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Abstract—In this paper the relatively simple model for State
of Charge prediction, based on energy conservation, introduced
in [1] is improved and verified. The model as introduced in [1]
is verified for Pb-acid, Li-ion and Seasalt batteries. The model
is further improved to accommodate the rate capacity effect and
the capacity recovery effect, the improvements are verified with
lead-acid batteries. For further verification the model is applied
on a realistic situation and compared to measurements on the
behavior of a real battery in that situation. Furthermore the
results are compared to results of the well-established KiBaM
model. Predictions on the SoC over time done using the proposed
model closely follow the SoC over time calculated from measured
data.

The resulting improved model is both simple and effective,
making it specially useful as part of smart control, and energy
usage simulations.

Index Terms—Storage, Predictive model, Smart grid, Energy
management

I. INTRODUCTION

Batteries are an important part of everyday energy usage.
Examples include using a battery for black-out situations,
using a battery to store electricity generated by pv-panels
during the day and for usage during the night, and charging
an electric vehicle (EV). Simulations are used for example
to predict weak points in existing grids [2] or to explore the
possibilities of new types of grids [3]. To accurately simulate
the energy usage in a grid, accurate models are needed for
all devices connected to the grid. There are many models
available that describe the behavior of batteries [4], [5]. Some
of the models, like the Dualfoil model [6] and the kinetic
battery model (KiBaM) [7] are applicable for only one type
of battery. While other models, like the Coulomb counting
model [8] are useful for various types of batteries. Some of
these models are rather comprehensive and complicated, and
require intimate knowledge of the battery. The Dualfoil model
for instance is generally accepted as an excellent model for
Li-ion batteries, but it requires over 50 input parameters, e.g.
the thickness of the separator and the porosity of the cathode,
information that is not readily available for each battery. The
Coulomb counting model on the other hand is rather simple
and requires only few input parameters, but generally yields
a too ideal representation of battery behavior. So some of the
available models are too complex to be used in energy-grid
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simulations, while other models are simple but not accurate
enough.

A simple but effective model was originally developed for
thermal storage but can be applied for electric storage as well
[1], [9]. Using this model it is possible to predict the amount of
energy that can be discharged from a battery, or charged into
a battery at any given state of charge (SoC). This model had
some drawbacks, however, for instance the capacity recovery
effect and rate capacity effect are not covered. In this paper, an
extension of the model for battery SoC prediction, presented
in [1] is developed.

II. METHODS

A. Basic predictive battery SoC model

The model to determine the SoC of a battery during
discharging and charging, proposed in [1] is based on energy
conservation, combined with insights from experimental data.
The governing equation of the model is:

ASt = AC’t - ADt - ALt (1)

In which AS; signifies the change of stored energy, AC} the
charged energy, AD, the demand and AL, the energy loss, all
within a time interval At which is the discrete time interval
(t—1,¢).

ADy=At-Pey =At- I - Ugey 2)

In which P, ; the electric power consumption, I; the discharg-
ing current and Up., the voltage output of the battery, both
measured at the inverter. The SoC is calculated by equation 3.

Soctzsi,ogsoctgl (3)

The stored energy S; is determined by equation 4 and the
maximum charged energy by equation 5.

Sy = Si—1 + AS, “4)
Smam:C'Un:ZPc,t* - At (5)
In which C' is the battery capacity (or battery rating) in Ah,

U,, the nominal voltage and P, ;~ the charging power for time
t* which signifies a time interval during a charging cycle, for



which: 0 < ¢* < 7. The relation between the charging time
and power is displayed in figure la.

The maximum capacity S,,,, may be a function of time due
to degradation of the battery. Hence, the sum of measured
charging power may be more accurate in practice than the
rate capacity.
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Fig. 1: Measured and predicted charging and discharging
characteristics for a Pb-acid, Li-ion and Seasalt battery. The
characteristics for each battery are summarized in table I

The amount of useful energy that can be supplied by the
storage is determined by S, and a minimum SoC value
which is determined by the minimum useful and safe to use
voltage of the battery.

