricultural extension
services. Therefore, road connections improve household agricultural
income, reduce poverty, and significantly increase local non-farm in-
come for poor households (Qin & Zhang, 2016; Sharma, 2016). This
explains the impact of the population density around or close to an IV.
Access to labor, technologies, and markets for selling farm products
such as rice (local consumption) depend on the size and the quality of
the local population, which may limit or be a great advantage for rice
production development. There would also be a relationship between
local population density and the crops cultivated as potential require-
ments of the neighboring population. Thus, the increasing of the po-
pulation density is important factor in agricultural development
(Meertens, Fresco, & Stoop, 1996).

Hydrological factors proved important in certain cases. For ex-
ample, the duration of water flow in the IV and the duration of the
shallow water table at the IV bottom in Upper Ouémé catchment, and
the water flow source and durations of emerging water table at the
bottom and on the fringes of IVs in Bo and Kenema districts. However,
hydrological factors were not strong determinants of the development
of rice production in all IVs. IVs in the two regions concerned are
generally small: average 6 ha and 19 ha in Bo and Kenema districts and
Upper Ouémé catchment, respectively, compared with 46 ha in Mono
and Couffo départements southern Benin and more than 100 ha in
Sikasso and Kadiolo cercles.

In considering all natural and socio-economic factors, this study was
able to identify the most relevant predictors for rice cultivation devel-
opment of IVs in many agro-ecological zones of four West African re-
gions. However, the similarities between the four regions were few.
Except for accessibility parameters, it did not find the same variable
highly relevant as predictor in more than two of the four studied re-
gions. Thus, it appears necessary to combine many criteria for ranking
the predictors in the study area. However, the importance of predictors
(highly, moderately, and weakly) simultaneously for the four studied
regions was considered. The index derived provided the first level of
ranking, which is the most important. The representativeness and
ranking of a predictor across regions was determined on its important in
all four regions or at least in three regions. From this scenario, 13
classes of predictors were obtained, of which the best classes are pre-
sented in Table 4. Among all these predictors, the best for predicting the
potential for rice production in IV agro-ecosystems of the study area
were: distance from the IV to the nearest market (Market), population
density (Popden), mean elevation of the IV (Elevation), and total soil
nitrogen (nto20). Secondarily, other six predictors: upper-slope soil
texture (Soilupslop), number of female farmers working in the IV (Fe-
male), soil fertility management (Soilmngt), irrigation water resource
(Irrigation), source of seeds (Seeds), and soil sand fraction (sand30),
which can also be used to effectively predict the potential for rice
production development in the study area despite not being the best
predictors were considered. The distance from the IV to the nearest rice
mill (Ricemill) was identified as a good predictor, because it was a
moderately important variable in all four regions, but was discarded
because it was correlated with other (highly important) variables in
each of the four regions. All other variables, despite their importance
revealed by Random Forests model training shown in Table 3, would
predict rice development for IVs only in the regions for which they were
highly important.

Data availability

The data base that was developed and deployed in this study is
made available to the research community in a separate publication in
the journal Data in Brief (Djagba, Kouyaté, Baggie, & Zwart, 2018a).
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Appendix. Variables used as model inputs – candidate predictors

Factors & Parameters Variables Description Unit Type Source

Hydrological data Floodurf Flooding duration in inland valley (IV)
fringe

Week Quantitative Field survey

Floodurb Flooding duration in IV bottom Week Quantitative Field survey
Flowacc Flow accumulation (maximum) Index Quantitative DEM/STRMa (30m)
Watersou Water flow source Qualitative Field survey
Waterdur Water flow duration Qualitative Field survey
Watflodur Water flow duration if temporary Month Quantitative Field survey
wtablemb Emerging water table, IV bottom duration Month Quantitative Field survey
wtablemf Emerging water table, IV fringe duration Month Quantitative Field survey
Wtablshb Shallow water table, IV bottom duration Month Quantitative Field survey
Wtablshf Shallow water table, IV fringe duration Month Quantitative Field survey
Drainage IV drainage Qualitative Field survey

Topographical and climatic
data

Shape Transversal entrenchment shape Qualitative Field survey
Elevation Elevation (mean) Meter Quantitative DEM/STRM (30m)
Widthest Estimated average width Meter Quantitative Field survey
Rainfall Estimated annual average rainfall Millimeter Quantitative ARC2 for FEWSb

