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Novel frontiers of dedicated molecular imaging in breast cancer 
diagnosis
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Abstract: Breast cancer (BC) is the most common cancer in women worldwide. In the last years, the 
contribution of nuclear medicine has grown based on the use of dedicated molecular breast devices for 
diagnosis and biopsy. Recent technical improvements have been achieved in order to increase the detection 
of smaller breast lesions using lower doses of radiotracers as well as to facilitate accurate biopsy sampling. 
Furthermore, new prototypes have been developed combining anatomic and functional imaging. Although 
the gamma-emitting 99mTc-sestamibi (99mTc-MIBI) and the positron-emitting 18F-fluorodeoxyglucose 
(18F-FDG) are the most widely used radiotracers, several new tracers have been investigated to target more 
specific biologic features of BC like proliferation, angiogenesis and tumour receptor status. Dedicated 
molecular breast devices have been introduced as an adjunct imaging tool to mammography (MG) and 
ultrasound (US) in the clinical work-up for BC. Additionally, due to the increased interest in molecular 
tumour subtype analysis and ribonucleic acid (RNA)-based gene expression profiling tests in the routine 
clinical practice, a possible new clinical application of dedicated breast imaging concerns locally advanced 
BC, principally in order to visualise intra-tumour metabolic heterogeneity enabling selection of areas with 
highest tracer uptake (vital tissue) for core needle biopsy. Hence, it will be possible to more adequately tailor 
the individual treatment, also enabling therapy response monitoring. This review evaluates the current and 
future perspectives as well as the shortcomings of breast imaging using dedicated nuclear medicine devices.
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General introduction

Breast cancer (BC) is the most common tumour in 
women worldwide, with an estimated 252,710 cases and  
40,610 deaths in the United States of America (USA), in 
2017 (1). Currently, mammography (MG) is the primary 
screening test for BC (2). However, MG has a limited 
ability to detect breast lesions in dense breasts (3). Since 
the detection of BC in an early stage is associated with 
better prognosis (4), other imaging modalities have been 
introduced as complementary tools to MG (2). Indeed, 
magnetic resonance imaging (MRI) is recommended for 
BC screening in high-risk women (5-7). However, this 
procedure is limited in patients with obesity, claustrophobia, 
presence of implanted devices and renal insufficiency (8). 
In the last years, there has been an increasing interest 
towards nuclear medicine imaging techniques that enable 
the visualization of malignant functional changes in breast 
tissue. Several dedicated molecular imaging devices, 
including both single-photon and positron emission-based 
systems, are nowadays used as adjunct modalities to improve 
the detection of breast malignancies (9). Until now the main 
approach using dedicated molecular breast imaging (MBI) 
has been oriented to the complementary aspects provided 
by this modality for assessing extent of primary disease in 
patients with newly diagnosed BC and for problem solving, 
especially in patients with very dense breasts (10). However, 
a new area of interest has recently been delineated on the 
basis of the potential visualization of heterogeneity in locally 
advanced breast cancer (LABC). In this respect, and thanks 
to a better resolution, dedicated molecular breast devices 
appear to be more suitable than conventional tomographic 
imaging (PET/CT, SPECT/CT) opening a new diagnostic 
window for tumour characterization and biopsy (11). In 
this review we discuss these advances in dedicated breast 
imaging with an emphasis on recently introduced dedicated 
devices and radiotracers.

Dedicated nuclear medicine breast imaging

In Table 1, the characteristics of some commercially available 
dedicated breast imaging devices are summarized.

MBI

The terminology MBI is habitually used to refer to 
dedicated breast devices based on the use of single-photon 
emitting radiotracers like 99mTc-sestamibi (99mTc-MIBI) (12). 

