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Bayesian item response theory models have been widely used in different research
fields. They support measuring constructs and modeling relationships between con-
structs, while accounting for complex test situations (e.g., complex sampling designs,
missing data, heterogenous population). Advantages of this flexible modeling frame-
work together with powerful simulation-based estimation techniques are discussed.
Furthermore, it is shown how the Bayes factor can be used to test relevant hypotheses
in assessment using the College Basic Academic Subjects Examination (CBASE) data.
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1. Introduction

In educational studies, psychometric methods are focused on measuring constructs (e.g.,
ability, attitudes), and developing and validating measurement instruments. The constructs,
also referred to as latent variables, cannot be observed directly. Assessment data, which
typically consist of multiple observed variables, are required to measure a latent variable.

Item response theory (IRT) models (Van der Linden and Hambleton, 1997) have been
widely used to study the relationship between observed and latent variables. This latent
variable model is particularly popular in educational and psychological measurement. The
basic IRT models can be viewed as a nonlinear mixed effects model. At the level of
observations, a nonlinear or generalized linear relationship is defined between the item
observations and the latent variable. The correlated item observations are nested in a latent
variable, while accounting for measurement error. The item observations are regressed on a
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latent variable through a link function that is usually the probit or logit function. A second
component is needed to model the distribution of the latent variable(s). The latent variable
distribution describes the population of subjects. In a common test situation, a normal
population distribution is assumed. In a frequentist modeling approach, item characteristics
are treated as fixed effects, although it is also possible to model them as random effects.

The common IRT models are most often not sufficient when dealing with data stemming
from complex assessments. The complex nature of an assessment might lead to model
violations and incorrect statistical inferences. Model adjustments are necessary to respond
to non-standard test situations. In standard IRT modeling, it is assumed that the correlations
between observed variables can be explained by a latent variable and (fixed) item effects.
However, for example, when subjects are not independently sampled from a population but
a stratified or clustered sample was taken, correlations between observations are not fully
explained. The population distribution of the subjects needs to be altered appropriately to
address the additional correlations between subjects.

Model adjustments are also necessary when researcher’s interest is beyond the mea-
surement of a latent variable. An appropriate model is needed to investigate relationships
between explanatory observed variables and the latent variable and their relationship with
the observed outcomes. The inclusion of explanatory variables in IRT modeling has re-
ceived much interest but seriously complicates the modeling framework. Various model
extensions have been proposed to account for multidimensional constructs and constructs
measured at different levels of analysis. These extensions address the measurement of mul-
tiple constructs defined at different hierarchical levels (e.g., De Boeck and Wilson, 2004;
Fox, 2010).

Model extensions have also been proposed just to improve the fit of the model, without
relying on content-driven information. In the field of statistical modeling, more advanced
models have been proposed to capture unobserved heterogeneity through mixture dis-
tributions, impose skewed population distributions, and to identify patterns of residual
correlations over time, among other things. By accounting for the unobserved heterogene-
ity using statistical techniques, the model fits the data better without having to identify the
practical nature of the extension.

Recently, Bayesian latent variable modeling has received considerable attention in
different research fields. Through a Bayesian approach, advanced latent variable models
have been applied to analyze complex item response data leading to powerful statistical
inferences. The Bayesian approach has several advantages. It allows to incorporate prior
information in the analysis, besides the data information. The prior information can come
from expert views or a previous analysis. It is also possible to include parameter restrictions,
a functional or probabilistic relationship, as prior information. Data and prior information
are used, reflecting the accumulation of evidence, to make statistical inferences. Another
advantage is that uncertainty can be quantified (i.e., expressing certain beliefs), and in-
ferences can be made through probabilistic reasoning. The Bayesian modeling approach
stimulates the use of uncertainty in parameter estimation but also in subsequent analysis
as model fit. Furthermore, the whole procedure is conceptually the same for simple and
advanced problems. Unknown quantities (e.g., missing data, latent variables, parameters)
are treated in a similar way. After specifying a prior for an unknown, posterior inferences
can be made by conditioning on all information using the posterior distribution.

