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Abstract: In this paper a three dimensional non-linear model has been derived to describe the dynamics of an unstable
moment exchange unicycle robot. The robot uses a driving wheel to provide stabilization in longitudinal direc-
tion, while a second moment exchange wheel with a large inertia is used for stabilization in lateral direction.
For validation purposes, the resulting equations of motionare compared independently against the simulation
results of a finite element package called SPACAR. The model includes the coupling between the lateral and
longitudinal motion, which makes it possible to control theyaw angle and the model can be used to design a
stabilizing feedback controller.

1 INTRODUCTION

Using basic principles of kinematics and dynamics,
dynamic models of robotic systems can be derived in-
dependently by hand or by an automated computer
program to ensure cross model validity. This pa-
per illustrates this approach on an inherently unstable
Moment Exchange Unicycle Robot (MEUR) depicted
in Figure 1 that requires stabilization in both a lat-
eral and longitudinal direction. Using Newtonian me-
chanics and a finite element package called SPACAR,
three dimensional non-linear models that incorporates
the coupling between the lateral and longitudinal mo-
tion of the MEUR are derived. The resulting dynamic
model captures the dynamics of a wide variety of mo-
ment exchange unicycle robots and can be used to de-
sign stabilizing feedback control algorithms.

Earlier work on dynamic modeling of robotic uni-
cycles can be distinguished by their mechanism to
achieve lateral stabilization (van Pommeren, 2007).
An inertia wheel moving in the horizontal plane
for stabilization is used in many earlier applications
(Schoonwinkel, 1987; Vos and Flotow, 1990; Naveh
et al., 1999). This approach is comparable to the
twisting torso motion of a real unicyclist (Ohsaki
et al., 2008; Sheng and Yamafuji, 1997). The gyro-
scopic effect of two inertias spinning in opposite di-

rection in the horizontal plane is used in (Zenkov
et al., 1999). A pendulum moving in the vertical plane
perpendicular to that of the driving wheel is used in
(Dao and Liu, 2005) and an inverted pendulum in the
same plane is used in (Nakajima et al., 1997) where
lateral stabilization is further improved by a barrel
shaped wheel. The work of (Au and Xu, 1999) makes
use of the gyroscopic effect for stabilization.

inertia wheel
@
@ body

driving wheel
Figure 1: Schematic drawing of a Moment Exchange Uni-
cycle Robot (MEUR).

The three dimensional model of the MEUR de-
rived in this paper includes the coupling between the
lateral and longitudinal motion, which makes it pos-
sible to control the yaw angle similar as in (Majima
et al., 2006). For validation purposes of the dy-
namic model, the simulation results obtained from
the equations of motion are compared independently

216



against the simulation results of a finite element pack-
age called SPACAR (Aarts et al., 2008).

2 EQUATIONS OF MOTION

2.1 Model Structure and Orientation

The configuration and position of the the MEUR in
Figure 1 can be described by six independent coor-
dinates displayed in Table 1. The six coordinates do
not include the pitch angle of the inertia wheel, as we
assume that the inertia wheel is simply replaced by
a moment acting on the body. This is a simplifica-
tion of the problem, discarding the quadratic velocity
terms caused by the (small) pitch velocity of the in-
ertia wheel. Figure 2 shows all the transformations
needed to apply Newtonian mechanics, where Table
2 describes all the coordinate systems involved.

Table 1: Definition of independent coordinates.

description applies to axis
ψ Yaw angle wheel & body a3
γ Roll angle wheel & body b1
ϕ Body pitch angle wheel & body c2
θ Wheel pitch angle wheel d2
X x-position point Q wheel & body a1
Y y-position point Q wheel & body a2

ψ

γ
ϕ θb2

b3

b1 c2
c3

c1
d2

d3

d1

e2
e3

e1
A to B B to C C to D D to E
Figure 2: All coordinate system transformations.

Table 2: Definition of the coordinate systems (CS).