One of the first devices using MBI technology was a single 
detector system known as breast-specific gamma imaging 
(BSGI) developed by Dilon Diagnostics (Newport News, 
Virginia, USA) (13). More recently, dual-head detector 
MBI systems like Discovery NM750b and LumaGem 3200s 
were introduced by GE Healthcare (Milwaukee, Wisconsin, 
USA) and by Gamma Medica, Inc. (Northridge, California, 
USA), respectively (14). All these devices are generically 
included in the MBI modality using a positioning similar 
to that of MG. In particular, the breast is placed between a 
compression paddle and the detector for BSGI or between 
two detectors when using the MBI device. The advantages of 
single-head configuration are lower costs and the possibility 
to perform a biopsy using an available complementary tool 
(15,16). The advantages of dual-head configuration are 
higher spatial resolution and therefore a potentially higher 
detection rate of small breast tumours and the possibility 
to use lower injected doses of 99mTc-MIBI (17,18). The 
clinical protocol consists of an intravenous administration 
of the radiotracer (740–1,100 MBq 99mTc-MIBI for single-
head or 150–300 MBq for dual-head systems) into the 
arm contralateral to the breast lesion. Image acquisition 
starts 5–10 minutes after injection of the radiotracer and 
includes acquisitions of 8–10 minutes in both craniocaudal 
(CC) and mediolateral oblique (MLO) projections of 
each breast (Figure 1), with a duration of approximately  
40 minutes in total per study (19). Since for MBI positioning 
is analogous to that of MG, nuclear medicine technologists 
need to receive an additional training in mammographic 
positioning. MBI images are interpreted according to a 
functional BI-RADS classification lexicon (19,20). Sun et al. 
reported a meta-analysis including a total of 19 studies on 
clinical usefulness of MBI for diagnosis of BC. The authors 
showed pooled sensitivity of 95% (95% CI: 93–96%) and 
pooled specificity of 80% (95% CI: 78–82%) for detecting 
BC, including eight studies and 2,183 lesions (21). MBI 
examinations are well tolerated by patients, no preparation 
(e.g., fasting) is required and the acquisition is performed in 
a comfortable upright position of the patient. Nevertheless, 
MBI examinations require the use of ionizing radiation. 
Newest MBI devices allow a reduced administered dose 
of 150–300 MBq 99mTc-MIBI (18) resulting in an effective 
whole body dose of 1.2–2.4 mSv (22).

Positron emission mammography (PEM) 

PEM is a dedicated breast imaging device, commercially 
introduced by CMR-Naviscan Corporation (Carlsbad, 
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Figure 1 (A) Breast-specific gamma imaging (BSGI) device with in foreground the gamma camera detector and a compression paddle 
to immobilize the breast during image acquisition. BSGI craniocaudal (B) and latero-oblique (C) images of both breasts in a 49-year-old 
woman showing an 18-mm invasive ductal carcinoma in the left breast.

Table 1 Summary of characteristics of some commercially available dedicated breast imaging devices 

Device Design 
Detector 

type
FOV (cm) 3D 

Modality used for 
image correlation 

Patient 
positioning

Breast 
compression

Biopsy possibility

Dilon 6800 (Dilon 
Diagnostics)

Single flat panel NaI 20×15 No MG Seated Yes FDA-approved

Dilon 6800 Acella (Dilon 
Diagnostics)

Single flat panel CsI 25×20 No MG Seated Yes FDA-approved

Discovery NM750b (GE 
Healthcare)

Dual flat panels CZT 24×16 No MG Seated Yes FDA-approved

LumaGEM 3200s 
(Gamma Medica)

Dual flat panels CZT 20×16 No MG Seated Yes Not FDA cleared

PEM Flex Solo II (CMR 
Naviscan Corporation)

Dual flat panels LYSO 24×16.4 Yes MG Seated Yes FDA-approved

Clear-PEM (Crystal 
Clear Collaboration)

Dual flat panels 
rotating 

LYSO 16.2×14.1 Yes MRI Prone Yes Not known

O-scanner (Shimadzu 
Medical Systems)

Three full rings LGSO 18d, 15.5a Yes MRI Prone No Not known

Two partial rings LGSO 17.9d, 10.5a Yes MRI Semi-prone No Not known

MAMMI-PET 
(Oncovision)

