
A Verification Technique for Deterministic Parallel Programs
Extended Abstract

Marieke Huisman
University of Twente
Enschede, Netherlands
m.huisman@utwente.nl

ACM Reference Format:
Marieke Huisman. 2017. A Verification Technique for Deterministic Parallel
Programs. In Proceedings of PPDP’17, Namur, Belgium, October 9–11, 2017,
1 pages.
https://doi.org/10.1145/3131851.3131852

Software is omnipresent, and software failures can have tremendous
costs for society and economy. Therefore, we need techniques to
improve the quality of software, and to prevent software failures.
Program verification can help to improve this situation, as it allows
to check properties on all possible behaviours of a program. We
focus in particular on the verification of concurrent software, which
is even more error-prone, because of the possible interleavings
between the different threads.

Within the VerCors project, we have developed techniques to
reason about concurrent software. Initially we focused on the ver-
ification of concurrent Java programs, for which we verified cor-
rectness of concurrent data structures and various synchronisation
mechanisms. However, our verification techniques also are suitable
for other concurrent programming models, as demonstrated by ap-
plying them to verify OpenCLGPU applications. All our verification
techniques are supported in the VerCors tool set.

In this presentation, we show that our verification techniques are
also suitable to prove that correctness is preserved by a parallelizing
compiler. In this approach, the complexity of parallel programming
is handled by writing a sequential program augmented with paral-
lelization compiler directives that indicate which part of code might
be parallelized. A parallelizing compiler consumes the annotated
sequential program and automatically generates a parallel version.
This approach is often called deterministic parallel programming, as
the parallelization of a deterministic sequential program augmented
with correct compiler directives is always deterministic. Determin-
istic parallel programming is supported by different languages and
libraries such as OpenMP [3] and is often used for financial and
scientific applications.

Although it is relatively easy to write parallel programs in this
way, careless use of compiler directives can easily introduce data
races and consequently non-deterministic program behaviour. This
paper proposes a static technique to prove that parallelization as

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PPDP’17, October 9–11, 2017, Namur, Belgium
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5291-8/17/10.
https://doi.org/10.1145/3131851.3131852

indicated by the compiler directives does not introduce such non-
determinism. Moreover it also shows how our technique reduces
functional verification of the parallelized program to functional
verification of the sequential program. We develop our verification
technique over a core deterministic parallel programming language
called PPL (for Parallel Programming Language). To show practical
usability of our approach, we defie an encoding of a commonly
used subset of OpenMP into PP. The VerCors tool set is extended
to support this process.

In essence, PPL is a language for the composition of code blocks.
We identify three kinds of basic blocks: a parallel block, a vector-
ized block and a sequential block. Basic blocks are composed by
three binary block composition operators: sequential composition,
parallel composition and fusion composition where the fusion com-
position allows two parallel basic blocks to be merged into one. An
operational semantics for PPL is presented.

Our verification technique requires each basic block to be speci-
fied by an iteration contract [1] that describes which memory loca-
tions are read and written by a thread. Moreover, the program itself
should be specified by a global contract. To verify the program,
we show that the block compositions are memory safe (i.e. data
race free) by proving that for all pairs of independent iterations (i.e.
iterations that might run in parallel) all accesses to shared mem-
ory are non-conflicting, meaning that they are disjoint or they are
read accesses. If all block compositions are memory safe, then it is
sufficient to prove that the sequential composition of all the basic
blocks w.r.t. program order is memory safe and functionally correct,
to conclude that the parallelized program is functionally correct.

The main contributions of our work are the following:
• A core language, PPL, and an operational semantics which
captures the main forms of parallelization constructs in de-
terministic parallel programming.
• A verification approach for reasoning about data race free-
dom and functional correctness of PPL programs.
• A soundness proof that all verified PPL programs are indeed
data race free and functionally correct w.r.t. their contracts.
• Tool support that addresses the complete process of encoding
of OpenMP into PPL and verification of PPL programs.

More detailed information about our work can be found in [2].

REFERENCES
[1] S.C.C. Blom, S. Darabi, andM. Huisman. 2015. Verification of Loop Parallelisations.

In FASE 2015 (LNCS), Vol. 9033. Springer, 202–217.
[2] S. Darabi, S.C.C. Blom, and M. Huisman. 2017. A Verification Technique for

Deterministic Parallel Programs. In NFM 2017 (LNCS), Vol. 10227. Springer, 247–
264.

[3] OpenMP Last accessed Aug. 29, 2017. The OpenMP API Specification for Parallel
Programming. http://openmp.org/.

3