In [1] an average discharge current I, is introduced and
calculated with equation 6.
Z‘rdc,t D t

I = rdet 70 6)
Ao Te Tde,t * Udc,t (

However, this equation has proven to introduce errors for
discontinuous discharging processes involving various waiting
periods without discharging. Also, the accuracy of the average
discharge current concept in case of dynamic load variations
is not yet investigated. A new and better method is developed
in this paper.

The battery is usually not discharged beyond the minimum
SoC, otherwise it would be damaged. In the safe region,
experiments show that a linear relation exists between the

decrease of the SoC and the total discharged capacity (in Ah)
from the battery. This relation is displayed in figure 1b. For
the slope, equation 7 applies.

ASoC 1
== )
ACp C
The accuracy of the model described by equations 1-7 is
proven with experiments on various battery types, described

in table I, subjected to constant discharge currents.

TABLE I: Characteristics of the batteries used for verification

Name Type UN)  Icharge mA)  C (Ah)
Pb-acid  Lead acid 6.0 400 2.7
Li-ion Lithium-ion 25.2 2600 5.2
Seasalt Seasalt 1.8 300 1.3

The Seasalt battery is an experimental, stationary battery
currently in development at the battery innovation company
Dr. Ten. It is designed to be inherently safe and environmen-
tally friendly.

B. Model extension for discontinuous discharging processes

Most batteries show two well known effects during discon-

tinuous discharging:

e Rate capacity effect: This effect limits the recoverable
SoC in relation to the discharging current. The higher
the discharge current, the less SoC is recoverable from
the battery.

e Capacity recovery effect: This effect occurs when a
battery is discharged to a certain state, followed by a
certain amount of time without discharging (the waiting
period). For example, the battery can be discharged to its
minimum useful voltage, but when this is followed by a
waiting period, the voltage recovers and it is possible
to discharge the battery further. This effect is more
significant when periods of high discharge currents are
followed by a waiting period, while the rate capacity
effect becomes insignificant for relatively low discharging
currents.

These two effects are related to each other. The capacity re-
covery effect is more significant when the battery is discharged
with relatively high currents, i.e. when the rate capacity effect
is also significant. To describe both effects, there is some
analogy with a thermal storage. When a thermal storage is
discharged by an outlet at the top and inlet at the bottom,
cold water coming into the storage at the bottom mixes with
warmer water within the storage in the bottom region. This
effect is influenced by the discharge flow rate, the higher the
flow rate, the more mixing will occur.

A battery can be described similarly, see figure 2. Generally,
when a battery is charging, a reaction takes place at one of
the electrodes (electrode 1) creating a compound in which the
energy is stored (the black compound) When the battery is
fully charged the compound containing the energy is present
everywhere in the battery (figure 2a). When a battery is
then discharged the compound containing the energy has to
physically move to the other electrode (electrode 2) where
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Fig. 2: Schematic representation of the rate capacity effect in
a battery. a) The battery is fully charged. b) The battery is
discharging slowly. ¢) The battery is discharging fast. d) The
battery is fully discharged.

another chemical reaction takes place creating another com-
pound (the white compound) while releasing the energy. The
concentration of the black compound at electrode 2 represents
the voltage of the battery. So in other words if the battery is
discharged, the concentration of the black compound, and thus
the voltage drops until there is too little of the black compound
left at electrode 2 to continue discharging, then the battery is
discharged (see figure 2d).

If the battery is discharged slowly (i.e with low discharge
current) the white compound is well mixed with the black
compound. When 50% of the black compound has been used,
(see figure 2b) the concentration of the black compound at
electrode 2, and thus the voltage, is lower then when the
battery is fully charged. If the battery is discharged fast (i.e
with high discharge current) the black compound is used faster
than the mixing occurs (see figure 2c), creating a layer of
the white compound that limits access to electrode 2 for the
black compound. When 50% of the black compound has been
used in this case, the concentration of the black compound at
electrode 2, and thus the voltage, is much lower than when
the battery was discharged slowly.

Mathematically, the reduced voltage is therefore described as a
function of the discharging current, which can be any function
but it is logic to propose the simplest possible, linear relation
given in equation 8

Udc,t = Udc,t—l — Q- Idc,t—l (8)

Which relates the discharge voltage at time ¢ to the dis-
charge voltage at the previous time interval and a factor «
multiplied with the discharging current at time ¢ — 1. With
this equation it is possible to describe the rate capacity effect
because a higher discharge current, causes a faster drop of the
discharge voltage than a lower current, which is the essence of
the rate capacity effect. This equation is applied with success
on results of the experiments on the three battery types (see
table I) described in figure 1. The values of « for the three
battery types are listed in table II, the values in table II
were determined on multiple batteries of the same type, and

on multiple discharge cycles starting at the maximum SoC,
discharging with various currents, on each battery.