Single full ring LYSO 17d, 4a Yes MRI Prone No Prototype

Double full rings LYSO 17d, 9.4a Yes MRI Prone No Prototype
d, diameter; a, axial FOV length. FOV, field of view; 3D, three dimensional; BI-RADS, Breast Imaging Reporting and Data System; NaI, 
sodium iodide; MG, mammography; FDA, Food and Drug Administration; CsI, cesium iodide; CZT, cadmium zinc telluride; LYSO, lutetium-
yttrium oxyorthosilicate; MRI, magnetic resonance imaging; LGSO, lutetium gadolinium oxyorthosilicate. 
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California, USA), based on the use of positron-emitting 
radiopharmaceuticals  l ike 18F-fluorodeoxyglucose 
(18F-FDG). PEM uses two flat detectors with mild 
compression of the breast and the patient in seated 
position. The PEM images are comparable to CC and 
MLO projections of MG (23). Unlike whole body positron 
emission tomography combined with computed tomography 
(PET/CT), PEM allows the detection of small breast 
lesions using lower 18F-FDG doses with shorter acquisition 
times (24). The clinical PEM imaging protocol includes 
an intravenous injected dose of 18F-FDG (approximately  
370 MBq) into an antecubital vein contralateral to the breast 
lesion. Prior to 18F-FDG injection, all patients have to fast 
for at least 4–6 hours and the blood glucose level has to be 
below 200 mg/dL. Images are acquired 60–120 minutes 
after radiotracer injection and require approximately  
20 minutes per breast (10 minutes per CC and 10 minutes 
per MLO views) (25). PEM images are interpreted 
according to a functional BI-RADS classification (26). The 
sensitivity of PEM has been found to be 93% for known 
index lesions as small as 3 mm. Although this sensitivity 
is comparable to MRI, specificity of PEM is higher than 

MRI (74% vs. 48%) for the identification of unsuspected 
lesions (27). A meta-analysis evaluating 8 studies and  
873 patients showed pooled sensitivity and specificity for 
PEM of 85% (95% CI: 83–88%) and 79% (95% CI: 74–
83%) respectively (28). Advantages of PEM in comparison 
to PET/CT are in depicting small lesions as well as the 
possibility to perform breast biopsies using a special  
module (29). Despite the radiation exposure, PEM is 
considered an alternative tool in case of contraindications 
for MRI like overweight, claustrophobia, presence of 
implanted devices and renal insufficiency.

Dedicated breast PET devices

MAMmography with Molecular Imaging (MAMMI)-PET 
is a new breast dedicated PET system. MAMMI-PET is 
manufactured by Oncovison (Valencia, Spain) with a single 
or double full ring of detectors for tomographic image 
reconstruction with high resolution (1.6 mm). MAMMI-
PET does not require compression of the breast; actually, 
the patient is positioned in prone position with hanging 
breast (30,31) as illustrated in Figure 2. Although there 

Figure 2 MAMMI-PET device for breast imaging with patient in prone position (A) with hanging breast configuration thanks to the 
special bed and ring camera (B). On the right, internal view of the scanner showing a version with a single (C) and a double (D) full ring of 
detectors. MAMMI, MAMmography with Molecular Imaging; PET, positron emission tomography.
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are few studies on MAMMI-PET, this device enables the 
visualization of small tumours as well as tumours with 
heterogeneous 18F-FDG uptake (11,32). In an extensive 
evaluation including 234 index lesions of at least 5 mm size in 
BC patients, MAMMI-PET was found to be more sensitive 
than standard PET/CT for lesions within the field of view 
(FOV) (33). Similar to other dedicated breast imaging 
devices (23), proper positioning of the breast is essential 
for MAMMI-PET examinations and some difficulties of 
the device to visualize breast lesions located close to the 
pectoralis muscle have been reported causing the need 
of a technical optimization of the bed for prone patient 
positioning (33). The MAMMI-PET protocol provides an 
intravenous administration of the radiotracer (180–240 MBq 
of 18F-FDG) according to the body mass index. Images are 
obtained 60–120 minutes after the radiotracer injection with 
an acquisition time of approximately 5–15 minutes per breast 
depending on the breast size and type of device used (single 
or double ring) (11). The use of standardized terminology to 
report MAMMI-PET images has not been defined yet. One 
of the advantages of MAMMI-PET is the ability to perform 
semiquantitative analysis by measuring the standardized 
uptake value (SUV). Compared to the whole body PET/CT,  
MAMMI-PET offers lower doses as well as shorter 
acquisition times.