Soil data OC Soil organic carbon content g kg−1 Quantitative AfSoilGrids250mc

nto20 Total nitrogen in top 20 cm g kg−1 Quantitative AfSoilGrids250m
Exchbas Exchangeable bases in top 30 cm Cmolc kg−1 Quantitative AfSoilGrids250m
sand30 Sand content in top 30 cm Percent Quantitative AfSoilGrids250m
clay30 Clay content in top 30 cm Percent Quantitative AfSoilGrids250m
pH Soil pH in H2O Index Quantitative AfSoilGrids250m
Soilbot Soil texture in the IV bottom Qualitative Field survey
Soilfring Soil texture on the IV fringe Qualitative Field survey
Soilupslop Soil texture on the upper slope Qualitative Field survey

Socio-economic and
accessibility

Pavedrd Distance from IV to nearest paved road Meter Quantitative OSMd & GoogleEarth
Othroad Distance from IV to nearest other road Meter Quantitative OSM & GoogleEarth
DistRd Distance from IV to road km Quantitative Field survey
Settlement Distance from IV to nearest settlement Meter Quantitative OSM & GoogleEarth
Market Distance from IV to nearest market Meter Quantitative GPS location
Ricemill Distance from IV to nearest rice mill Meter Quantitative GPS location
Store Distance from IV to nearest store of inputs Meter Quantitative GPS location
IVmarket Road IV–market Qualitative Field survey
Vilgmarket Road village–market Qualitative Field survey
IVmarketdis IV–market distance km Quantitative Field survey
Vilgmarketdis Village–market distance km Quantitative Field survey
Popden Population density Person

km−2
Quantitative GPWV4e

Landowner Land ownership Qualitative Field survey
Male Number of male farmers in the IV Person Quantitative Field survey
Female Number of female farmers in the IV Person Quantitative Field survey
Ethnig Major ethnic groups Qualitative Field survey
Migranpred Predominance of migrants in use of IV Qualitative Field survey
Landaccess Access to land Qualitative Field survey
Access Accessibility of the IV Qualitative Field survey
Seeds Source of seeds Qualitative Field survey
Otherinput Source of other inputs Qualitative Field survey
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Farm management practices
data

Othcrop Other crops in IV Qualitative Field survey
Vegetable Vegetables in IV Qualitative Field survey
IVarea Total area of the IV Hectare Quantitative GPS data/

GoogleEarth
Exploitation Mode of exploitation Qualitative Field survey
Objective Production objective Qualitative Field survey
Agrisupport Presence of agricultural support structure Qualitative Field survey
Ivorganizat Existence of IV farmer organization Qualitative Field survey
Organizatyp If yes, type of organization and if no, none Qualitative Field survey
Dvlopd Is IV developed? Qualitative Field survey
Soilmngt Soil fertility management Qualitative Field survey
Watersuply Water supply Qualitative Field survey
Irrigation Irrigation water resource Qualitative Field survey
Fields Field development Qualitative Field survey
Drainagpr Drainage practices Qualitative Field survey
Irrigationpr Irrigation practices Qualitative Field survey
Rsvegarea Wet-season vegetable cultivation area Hectare Quantitative Field survey
Dsvegarea Dry-season vegetable cultivation area Hectare Quantitative Field survey
Rsocroarea Wet-season other crops cultivation area Hectare Quantitative Field survey
Dsocroarea Dry-season other crops cultivation area Hectare Quantitative Field survey

a Digital Elevation Model/Worldwide High-resolution Shuttle Radar Topography Mission (SRTM 30m), URL: http://srtm.csi.org Data derivation were done in
ArcGIS.
b African Rainfall Climatology Version 2 for Famine Early Warning Systems available at ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2.
c Soil properties of African at 250m, Soil Grids available at www.isric.org/data/AfSoilGrids250m.
d Open Street Map or digitizing from Google Earth. Layers derivation were done in ArcGIS.
e Gridded Population of the World (GPW) Version 4 in 2015, Center for International Earth Science Information Network (CIESIN).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.apgeog.2018.05.003.
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