CS description unit vectors
A Inertial CS a1, a2, a3
B Contact force CS b1, b2, b3
C No-slip constraint CS c1, c2, c3
D Body CS d1, d2, d3
E Wheel CS e1, e2, e3

The inertial coordinate system will be used to ap-
ply Newton’s second law of motion, since this law is
only valid when observing translational accelerations
from this coordinate system. The contact force coor-
dinate system is used to define the forces acting in the
contact point. The no-slip constraint coordinate sys-
tem is used for the no-slip constraint since the con-
tact point is a stationary point only in this coordinate
system. The body and wheel coordinate systems are

used to apply Euler’s equations, since their rotational
inertias remain constant in these coordinate systems
(Hughes, 1986).

The transformationsB = AθBA, C = BθCB, D =
CθDC andE =CθEC between the different coordinate
systems is captured by the rotation matrices

θBA =





Cψ −Sψ 0
Sψ Cψ 0
0 0 1





, θCB=





1 0 0
0 Cγ −Sγ
0 Sγ Cγ





θDC =





Cϕ 0 Sϕ
0 1 0

−Sϕ 0 Cϕ





, θEC =





Cθ+ϕ 0 Sθ+ϕ
0 1 0

−Sθ+ϕ 0 Cθ+ϕ





where the cos(x) and sin(x) terms in the rotation ma-
trices are shortened to respectivelyCx and Sx. For
dynamic analysis, the derivatives of the rotation ma-
trices are given bẏθBA = θBAω̃BA, θ̇CB = θCBω̃CB,
θ̇DC = θDCω̃DC andθ̇EC = θECω̃EC where

ω̃BA =





0 −ψ̇ 0
ψ̇ 0 0
0 0 0





, ω̃CB =





0 0 0
0 0 −γ̇
0 γ̇ 0





ω̃DC =





0 0 ϕ̇
0 0 0
−ϕ̇ 0 0





, ω̃EC =





0 0 α̇
0 0 0
−α̇ 0 0





whereα̇ = θ̇+ ϕ̇.

2.2 Wheel Equations

The angular velocity vector of the wheelω can be ex-
pressed as the sum of all individual angular velocities
each defined in their own coordinate system. When
all these angular velocities are transformed to coordi-
nate system C, leads to an expression

ωC = θCB
T







0
0
ψ̇







+







γ̇
0
0







+θEC







0
θ̇+ ϕ̇

0







(1)

and correspondingly,̃ωC is a matrix composed of the
elements of vectorωC given by

ω̃C =





0 −ωC3 ωC2
ωC3 0 −ωC1
−ωC2 ωC1 0



 (2)

VectorrQP is shown in Figure 3 and is the vector
going from point P (the contact point of the wheel) to
point Q (the center of the wheel), pointing in thec3-
direction and its length is equal to radius of the wheel
rQP,C = {0 0R}T . Since no slip is assumed, the veloc-
ity at the contact point satisfiesvP,C = 0. The velocity
of the center of the wheel expressed in coordinate sys-
tem C is equal to the velocity of the contact point plus
the relative velocity due to rotation

vQ,C = vP,C +ωC × rQP,C = ω̃CrQP,C
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following (Kolve, 1993) to describe the derivative of
the rotation matrices and replacing the cross product
by a matrix multiplication. The same velocity can be
transformed to coordinate system A, which is the ve-
locity vQ,A with respect to the fixed world given by

vQ,A = θBAθCB
(

vP,C + ω̃CrQP,C

)

(3)

Writing out the right hand side of (3) leads to the dif-
ferential equations for the components ofvQ,A:

ẋ = R
((

θ̇+ ϕ̇+ ψ̇Sγ
)

Cψ + γ̇CγSψ
)

(4)

ẏ = R
((

θ̇+ ϕ̇+ ψ̇Sγ
)

Sψ − γ̇CγCψ
)

(5)

ż =−Rγ̇Sγ (6)

Solving (4) and (5) forx andy results in the solution
for the first 2 independent coordinates. This can only
be done numerically since these equations are non-
integrable. The solution forz = RCγ can be obtained
from the analytical solution of the integral of (6).

To find an expression for the acceleration of point
Q, first (1) will be differentiated to obtain

ω̇C =−ω̃CBθCB
T







0
0
ψ̇







+θCB
T







0
0
ψ̈







+







γ̈
0
0







. . .