Recently, another dedicated breast PET (dbPET) 
device, known as O-scanner (Shimadzu, Kyoto, Japan) has 
been developed (34). This device consists of 36 detector 
modules arranged in three contiguous full rings with an 
estimated spatial resolution of 1.5 mm at the centre of 
FOV. Working protocols using O-scanner are comparable 
to the MAMMI-PET but acquisition times are shorter due 
to a transaxial effective FOV of 180 mm. Nishimatsu et al. 
have evaluated the diagnostic performance of O-scanner 
compared to whole body PET/CT including 179 index BC 
lesions in 150 patients. Based on pathological findings, the 
authors did not find a significant difference between both 
devices in term of sensitivity per patient and per lesions 
(95% and 92% for O-scanner vs. 95% and 88% for PET/
CT, respectively). However, tumour-to-background ratios 
were significantly higher for O-scanner increasing levels of 
confidence in the diagnosis by observers thanks to higher 
tumour conspicuousness.

The same group of investigators also evaluated a dbPET 
with an open end through which the patient’s arms can 
be placed. This device known as C-scanner, consists of 
24 detector blocks arranged in two contiguous rings. Its 

evaluation in 159 women showed a lesion-based sensitivity 
of 81.1% increasing to 93% when lesions outside the FOV 
of the system were excluded (35).

Current indications

Currently, dedicated nuclear breast imaging is considered 
as a complementary imaging tool to MG and ultrasound 
(US) in patients with the following conditions: (I) with 
newly diagnosed BC to exclude multicentric, multifocal or 
contralateral disease and to assess response to neoadjuvant 
chemotherapy; (II) with suspected recurrence, especially 
when previous malignancy is occult on MG and US; (III) 
with indeterminate breast lesions and remaining diagnostic 
concerns; (IV) with technically difficult breast imaging like 
dense breast tissue, prosthesis; (V) with contraindication 
to MRI like claustrophobia, presence of implanted devices, 
renal insufficiency (19).

Dedicated breast devices for radioguided biopsy

In addition to dedicated breast imaging various complementary 
tools using radioguidance for lesion localization and vacuum-
assisted biopsy have recently been developed.

MBI-guided biopsy

MBI-guided biopsy is a tool based on the use of 99mTc-MIBI 
as guiding radiotracer. One of the first developed devices 
(GammaLōc®, Dilon Technologies, Newport News, USA) 
has been validated and approved by the Food and Drug 
Administration (FDA) in 2009 for complementary use with 
the BSGI camera. The tool is equipped with a small, single-
head detector with a slant-hole collimator for dedicated 
stereotactic localization (Figure 3). The patient is in seated 
position and the breast is mildly compressed between the 
grid paddle and the detector. The biopsy protocol is based 
on a 5-step procedure: (I) scout image and two stereotactic 
images (±20 degree angle) are obtained to determine the 
positioning of the lesion; (II) the software measures the 
index lesion coordinates; (III) the trocar needle is placed into 
the breast; (IV) subsequently, the verification of the correct 
needle placement is performed using Cerium-139 (139Ce) as 
source; (V) this is followed by the biopsy using a vacuum-
assisted device (VAD), a clip marker is placed at the biopsy 
site, a postbiopsy specimen scan is performed to confirm 
adequate biopsy specimens and postbiopsy MG is acquired to 
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evaluate the placing of the clip (16). Recently, the first clinical 
study has been performed including 38 patients (38 lesions). 
This biopsy tool was technically successful in all 99mTc-MIBI 
avid lesions. Indeed, all biopsy samples were radioactive 
and proved adequate for histopathology analysis. The mean 
procedure time was 71 minutes (range, 44–112 minutes). All 
biopsy procedures were well-tolerated by the patients (two 
hematomas and three vasovagal reactions). Based on these 
results, this new biopsy tool appears to be technically feasible 
to obtain accurate radioactive samples (36). However, further 
studies are needed to investigate the role of this device in the 
clinical work-up.

PEM-guided biopsy

PEM-guided biopsy is a biopsy device using principally 
18F-FDG as radiotracer. This device has been validated in 
2001 (37) and has been approved by FDA in 2008. PEM-
guided biopsy is a portable and compact device comprising 
two plate PET detectors and stereotactic technology 
(Stereo NavigatorTM Naviscan, Carlsbad, California, 
USA) to calculate the coordinates of the breast lesion. 
The patient is in seated position and the breast is placed 