The attractive features of Bayesian modeling are accompanied with powerful simula-
tion methods to estimate model parameters and to test hypothesis. Recent developments in
simulation-based estimation techniques show potential to give support to the demand for
more advanced Bayesian latent variable models. Bayesian estimation methods have several
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advantages over maximum likelihood (ML) estimation methods. First, Bayes estimates do
not rely on large sample theory and the distribution of the estimates is not necessarily
normal, where the distribution of ML estimates is assumed to be normal (large sample
theory) and the standard errors are based on a symmetric distribution. A Bayesian credible
interval is based on the posterior distribution, which is allowed to be strongly skewed. The
Bayesian exploration of model fit can also be directly based on the posterior distributions.
Second, when dealing with categorical outcomes and many latent variables, ML estimates
can be difficult or even impossible to compute, since it requires high-dimensional numeri-
cal integration. In this situation, the Bayesian computations are less cumbersome, and with
diffuse priors the ML and Bayes estimates are comparable for large sample sizes. Third,
the Bayesian estimation methods give support to investigate complex models with a huge
number of parameters, where ML methods do not provide a natural way.

This has led to many Bayesian applications of item response data analyses in different
research fields. Under the name Bayesian IRT models, referred to as BIRTs, different
applications can be given, for example, in health (He et al., 2010; Van den Berg et al.,
2007), marketing (De Jong et al., 2007), and education (Wang et al., 2013) sciences.

The main objective is to give an overview of new developments in Bayesian modeling
of item response data. Therefore, a short introduction to Bayesian item response modeling
is given. Then, a more general Bayesian modeling framework will be given, with con-
nections to different popular model extensions. Then, it is shown and illustrated that new
developments in powerful simulation techniques support the complex Bayesian modeling
approaches. Further developments in Markov chain Monte Carlo (MCMC) methods stim-
ulate joint parameter estimation, and testing complex models using Bayes factors. In this
light, the use of Bayes factor testing is illustrated and discussed using the CBASE data.
Then, a discussion is given and suggestions for further research.

2. Basic Concepts of BIRTs

Consider multivariate item response data (level 1), which are nested within subjects (level
2). An IRT model is defined at level 1. Characteristic of IRT is that subject’s observations
are assumed to be conditionally independent given the latent variable level. The level 1 com-
ponent handles the nesting of item responses within subjects. At level 2, the heterogeneity
among subjects is modeled using a population distribution.

Let yik denote the response to item k (k = 1, . . . , K) of subject i. In a unidimensional
setting, the observed variables yi = (yi1, . . . , yiK )t are related to a single latent variable,
denoted as θi . For binary response items, where a correct or incorrect response is observed,
a two-parameter IRT model is considered to link the observed item responses to the latent
variable. The two-parameter model will not account for guessing but will account for
differences in item difficulties (represented by difficulty parameter bk). Furthermore, it
accounts for slope differences of the item-specific curves (represented by discrimination
parameter ak) such that a positive (additional) contribution to the latent variable will lead
to an item-specific increase in the success probability.

For the two-parameter model, the probability of a correct response of subject i to item
k is given by

P (Yik = 1 | θi, ak, bk) = F (ak(θi − bk)) , (1)

where F (.) denotes a cumulative distribution function. The item parameters (ak, bk) are
often referred to as the discrimination and difficulty parameter. Although, they can also
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be recognized as a factor loading and intercept value, according to the terminology of
structural equation modeling. This follows from representing the measurement model in
terms of a nonlinear mixed effect model. Therefore, assume a (mixed effect) probit model
in Eq. (1) and let F−1 denote the inverse of the cumulative normal distribution function, it
follows that

F−1 [P (Yik = 1 | θi, ak, bk)] = ak(θi − bk). (2)

The right-hand side is linearly related to the transformed expected response, since E(Yik |
ak, bk, θi) = P (Yik = 1 | θi, ak, bk). When θi − bk = 0, the probability of success equals
.50. So, the intercept or difficulty parameter can be interpreted as the level that needs to
be matched to have a success of .50. The discrimination parameter ak is a slope effect and
quantifies the growth in success when increasing the construct level. In the literature, the
logistic response formulation is often used, which would lead to

logit [P (Yik = 1 | θi, ak, bk)] = ak(θi − bk), (3)

where the logit is the inverse function of the logistic distribution function. The interpretation
of the model parameters remains the same.

2.1. Population Models

At a higher level, the (population) distribution of the latent variable is described. Most often
it is assumed that subjects are sampled independently from a population using a normal
distribution. In that case,

θi = μθ + eik, (4)

where eik ∼ N
(
0, σ 2

θ

)
. The error term defines the between-subject heterogeneity and μθ

the average performance level.
Although the normal population model is often used representing simple random

sampling of subjects from a population, the subjects can also be sampled in a different
way. When, for example, subjects are sampled in a stratified way, addressing a clustering
of subjects in groups, the use of a normal distribution will give an incorrect representation.
Scores from the same group contain less information than scores from different groups,
and the scores should be differently weighted in the analysis. Otherwise stated, scores of
subjects within a group are more correlated than those from different groups. As a result,
the population distribution of subjects needs to address the characteristics of the sampling
design.