· · ·+θECω̃EC







0
θ̇+ ϕ̇

0







+θEC







0
θ̈+ ϕ̈

0







and again,̇̃ωC is a matrix composed of the elements
of vectorω̇C given by

˙̃ωC =





0 −ω̇C3 ω̇C2
ω̇C3 0 −ω̇C1
−ω̇C2 ω̇C1 0





Differentiating (3) now leads to an expression for the
acceleration of point Q given by

v̇Q,A = θBA
(

ω̃BAθCBω̃C +θCBω̃CBω̃C +θCB ˙̃ωC
)

rQP,C

fx,Mx

fy,τ1

fz,Mz

fwpfwr

fn

Q

P

rQP
fg

Figure 3: Forces and moments acting on the wheel.

The gravity force vectorFG,B does not move with
any of the angles and since its direction is unaffected

by rotation matrixθBA it can be defined in the coordi-
nate system B viaFG,B = {0 0 −mwg}T

B because of
its simplicity later on. The contact force vectorFC,B
is chosen to be defined in coordinate system B, so that
it always rotates with the yaw angleψ but stays in the
same plane as the ground on which the wheel moves.
In this way fwp always points in driving direction and
fwr points in perpendicular direction. The third ele-
ment working on the same point is the normal force
fn creatingFC,B = { fwp fwr fn}

T
B . Finally, the reac-

tion force vectorFR,D = { fx fy fz}D is chosen to be
defined in coordinate system D, so that it moves with
the body.

Newton’s second law of motion yields

∑FA = mwv̇Q,A

where the left hand side is the sum of previously men-
tioned forces, transformed to the inertial coordinate
systemA, given by

∑FA = θBA
(

FC,B +FG,B +θCBθDCFR,D

)

and leads to an expression for the unknown contact
force vector

FC,B = θBA
T mwv̇Q,A −FG,B −θCBθDCFR,D (7)

The reaction moment vectorMR,D moves with the
body, just like the reaction force vector, and is there-
fore defined in coordinate system D. The second el-
ement ofMR,D is equal to the torque applied by the
motor between the driving wheel and body leading
to MR,D = {Mx τ1 Mz}D. Since the wheel is rotation
symmetric about thec2-axis, the pitch angles have no
influence on the inertias and Euler’s equation

∑M = ḣ (8)

applies in coordinate system C. The angular momen-
tum is expressed in coordinate system C by

h = J ·ω =
(

CJCCT ) · (CωC) =CJCωC

where

JC =





Jxx 0 0
0 Jyy 0
0 0 Jzz





The derivative ofh can then be written as

ḣ = ĊJCωC +CJ̇CωC +CJCω̇C

=C (ω̃CAJCωC + JCω̇C) (9)

and substituting (9) into (8) with∑M =C ∑MC yields

∑MC = ω̃CAJCωC + JCω̇C (10)

Finally, the left hand side of (10) can be written as

∑MC = θDCMR,D − r̃QP,CθCB
T FC,B (11)
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where

r̃QP,C =





0 −rQP,C3 rQP,C2
rQP,C3 0 −rQP,C1
−rQP,C2 rQP,C1 0





As a final note it can be observed from Figure 3
that the only force vector creating a moment on point
Q is the contact force vector and the arm for this mo-
ment is in opposite direction ofrQP,C. For the final
moment balance, the reacting force and moment vec-
tor have to be transformed to coordinate system C
first.

2.3 Body Equations

Figure 4 shows the forces and moments acting on the
body, whererRQ,D = {0 0 dRQ}D is the vector going
from point Q to R and the components ofFR andMR
are defined in positive direction on the wheel and thus
work in opposite direction on the body. The gravity
force vectorFGB,A = {0 0 −mbg}T

A acts on point R,
the center of gravity for the body and inertia wheel
together. The inertia wheel is simply replaced by a
moment,MI,D = {τ2 0 0}D, where the assumption is
made that low inertial wheel velocity allows moments
caused by quadratic velocity terms to be discarded.

fy,τ1
fx,Mx

fz,Mz

fgb

MI

Q

R

rRQ

Figure 4: Forces and moments acting on the body.