between both PET detectors with mild compression. The 
biopsy procedure involves five steps as follows: (I) initial 
biopsy scan to identify and target the lesion; (II) alignment 
scan to verify the correct position of the needle using 
Germanium-68 (68Ge) as line source; (III) prebiopsy scan to 
confirm the correct positioning with biopsy needle in the 
breast; (IV) postbiopsy scan to ensure appropriate lesion is 
removed and (V) specimen scan to confirm adequate biopsy 
specimens. Postbiopsy MG is performed to ensure that 
clip placement corresponds with the biopsy site (29). To 
date, one multicentre study has been performed including  
19 patients (24 lesions) showing that this biopsy device 
proved technically successful in all cases and was well-
tolerated by patients. The authors reported a median 
procedure time of 32 minutes (range, 19–119 minutes), 
and 58% (14/24) of biopsied lesions were smaller than  
10 mm (29). Based on these results, PEM-guided biopsy 
appears to be a promising biopsy tool for 18F-FDG-avid 
breast lesions. In particular, this device allows re-imaging of 
the biopsied breast and biopsy sampling to ensure adequate 
biopsy without injection of an additional radiotracer. 
Recently, Argus et al. evaluated the feasibility of performing 
diagnostic PEM and PEM-guided biopsy on the same day, 
including 20 patients (27 lesions). The authors showed 
that it is possible for most patients (24/27 lesions) reducing 
radiation dose for both patient and medical staff (38).

MAMMI-guided biopsy

Recently, a semi-robotized system for MAMMI-guided 
biopsy tool was developed in the context of the European 
Union FP7-SME-2013-606017 MAMMOcare project 
and has technically been validated in 2017 (39). This 
biopsy tool comprises a dedicated dual-ring PET-detector 
with automated lesion localization software together 
with a vacuum-assisted biopsy needle attached to a 
robot-controlled arm (Figure 4). The patient is in prone 
position and the breast is placed in the opening of the 
device without compression (hanging freely). The biopsy 
procedure requires five steps. (I) First, acquisition of the 
whole hanging breast with closed PET-ring is acquired 
to determine the index lesion coordinates, afterward 
the system automatically calculates the shortest needle 
trajectory and subsequently positions the biopsy needle in 
that trajectory. (II) Second, scanning with the closed PET-
ring and mild compression is obtained including only the 
part of breast with the index lesion. This step aims to adjust 
the new index lesion coordinates due to breast compression. 

Figure 3  Biopsy device for complementary use with the 
BSGI device now equipped with a grid paddle for both breast 
immobilization and vacuum-assisted biopsy. For calculation of 
the depth of the primary breast lesion two stereotactic images are 
acquired using a slant-hole collimator placed oppositely to the 
biopsy device. BSGI, breast-specific gamma imaging.
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(III) Third step involves placing a biopsy needle into the 
index lesion, with the affected breast in compression and 
opened PET-ring. (IV) A new acquisition is performed 
with needle in place to verify the correct needle position in 
the index lesion. (V) Finally, biopsy is performed manually 
using VAD. Based on phantom experiment, the estimated 
time per lesion is approximately 30 minutes (39). Until now, 
only a technical evaluation has been performed showing 
an accuracy of 0.5, 0.6 and 0.4 mm for the x/y/z-axes. The 
system has been developed to optimize both conventional 
histopathology and ribonucleic acid (RNA)-based molecular 
diagnostics but no clinical study has yet been reported in 
the current literature.

Future applications

Targeted biopsy and precision breast cancer medicine

In the last years, the interest toward molecular analysis in 
routine practice has been increasing. This analysis is based 
on the tumour’s gene expression profiles measuring RNA 

levels for selected genes. Several genomic tests have been 
developed for breast tumours (40,41). Among them, the 
MAMMAPrint (Agendia, Amsterdam, The Netherlands) 
test measures the expression of 70 genes through 
microarray analysis (42) for predicting the risk for tumour 
recurrence and for better selecting patients for adjuvant  
chemotherapy (43). Therefore, the goal of breast biopsy is 
to obtain an adequate sampling not only for increasing the 
likelihood of finding tumour tissue, but also for assessing 
the tumour subtype and genetic expression profile. This will 
facilitate stratifying patients and planning target-specific 
therapies in the context of a recently introduced concept 
of precision medicine in BC (44). Buyse et al. reported that 
only 81% of the tumour samples obtained with US-guided 
biopsy contained sufficient RNA for genetic analysis (45).  
Radioguided biopsy offers the possibility to obtain radioactive 
tumour samples that correspond with vital tumour areas clear 
of both necrotic and stromal tissue. Therefore, radioguided 
biopsy may be able to obtain sufficient RNA in the sampling 
useful for genetic expression profiles based on the principle of 
radiotracer uptake that associates areas with higher 18F-FDG 

Figure 4 Prototype of the MAMMOcare device composed of a special bed for prone position of the patient, a PET-ring detector for image 
acquisition and a semi-robotized arm for vacuum-assisted biopsy (A). For biopsy, the PET-ring moves from a closing stand to an opening 
one (B) facilitating introduction of the needle (C). PET, positron emission tomography.