Several modeling alternatives have been proposed to describe more complex sampling
designs, where subjects are not independently sampled. The IRT model, Eq. (1), is extended
with a population distribution, which reflects the structure of the sampling design. In case
of a multistage sampling design, Fox (2010) and Fox and Glas (2001), among others,
introduced a multilevel population model to describe the within-group dependencies and
defined it as the level 2 component. This extension, defined as a multilevel IRT model, takes
the survey design explicitly into account. The heterogeneity between subjects is explained
due to differences within groups (between subjects) and differences between groups.

Related to this, consider the multiple-group IRT model, where the population consists
of a fixed number of groups and specific interest is focused on differences between those
groups. This multiple group IRT model has been generalized in several ways. Azevedo
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et al. (2012) proposed other item response functions, such as the skew probit, logit, and
the log-log, to improve the link between the response observations and the latent mean
structure. The population distribution was also generalized in several ways by allowing,
for example, finite mixture of normals to describe the heterogeneity of subjects in the
population. Another extension is based on describing the nesting of students in unobserved
groups (latent classes) to capture associations between latent groups of subjects. Vermunt
(2003) and Cho and Cohen (2010) defined complex mixture distributions to describe the
unobserved clustering of students and possibly groups of students.

2.2. Models for Random Item Parameters

Much attention has been given to describe the characteristics of the items within the test.
The item characteristics can be assumed to be independent, but it is more realistic to
assume a within-item correlation. In more complex sampling designs, it is also possible
to model item characteristic differences between groups to describe the variability in item
functioning over groups or time.

Therefore, consider multiple groups, denoted by j = 1, . . . , J , and let the probability
of a correct response of person i in group j be represented by an IRT model with a cumulative
normal link function:

P (Yijk = 1 | θij , b̃kj ) = F (θij − b̃kj ), (5)

with group-specific item parameter b̃kj . To make sure the parameters in this model are
identified, the group-specific item parameters are restricted to sum to zero within each
group (for each group j,

∑
k b̃kj = 0).

For the group-specific parameters, the prior structure can be defined in several different
ways. One way is to assume a multilevel structure for the group-specific item parameters
(De Jong et al., 2007; Fox, 2010; Fox and Verhagen, 2010; Verhagen and Fox, 2013a,
2013b). Let μb0 denote the average difficulty of all items and let uk denote the average
deviation of item k from the population mean difficulty. The group-specific item difficulty
can now be specified via a two-level structure:

b̃kj = μb0 + uk + ekj , (6)

where ekj denotes the group-specific deviation of the item difficulty of item k from the
population average for item k, μb0 + uk . For each item k, the group-specific deviations
ekj are assumed to be normally distributed with mean zero and variance σ 2

bk
. This vari-

ance component defines the variability in item functioning over groups in the population.
The random component uk is assumed to be normally distributed with mean zero and
variance σ 2

b , and this variance component defines the variability in difficulties of items in
the item bank.

Another way is to treat the groups as fixed, and to assume that the group-specific item
characteristics in the different groups are related when they refer to the same item. Items that
are more difficult in one group will probably be more difficult in the other groups as well.
Hence, a multivariate normal model is imposed on the group-specific item characteristics,
to model the variance in the random deviations of the item difficulties within groups and
the correlations between group-specific deviations of the same item (see also De Boeck,
2008; Frederickx et al., 2010). The group-specific item parameters are specified as:

b̃kj = ekj . (7)
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As the average item difficulty in each group j is restricted to zero due to the choice of
identification restrictions, ekj displays the deviation of item difficulties from the general
mean in group j.

The covariance matrix consists of the item parameter variance within each group
(σ 2

bj ) on the diagonal, and the covariance of item parameters between each pair of groups
σbj bj ′ , j �= j ′ on the off-diagonal:

ek | �b ∼ N (0,�b)

�b =

⎡
⎢⎢⎢⎢⎢⎣

σ 2
b1

σb1b2 . . . σb1bJ

σb1b2 σ 2
b2

. . .
...

...
. . .

. . . σbJ−1bJ

σb1bJ

. . . σbJ−1bJ
σ 2

bJ

⎤
⎥⎥⎥⎥⎥⎦

, (8)

where ek = (ek1, . . . , ekJ ). The variance of the item parameters over items (σ 2
bj ) can differ

over groups, indicating that there is more variation in item difficulties in one group than in
the other.