The angular velocity of the body is equal to that
of the wheel

ωb,C = θCB
T







0
0
ψ̇







+







γ̇
0
0







+θEC







0
ϕ̇
0







however it does not rotate with angleθ. The velocity
of point R is equal to the velocity of point Q plus the
relative velocity due to rotation

vR,A = vQ,A + ω̃b,ArRQ,A (12)

whereω̃b,A andrRQ,A in (12) can be expressed by the
known equations for̃ωb,C andrRQ,D given by

ω̃b,A = θBAθCBω̃b,CθCB
T θBA

T (13)

rRQ,A = θBAθCBθDCrRQ,D (14)

and substitution of (13) and (14) into (12) yields

vR,A = vQ,A +θBAθCBω̃b,CθDCrRQ,D (15)

Finally, differentiating the right hand side of (15)
yields

v̇R,A = v̇Q,A +θBA (ω̃BAθCBω̃b,C +θCBω̃CBω̃b,C . . .

. . . +θCB ˙̃ωb,C +θCBω̃b,Cω̃DC
)

θDCrRQ,D (16)

that can be used in Newton’s second law

∑FA = mbv̇R,A (17)

for the translational motion of the body. The left hand
side of (17) can be written as

∑FA =−θBAθCBθDCFR,D +FGB,A (18)

and substitution of (18) into (17) and rearranging
leads to an expression for the reaction force vector

FR,D = θDC
T θCB

T θBA
T (

FGB,A −mbv̇R,A

)

(19)

Application of Euler’s equation on the rotational
motion of the body will result in

∑MD = ω̃DAJb,Dωb,D + Jb,Dω̇b,D

where the left hand side can be written as the sum of
all moments

∑MD =−rRQ,D ×−FR,D −MR,D +MI,D

acting on point R. Rewriting this last expression leads
the reaction moment vector

MR,D =r̃RQ,DFR,D +MI,D − ω̃DAJb,Dωb,D . . .

. . .− Jb,Dω̇b,D (20)

whereω̃DA andωb,D in (20) can be written as

ω̃DA = θDC
T (θCB

T ω̃BAθCB + ω̃CB
)

θDC + ω̃DC (21)

ωb,D = θDC
T ωb,C (22)

3 SPACAR

To validate the model derived in this paper, a sec-
ond independent model is created using SPACAR
(Aarts et al., 2008). SPACAR is based on the non-
linear finite element theory for multi-degree of free-
dom mechanisms and runs in a Matlab environment
and capable of analyzing the dynamics of planar and
spatial mechanisms and manipulators with flexible
links. The code listed below constructs the model of
the MEUR in this paper. The SPACAR model con-
sists of a spatial rigid beam element, a spatial wheel
element and four spatial hinge elements defined by
the commandsRBEAM, WHEEL and HINGE. The first
number after the command is the element number.
The next two or three numbers are the coordinates,
where the numbers 1 to 5 are rotational coordinates
and 6 to 8 are translational coordinates. The last three
numbers represent the initial orientation.
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HINGE 1 1 2 0.0 0.0 1.0
HINGE 2 2 3 1.0 0.0 0.0
HINGE 3 3 4 0.0 1.0 0.0
WHEEL 4 6 5 7 0.0 1.0 0.0
HINGE 5 4 5 0.0 1.0 0.0
RBEAM 6 6 4 8 0.0 0.0 1.0

X 6 0.0 0.0 0.0495
X 7 0.0 0.0 0.0
X 8 0.00001 0.0 1.0495

FIX 1
DYNE 1 1
DYNE 2 1
DYNE 3 1
DYNE 5 1
KINX 6 1 2

END
HALT

XM 6 0.1
XM 5 0.000021213 0 0 0.00003 0 0.000021213

XM 8 0.2
XM 4 0.8000 0 0 0.002 0 0.4000

GRAVITY 0 0 -9.81

STARTDE 1 1 0 0
STARTDE 2 1 0.6 0
STARTDE 3 1 3.741592653589793 0
STARTDE 5 1 0 0

TIMESTEP 4 400

END
END

The initial values are defined in the second block
by the commandX and assigns the robot dimensions.
In the third block the first rotational coordinate is
fixed to the world withFIX. DYNE defines the degrees
of freedom, being the first deformation of the ele-
ments 1, 2, 3 and 5, equal to respectivelyψ, γ, θ and
φ. KINX defines two coordinates where the no-slip
condition holds.XM defines the point masses in coor-
dinate 6 and 8 and the inertia’s along thex, y and z
axis. GRAVITY takes care of the external forces act-
ing on the masses. The third and fourth number of
STARTDE defines the initial conditions forψ, γ, φ and
θ and the initial conditions for their time derivatives.
TIMESTEP defines the simulation time followed by the
amount of time steps.