TABLE II: « values for the investigated battery types.

Battery o (10~% V/A)
Pb-acid 1.79 +/- 022
Li-ion  2.67 +/-0.39
Seasalt  2.53  +/- 0.51

The value of « appears to be constant for various discharge
currents in one battery, and for multiple batteries of the
same type. It is likely, however, that the value of « is
influenced by the open circuit potential, energy content, size
and geometry of a battery. In other words for each battery
to be included in simulations using the proposed model, two
or more measurements on that battery have to be done to
determine the value of «. It should also be noted that the
value of « is likely to be dependent on the degradation (or
ageing) of the battery, because the over-all performance of
the battery decreases over time [10]. However, the influence
of the battery degradation on the value of a has not been
investigated.

For the capacity recovery effect there is no analogy between
electric and thermal energy storage. Once mixed, the water
in a thermal storage does not recover back to higher
temperatures.

Figure 3 shows a schematic representation of a battery during
the process of recovery.
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Fig. 3: Schematic representation of the recovery effect in a
battery. a) The battery is fully charged. b) The battery is
discharged fast to 50% of its capacity, but the voltage has
dropped to the minimum allowable condition. ¢) The battery
is allowed to rest for a period of time, this results in a re-
distribution of the black compound. d) The battery is fully
discharged.

Figure 3a shows the battery fully charged, and figure 3b
shows the battery discharged; the concentration of the black
compound at electrode 2 is low and thus the voltage is
low. Note that the concentration of the black compound near
electrode 2 (in the grey area) is lower than the concentration
of the black compound elsewhere in the battery. If the battery
is then allowed to rest for a period of time (see figure 3c) the
black and white compound are properly mixed again, and the



concentration of black compound in the grey area and thus
the voltage is increased. Note that the over-all concentration
of the black compound in the battery has not changed during
the waiting time. Now the battery can again be discharged (see
figure 3d). At the end of the second discharge the concentration
of black compound in the grey area and thus the voltage is as
low as it was in figure 3b but the over-all concentration of the
black compound is lower. Further recovery is not possible.
In figure 4a it is shown that the recovery effect of the voltage
depends on the waiting time. Initially, a first order system
approximation for the voltage was assumed with a constant
time constant but results were unsatisfactory. When the time
constant itself is made a function of the waiting time, the
accuracy of the results increases considerably.

As remarked, the recovery effect is described as a first order
effect, equation 9.

Udc,t* = Udc,tg + (Udc,max — Udc,ta) . (1 _ er;* > (9)

In which Uy~ the increasing discharge voltage during the
waiting time ¢* from an initial voltage Uy, at the start of the
waiting time. Uge maqqe 15 the maximum voltage of the battery
at fully charged conditions. 7;~ is the first order time constant
which is a function of the waiting time.

For the time constant 7 the following linear relation is intro-
duced which proves sufficient accuracy, equation 10.

It is desired to use an alternative, linear description for the
recovery effect given in equation 9. For this, the exponential
function is linearized using the first terms of a Taylor expan-
sion, which yields an approximately equal accuracy, equation
11.

*

4
Udc,tg) . -

t*

Udc,t* = Udc,ts + (Udc,mam - (11)

III. RESULTS
A. Verification of the model for the Capacity recovery effect

To verify the method outlined in section II-B predictions
made using equations 8 and 11 were compared to the results
of discharge experiments on the Pb-acid battery. Figure 4a
shows the battery voltage as a function of time, during two
consecutive discharges of the Pb-acid battery and the waiting
time between the two consecutive discharges was varied. In
this graph points A-E are the end-points of the experiment.
For each experiment the minimal state of charge (SoC,,;,)
was determined and summarized in table III.