In the next section, it will be shown that parameters of both models can also be
estimated using a general sampling-based estimation method. Furthermore, inferences
from both models can be obtained in a similar way through the Bayesian machinery.

3. Simulation-based Methods for Estimation

Over the last two decades, MCMC approaches to Bayesian inference for IRT models have
become increasingly popular. Most applications use the Gibbs sampler, which is a well-
known abstract divide-and-conquer algorithm for generating a dependent sample from a
complex multivariate distribution. In each iteration, a sample is drawn from so-called full
conditional distributions: that is, distributions of one (set of) variable(s) conditionally on
all the other variable(s).

Straightforward application of the Gibbs sampler to IRT models results in intractable
full conditional distributions. To enable sampling from these distributions, one of two
procedures are often used: a data augmentation procedure or a Metropolis-type procedure.
We will briefly summarize the procedures and discuss potential developments to address
estimation problems in large-scale assessments.

3.1. Data Augmentation

In the normal ogive model, random observations, where Yik equals 1 if the response of
person i to item k is correct and Yik equals 0 otherwise, are represented by Bernoulli
random variables with probability of success πik = F (θi − bk) and F (), where represents
the standard Gaussian CDF. In a Bayesian framework, both the person and item parameters
receive a prior distribution denoted by p(θi) and p(bk), respectively. Unfortunately, the
posterior distribution of the person and item parameters is largely intractable since there are
no prior distributions that are conjugate to the standard Gaussian. The key idea of Albert
(1992) for this problem was to introduce latent responses, with Zik ∼ N (θi − bk, 1), where
Yik equals one if Zik > 0 and zero otherwise. Upon observing the latent responses, and
using normal priors for the person and item parameters, the posterior distribution of the
person and item parameters can be derived using normal linear model results. The latent
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responses are of course unknown. However, conditional on the observed item responses
they follow a truncated normal distribution and enables sampling from the joint posterior
distribution of the person and item parameters using the Gibbs sampler.

The data augmentation approach marked the introduction of MCMC to Bayesian
inference in IRT modeling. Since its inception, this approach has been extended to more
elaborate normal ogive models, such as multidimensional models where it is assumed that
the response process is governed by multiple abilities (Béguin, 2000) and multilevel models
that assume multistage cluster sampling of persons (Fox and Glas, 2001).

The logistic counterpart of the normal ogive model known as the Rasch model has
recently been addressed by Polson et al. (2013), who propose a Gibbs sampling procedure
for logistic models analog to the data augmentation procedure. The latent responses follow
a Polya-Gamma distribution, and if the prior distributions p(θ ) and p(b) are normal dis-
tributions, it follows that the posterior distributions of the person and item parameters can
again be derived using normal linear model results.

Both data augmentation procedures can be used to estimate most commonly used
Bayesian item response theory models for categorical data. The downside is that their ap-
proaches are only suited for the normal and logistic error models, and that data augmentation
approaches increase the computational burden by increasing the amount of auto-correlation
in the chain. This means that the Markov chain will converge slower and longer runs are
required before a preset number of iid draws are obtained for posterior inference in compar-
ison to procedures without data augmentation. However, the ease of implementation may
outweigh the burden of running longer chains.

3.2. Metropolis Algorithm

Another approach to sample from intractable distributions is the Metropolis algorithm. Us-
ing a Metropolis algorithm within a Gibbs sequence has been proposed by Patz and Junker
(1999), and is widely used to estimate models that could not fit in the data augmentation
framework. Note that to use the Metropolis algorithm to sample from the posterior distribu-
tion of a parameter, we need not have a conjugate prior to obtain tractability, nor do we need
augmented variables. However, efficient implementation of the Metropolis-within-Gibbs
algorithm requires the formulation of proposal densities that generate few rejected samples.
In practice, this requires model-specific fine-tuning to influence the step rate and size in the
parameter space for each parameter in the problem.

Marsman et al. (in press) describe two previously published algorithms that can be
used to sample from a single conditional distribution; a rejection algorithm mentioned by
Rubin (1984) that was applied in the European Survey of Language Competences (ESLC;
Maris, 2012) and a Metropolis-type algorithm known as the Single-Variable Exchange
(SVE) algorithm developed by Murray et al. (2006). The similarity between the algorithms
is that both are based on the observation that a sample from a conditional distribution,
say p(θ |y), can be obtained from samples from the joint distribution p(θ, y) = p(y|θ )p(θ )
using, for instance, composition sampling.