4 SIMULATIONS

To cross validate the model derived in Section 2 and
the model provided by SPACAR in Section 3, time

domain simulations are carried out using the numeri-
cal values listed in Table 3. During the simulation, the
trajectory of the center of the driving wheel is chosen
as a measure for the cross validation.

Table 3: Numerical values of MEUR parameters.

Wheel Body
mw 0.1 kg mb 0.2 kg
R 0.0495 m drq 1 m
Jxx 0.00002 kgm2 Jb,xx 0.8 kgm2

Jyy 0.00003 kgm2 Jb,yy 0.002 kgm2

Jzz 0.00002 kgm2 Jb,zz 0.4 kgm2

g 9.81 ms−2

Different non-zero initial conditions and constant
motor torques are used and listed in Table 4. Time
simulations are computed using a non-stiff differen-
tial equation solver (Cooper, 2004) and implemented
via ode45 in Matlab. The initial values under #1 in
Table 4 and the definition of the angles in Table 1 are
chosen such that the model starts as a stable mechani-
cal system during the simulation. In addition, a small
initial roll angleγ = 0.6 is chosen to demonstrate the
coupling effects between the lateral and longitudinal
motion of the MEUR.

Table 4: Non-zero initial conditions for the simulations.

set #1 set #2
γ(0) 0.6 0.6 rad
ϕ(0) π+0.6 0 rad
τ1 0 0.1 Nm
τ2 0 0 Nm

It can be observed from the coinciding simulation
results depicted in Figure 5 that the time trajectory
(x(t),y(t)) of the center of the driving wheel starting
in point (0,0) undergoes a periodic oscillation in the
x direction due to the initial non-zero body pitch an-
gleϕ(0) = π+0.6. Interesting to see is also the small
motion in they direction of the center of the driving
wheel due to the a initial roll angleγ(0)= 0.6, causing
a small change in yaw angleψ(t). With simulation re-
sults of the body pitch angleϕ(0) = 0 and the roll an-
gleγ(0) = 0.6 depicted in Figure 6, the MEUR model
now starts in upward and unstable direction and dur-
ing the simulation we assume the MEUR can fall and
oscillate through the base plane. In addition, a con-
stant torqueτ1 = 0.1 is applied between the driving
wheel and body. In Figure 6, both models follow the
same trajectories very closely for some time but di-
verge eventually. This is due to the fact that the model
of the mechanical system is unstable at the initial con-
dition, and small numerical errors in either initial con-
ditions or numerical integration leads to exponentially
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increasing differences in the simulation.
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Figure 5: Simulation results of the trajectory of the center
of the driving wheel starting in point(0,0) using the param-
eters of set #1 in Table 4.
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Figure 6: Simulation results of the trajectory of the center
of the driving wheel starting in point(0,0) using the param-
eters of set #2 in Table 4.

5 CONCLUSIONS

This paper presents a three dimensional nonlinear dy-
namic model for a Moment Exchange Unicycle Robot
(MEUR). The model is derived using both Newto-
nian mechanics and a non-linear finite element pack-
age for multi-degree of freedom mechanisms called
SPACAR. The simulation results presented in this pa-
per cross validate the Newtonian and the SPACAR
model, as simulations of the center of the driving
wheel coincide. Differences is simulations attributed
to small errors in the in either initial conditions or nu-
merical integration can only be observed in case of an
unstable initial condition. In addition, the simulation
results demonstrate the coupling between lateral and
longitudinal motion the center of the driving wheel.
Coupling effects are small only in the case of limited
(stabilized) motions of the MEUR.
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