TABLE III: Experiment settings and measured SoC,,,;,,

Experiment Iz (A)  Uendg (V)  trest (min)  SoCppin (-)
A 5 - 0.44
B 1 5 15 0.26
C 1 5 30 0.25
D 1 5 60 0.23
E 1 5 120 0.19

Figure 4b shows the predicted SoC,,;, for the Pb-acid
battery as a function of discharge rate, validated with discharge
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(c) Voltage and SoC, predicted with equation 11 for two consecutive
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experiment D in tables III and IV).

Fig. 4: Comparison between predicted and measured voltage
and SoC using the Pb-acid battery.

experiments. The SoC,,;, for point A is predicted correctly,
but the SoC,,;, of points B-E deviate from their predicted
values. The deviation from the predicted value seems to
be directly related to the waiting time between consecutive
discharges. In figure 4c the discharge current, waiting time,
predicted discharge voltage, and predicted SoC, and SoC,,;,
are shown for experiment D. The discharge voltage is calcu-



lated with equation 8 during discharging with constant current
and with equation 11 during the waiting time period, the
appropriate values of «, § and v are included in table IV.
The SoC is calculated with equations 1, 2 and 3. Similarly
the voltage, SoC and SoC,,;, were predicted for experiments
B,C and E, the results of these predictions are summarized in
table IV.

TABLE IV: Simulation settings and results

Experiment a 5 oY SoConin SoConin
(10~4 V/A) (-) (min) | Predicted  Measured

A - - - 0.44 0.44

B 1.79 1.8 1.18 0.27 0.26

C 1.79 1.8 1.18 0.23 0.25

D 1.79 1.8 1.18 0.21 0.23

E 1.79 1.8 1.18 0.18 0.19

In each case the accuracy of the value for SoC,,;,, is
excellent. Besides that, the linear drop of discharge voltage
and exponential increase with increasing time constant
during the waiting time is realistic. The only drawback of
using equation 11 in practice, is that it is necessary, for the
determination of the relation between the time constant and
the waiting time, to measure the discharge voltage curve
of one battery for at least three different waiting times, to
determine the values of § and ~y

B. Verification in a realistic situation

To determine the applicability of the proposed model for

smart grid control applications, a realistic test was done. The
lead-acid battery as described in table I was charged and
discharged with various currents, starting from various states
of charge, mimicking conditions that could occur when using
a battery in real life. This measurement was compared to a
simulation of the behavior of a lead acid battery under the
same conditions using the proposed model.
The behavior of the battery was also simulated using the well
established kinetic battery model (KiBaM), first proposed
by Manwell and McGowan [7] and clearly explained by
Jongerden and Haverkort [5]. The KiBaM model represents
a battery as two communicating wells of charge, the bigger
of the two wells can fill the smaller one, while the smaller
well can be discharged. The rate capacity effect and the
capacity recovery effect are represented by equalization
effects between the two wells. The KiBaM model requires
the determination of three parameters, in addition to a starting
SoC and the maximum energy content (E,,,,) of the battery.
Applying the model yields directly the state of charge. The
main difference in its approach between the proposed model
and the KiBaM model is that in the proposed model the
battery voltage is calculated, and from the voltage the SoC is
determined; the KiBaM model makes no use of the battery
voltage and calculates the SoC directly. The parameters used
for the simulation of the battery behavior are listed in table
V.

TABLE V: Settings for simulations done using the proposed
model and the KiBaM model

Proposed KiBaM
a 179 107%V/A | C 15 Wh
ﬁ 1.8 - Cstart 5,9 Wh
0 1.18  min c 0.248 -
Enmaz 15 Wh kK’ 0.094 -
SOCStart 0.39 - SOCStaT-t 0.39 -
75 0.6
. 1 . 1.,
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(a) Applied current and resulting voltage of the Pb-acid battery, both
measured and calculated with the proposed model. Positive currents
represent charging steps, negative currents represent discharging steps.
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(b) Resulting SoC of the Pb-acid battery, calculated based on measure-
ments, and simulated with the proposed model and the KiBam model.

Fig. 5: Measurement data and simulation results of the usage
of Pb-acid battery in a realistic situation.