The algorithms differ in the way they select samples {θ∗, y∗} from the joint distribution
to obtain a draw from the conditional distribution of interest: the rejection algorithm requires
that there is an exact match between the observed data vector y and the generated data vector
y∗, whereas the SVE algorithm uses a Metropolis algorithm instead.

Marsman et al. (in press) show how the algorithms can be made suitable for large-
scale applications, that is, applications where samples are required from not one, but many
conditional distributions.
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4. Bayesian Model Comparison

In a Bayesian framework, model assumptions and hypotheses can be tested using model
comparison criteria. In this section, we briefly discuss how Bayes factors, posterior model
probabilities, and the Deviance Information Criterion (DIC) can be used for testing mea-
surement invariance (also known as differential item functioning), an important topic in
educational testing (Millsap, 2011; Vandenberg and Lance, 2000). These Bayesian crite-
ria are very flexible because they can be used for testing multiple nonnested hypotheses,
which cannot be done using classical p-values. To illustrate the Bayesian model compar-
ison approach, the one-parameter IRT model, which assumes equal item discriminations
(i.e., ak = aj for all k, j ), will be considered. When taking into account the variability in
item discriminations, the measurement invariance comparison procedure becomes more
complicated, which is beyond the purpose of the present application.

Measurement invariance will be investigated for K = 11 geometry items of the Col-
lege Basic Academic Subjects Examination (CBASE) for males (j = 1, N1 = 1, 034) and
females (j = 2, N2 = 4, 452) (Millsap, 2011). CBASE is an exam intended for students
enrolled in college, assessing knowledge and skills in mathematics, English, science, and
social studies. A 1-PL BIRT model was specified where the group-specific item difficulty
parameters, bkj , for item k = 1, . . . , 11, and group j = 1 or 2, are treated as fixed (e.g., De
Boeck, 2008; Frederickx et al., 2010; Verhagen, 2012). An item k is measurement invariant
when a male or female with the same latent trait θ has the same probability of a certain
response (Mellenbergh, 1989; Millsap and Everson, 1993), that is, bk1 = bk2.

First, we consider the following multiple hypothesis test M1k : bk1 = bk2 versus M2k :
bk1 < bk2 versus M3k : bk1 > bk2 (i.e., “item k is measurement invariant” versus “item k
is easier for males” versus “item k is easier for females,” respectively), which will be
tested for all k = 1, . . . , 11 items. Bayes factors between the constrained models M1k ,
M2k , and M3k can be computed relatively easily using the encompassing prior approach
(Klugkist et al., 2005). To apply this methodology, a proper “encompassing prior” must
be specified under an encompassing model, say, Me : (bk1, bk2)′ ∈ R

2, where Mtk ⊂ Me,
for t = 1, 2, 3 and k = 1, . . . , 11. Two different encompassing priors will be considered to
check prior sensitivity. First, a bivariate Student’s t prior will be considered for bk , with
mean vector 0, scale matrix I2, and degrees of freedom 1, that is, p(bk|Me) = t(0, I2, 1), for
k = 1, . . . , K . Second, a bivariate normal prior will be considered for bk with zero means
and fixed identity covariance matrix I2. Note that both priors seem reasonable because item
difficulty parameters will be 0 “on average” and standard deviations from zero not larger
than 1 because the latent traits are assumed to be standard normally distributed.

Subsequently, the priors under the constrained models Mtk are proportional to the
encompassing prior in their constrained spaces, that is, p(bk|M1k) ∝ p(bk = bk1|Me),
p(bk|M2k) = 2p(bk|Me)I{bk1<bk2}, and p(bk|M3k) = 2p(bk|Me)I{bk1>bk2}, where I () is the
indicator function (Mulder, 2014). When denoting δk = bk2 − bk1 to be the difference
between the item difficulty in the groups, the Bayes factor between each constrained model
against the encompassing model can then be expressed as

B(M1k,Me) = p(δk = 0|y)

p(δk = 0)
, (9)

B(M2k,Me) = Pr(δk > 0|y)

Pr(δk > 0)
, (10)
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B(M3k,Me) = Pr(δk < 0|y)

Pr(δk < 0)
, (11)

using the prior and posterior functions under the encompassing model Me. Note that
B(M1k,Me) corresponds to the Savage-Dickey density ratio (Dickey, 1971; Wetzels et al.,
2010). Further note that p(δk = 0|Me) have analytic expressions that can be derived from
the Student’s t and bivariate normal encompassing priors. The posterior density of δk at
0 can be estimated using a numerical estimate of the posterior density based on the S
posterior draws of δ