A

B C
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uptake with those parts of the tumour with increased 
glycolysis, representing the most proliferative parts of the 
tumour. As reported in the literature, high 18F-FDG uptake 
in the primary tumour is associated with poor prognostic 
features such as grade 3 and triple negative BC (46,47). 
A similar working model is assumable using 99mTc-MIBI 
which also shows a positive association between the level of 
tracer uptake in breast tumours and the amount of viable 
tumour tissue. Hence, the possibility for biopsy of the most 
proliferative part of the tumour may increase the accuracy 
of tumour sampling for genetic analysis, and consequently 
lead to better individual treatment planning with possible 
improvement of patient outcome.

This new clinical possibility for targeted biopsy 

using radioguidance was the rationale for design of the 
precision biopsy device described in the above mentioned 
MAMMOcare project. This may be of interest in LABC, 
principally in tumours with heterogeneous uptake (Figure 5)  
enabling selection of those areas with highest tracer uptake, 
avoiding sampling of necrotic or fat tissues. Indeed, Koolen 
et al. reported non-correspondence of ≥2 cm between 
the core biopsy location indicated with a marker and the 
tumour area with highest 18F-FDG uptake in 28 (14%) of 
203 tumours in stage II and III BC (48). Further studies 
are needed to evaluate the feasibility of this potential 
application.

Use of new radiotracers for MBI, PEM, MAMMI
99mTc-MIBI and 99mTc-tetrofosmin are currently used as 
gamma-emitting radiotracers to detect BC. 99mTc-MIBI is 
the preferred radiotracer for MBI due to its uptake inside 
mitochondria (49), thus reflecting mitochondrial activity 
and electric transmembrane potential of BC cells (50,51). 
99mTc-tetrofosmin is similar to 99mTc-MIBI with localization 
mostly within cytosol (49,52,53). Another potential gamma-
emitting radiotracer is 99mTc-maraciclatide, also known as 
99mTc-NC100692, which is an angiogenesis marker. Indeed, 
99mTc-maraciclatide binds to receptors of integrins, such 
as αvβ3, which are significantly upregulated in endothelial 
cells during angiogenesis (54). In a series evaluating  
39 patients 99mTc-maraciclatide showed comparable lesion 
uptake to 99mTc-MIBI in both malignant and benign breast 
lesions (55). Furthermore, as shown in Table 2, there are 
new radiotracers like 99mTc-annexin V for apoptosis (56), 
99mTc-bombesine for gastrin-releasing peptide receptor (57) 
and 123I-labeled estrogen receptor (ER) ligand (58).

Regarding the positron-emission radiotracers, 18F-FDG 
is the most used tracer in BC. 18F-FDG is a glucose 
analogue, and so it is used for assessing the metabolism 
of breast tumour cells. In the last years, several new 
radiotracers (as shown in Table 2) have been developed: 
(I) 18F-fluoromisonidazole (18F-FMISO) as a marker 
of tumour hypoxia; (II) 18F-fluorothymidine (18F-FLT) 
reflecting cell proliferation; (III) 18F-galacto-recognizing 
arginine-glycine-aspartic acid (18F-Galacto-RGS) as an 
angiogenesis tracer; (IV) 18F-annexin as an apoptosis 
radiotracer; (V) radiopharmaceuticals with receptor affinity 
like 18F-fluoroestradiol (18F-FES) for estrogen receptor 
(ER); 18F-fluoro furanyl norprogesterone (18F-FFNP) for 
progesterone receptor (PR), and 89Zr-trastuzumab for 
human epidermal growth factor receptor 2 (HER2) (59).