The measurement data and the results of the simulations
are presented in figure 5. In figure 5a the applied current
and resulting / calculated voltage are displayed. The predicted
voltage follows roughly the same pattern as the measured
voltage. However, the predicted voltage deviates strongly from
the measured voltage in the instances where the battery is
being discharged deeply, (i.e. discharged to voltages below
5,5V). This is caused by limitations of the proposed model,
the model was designed to predict the parts of the charging
and discharging process that are mostly linear with respect
to time, whereas the parts where the battery is being deeply
discharged are definitely not linear with respect to time. The
voltage is also not predicted correctly at instances where the
battery starts charging after a period where the battery was
not being used (i.e. at +/- 150 minutes). This occurs because



there is a difference between the open circuit potential OCP
that is measured when the battery is not used, and the charging
voltage that is being measured when the battery is charged.
The model does not (yet) account for this difference.
However the main purpose of the proposed model is not to give
an accurate prediction of the battery voltage over time, but to
give an accurate prediction of the SoC over time. The SoC over
time, calculated from the measured data, and predicted using
the proposed model and the KiBaM model is displayed in
figure 5b. In contrast to the voltage, the SoC predicted with the
proposed model follows the measured SoC closely. In the cases
where the predicted SoC deviates from the measured SoC,
the predicted SoC is lower. The deviation from the measured
SoC is under 5% over all, and about 10 % in the worst case
(around 800 minutes). The largest deviations occur at around
350 minutes, and around 800 minutes, these instances coincide
with the instances were the battery was deeply discharged, and
where the battery voltage was predicted poorly.

The SoC predicted with the KiBaM model also follows
the measured SoC closely. Over-all the deviations between
the measured SoC and the SoC predicted with the KiBaM
model are between 5% and 10%. In the instances where the
SoC predicted with the proposed model showed the largest
deviations (i.e. the low points in the graph, around 350 and
800 minutes), the deviations between the measured SoC and
the SoC predicted with the KiBaM model are noticeably
smaller. However, the largest deviations occur as the battery
reaches a higher SoC, around 250 and 650 minutes, at these
times the proposed model shows little or no deviations. A
possible explanation for these deviations is that the KiBaM
model is less suitable to predict the SoC of batteries that have
suffered degradation. To account for battery degradation in
the proposed model, one can change the E,,,, to reflect the
reduced maximum energy content of the degraded battery.

IV. CONCLUSIONS

A comprehensive model for battery SoC prediction, largely
based on earlier work [1], [9] by the authors of this paper
is verified and expanded upon. The model is designed to be
both accurate and simple enough to be used as part of smart
control, and energy usage simulations. Previously the model
was verified with data on lead-acid batteries, charged and
discharged with constant currents.

Firstly, the model is further verified with measurements on
lithium-ion batteries, as well as the experimental seasalt bat-
tery. In all experiments on these batteries, presented in figure
1, the SoC could be predicted accurately.

Secondly, the model is expanded to accommodate the rate
capacity effect and capacity recovery effect. The model is
expanded with two linear relations (equations 8 and 11) with
which the influence of these two effects on the battery SoC can
be predicted. To use these relations in the SoC prediction the
parameters «, 5 and  have to be determined from battery
discharge experiments; measurements for several discharge
currents are required to accurately determine the parameters.
The expanded model was verified using measurements on lead-

acid batteries, presented in figure 4. In all instances the SoC
of the battery could be accurately predicted using the model.
Thirdly, the model is verified in a realistic situation: a lead-acid
battery is charged and discharged with various currents, and
with varied waiting times between charge and discharge steps.
A prediction of the SoC during the same sequence of events
is also made using the proposed model. The same prediction
is also made using the well-established KiBaM model. The
measurements and predictions are displayed in figure 5. The
voltage predicted with the proposed model follows the mea-
sured voltage only roughly, however, the predicted SoC closely
follows the measured SoC, deviating less then 5% over all.
It is demonstrated that the proposed model is both accurate
and easy to use; four measurements on a particular battery are
required to predict the battery behavior accurately.

V. FUTURE WORK

Future work is dedicated to investigate application of the
expanded model for more battery types, including the experi-
mental Seasalt battery and to compare more thoroughly with
the KiBam approximation. Another problem to address is to
improve the model to take into account the difference between
OCP and charge voltage, as discussed in section III-B. Other
future work is aimed at integration of the model into the Triana
smart grid simulator [11] which is used for simulation studies
and as base for embedded smart control systems.
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