A

C

B

D

Figure 5 Heterogeneous uptake of 99mTc-MIBI in invasive ductal 
breast carcinoma with a 3-cm lesion (A) and a 5-cm lesion (B) as 
shown using breast-specific gamma imaging. In another patient, 
heterogeneous uptake of 18F-FDG is seen after the first cycle of 
neoadjuvant chemotherapy in the superior part of the lesion (D), 
which was homogenous at baseline acquisition (C) with a dedicated 
hanging breast PET scanner. 18F-FDG, 18F-fluorodeoxyglucose; 
PET, positron emission tomography.
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Dedicated hybrid systems

Another important advance in BC imaging is  the 
development of dedicated hybrid devices combining anatomic 
and functional imaging. Various prototypes concerning these 
hybrid systems have been introduced in recent years.

Dual-modality breast tomosynthesis (DMT)

DMT is a new hybrid scanner, which includes the digital 
X-ray detector and an MBI detector. Both detectors rotate 
around a common axis with mild breast compression (60). 
DMT provides co-registered anatomic and functional 
breast images in three dimensions (3D). Although the 
results of the clinical pilot studies are encouraging, further 
studies will be necessary in order to optimize patient 
positioning and the acquisition protocol as well as to assess 
the additional value of this device relative to the separate 
modalities (60).

Dedicated breast SPECT/CT

Recently, a new dedicated hybrid system has been developed 
using single photon emission computed tomography combined 

with low-dose CT technology (breast SPECT/CT) (61).  
Compared to planar devices, dedicated breast SPECT/
CT enables 3D imaging, and functional and anatomic fused 
images, without the necessity for breast compression, making 
it more comfortable for the patients and with possibility to 
perform in vivo quantification of 99mTc-MIBI uptake.

MBI/US system

An integrated MBI/US prototype composed of an upper 
US mesh panel and a lower MBI detector has recently 
been developed (62). An optical tracking system provides 
the real-time position of the US probe relative to the 
breast lesion. A software application enables projection 
of the US FOV onto the MBI images. Therefore, this 
prototype system allows to integrate the anatomical US 
images with the functional MBI images. Hence, MBI/US 
may resolve positive findings on MBI that are occult on 
MG, as well as obtain a better lesion correlation between 
US and MBI (62).

Concluding remarks

The increasing use of dedicated devices for molecular 

Table 2 Some existing and potential radiotracers for dedicated molecular breast imaging

Radiotracer Type of emission Functional information  (uptake mechanism) 

99mTc-MIBI Single-photon Mitochondrial uptake

99mTc-maraciclatide Single-photon Angiogenesis

99mTc-annexin V Single-photon Apoptosis

99mTc-bombesine Single-photon Binding to BN receptor

123I-labeled Z-MIVE Single-photon Binding to ER 

18F-FDG Positron Glucose metabolism

18F-FMISO Positron Hypoxia

18F-FLT Positron Proliferation

18F-Galasco-RGS Positron Angiogenesis

18F-annexin Positron Apoptosis

18F-FES Positron Binding to ER 

18F-FFNP Positron Binding to PR 

89Zr-trastuzumab Positron Binding to HER2
99mTc-MIBI, technetium 99m-methoxyisobutylisonitrile; BN, growth factor bombesin; 123I-labeled Z-MIVE, iodine 123 labeled cis-11β-
methoxy-17α-iodovinyl estradiol; ER, estrogen receptor; 18F-FDG, 18F-fluorodeoxyglucose; 18F-FMISO, 18F-fluoromisonidazole; 18F-FLT, 
18F-fluorothymidine; 18F-Galacto-RGS, 18F-galacto-recognizing arginine-glycine-aspartic acid; 18F-FES, 18F-fluoroestradiol; 18F-FFNP, 
18F-fluoro furanyl norprogesterone; HER2, human epidermal growth factor receptor 2. 
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imaging in BC goes hand in hand with an evolution 
concerning their clinical applications. Based on the initial 
experience with these devices in detection of small breast 
lesions, there is a growing interest in studying the metabolic 
heterogeneity in LABC, opening a future window for 
tumour characterization and selection of areas for biopsy. 
In the context of precision medicine, the contribution of 
dedicated BC imaging using different radiotracers may 
become important not only to personalize therapeutic 
approaches on an individual basis, but also to monitor 
primary tumour response. Finally, the incorporation of 
allied technologies tends to gradually transform the current 
generation of dedicated nuclear medicine devices into 
hybrid systems with the ability to simultaneously evaluate 
the functional and morphological characteristics of BC.
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