(s)
k = b

(s)
k2 −b

(s)
k1 (e.g., using the function “logspline” in R). Furthermore,

Pr(δk < 0|Me) = Pr(δk > 0|Me) = .5 and the corresponding posterior probabilities can
be estimated as the proportion of posterior draws satisfying the constraints. Subsequently,
Bayes factors can be computed between the constrained models using the transitive relation
of the Bayes factor, for example, B(M1k,M2k) = B(M1k,Me)/B(M2k,Me). For example,
if B(M1k,M2k) = 100, this would imply that M1k receives 100 times more support from
the data than M2k , which can be qualified as “strong” evidence for M1k (Kass and Raftery,
1995).

For this multiple hypothesis test, it is easier to interpret posterior model probabilities
(PMPs) instead of Bayes factors, because PMPs sum up to one. Equal prior model proba-
bilities are chosen, which implies that all models are assumed to be equally likely a priori,
that is, P (M1k) = P (M2k) = P (M3k) = 1

3 . Posterior model odds can then be obtained by
updating the prior model odds (which are equal to 1) with the observed Bayes factors
according to

P (M2k|y)

P (M1k|y)
= B(M2k,M1k) × P (M2k)

P (M1k)
= B(M2k,M1k). (12)

Subsequently, for our three constrained models, the PMPs can be computed from the Bayes
factors according to P (Mtk|y) = B(Mtk,M1k )

1+B(M2k ,M1k )+B(M3k ,M1k ) , for t = 1, 2, or 3.
The posterior model probabilities computed from the CBASE data using the two

different prior choices for bk can be found in Table 1. As can be seen the results are not very
sensitive to the choice of the prior, and therefore we shall focus on the Student’s t prior.
Hence, there is positive evidence that items 2, 3, 4, and 9 are non-invariant (P (M1k|y) >

0.75, for k = 2, 3, 4, and 9); there is positive and very strong evidence that items 1 and
7, respectively, are easier for males (P (M12|y) = 0.775 and P (M27|y) = 0.991); and also
strong evidence that item 6 is easier for females (P (M36|y) = 0.976). Finally, there is no
clear evidence for or against invariance for items 5, 8, 10, 11 (i.e., all PMPs for these items
are smaller than .75).

Another Bayesian criterion that can be used for Bayesian model comparison is the
DIC. Unlike the Bayes factor, the DIC cannot be computed for different models based on
the output of the encompassing model. Instead, each model must be separately fit to the
data. Furthermore, the DIC is not recommendable for evaluating models with inequality
constraints (Mulder et al., 2009). The DIC was computed for two models: M0 : bk1 = bk2 ∈
R

1, for all k = 1, . . . , K (all items are measurement invariant) and M1 : (bk1, bk2)′ ∈ R
2,

for all k = 1, . . . , K (none of the items are invariant). The DICs can be computed relatively
easy from the MCMC output. The DIC of a model Mt is defined as

DIC(Mt ) = D(ξ t ) + dt , (13)

where ξ t contains all free parameters under model Mt , D(ξ t ) is a goodness-of-fit statistic,
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Table 1
Posterior model probabilities (PMPs) of three models based on an encompassing prior for
bk with a bivariate Student’s t distribution and a bivariate normal distribution, for items
k = 1, . . . , 11, obtained from the CBASE data using equal prior model probabilities. The

largest PMP is typed in boldface

Student t prior Normal prior

Item k P (M1k|y) P (M2k|y) P (M3k|y) P (M1k|y) P (M2k|y) P (M3k|y)

1 0.223 0.775 0.002 0.142 0.856 0.002
2 0.802 0.016 0.182 0.743 0.019 0.239
3 0.839 0.021 0.140 0.781 0.026 0.193
4 0.905 0.024 0.071 0.879 0.0340 0.087
5 0.718 0.016 0.266 0.651 0.020 0.329
6 0.024 0.000 0.976 0.029 0.000 0.971
7 0.001 0.999 0.000 0.009 0.991 0.000
8 0.521 0.468 0.010 0.438 0.552 0.010
9 0.869 0.032 0.099 0.857 0.032 0.111
10 0.531 0.009 0.459 0.451 0.012 0.538
11 0.346 0.648 0.006 0.284 0.712 0.004

D(ξ t ) = Ep(ξ t |y,Mt ){−2 log p(y|ξ t ,Mt )}, and dk = D(ξ t ) + 2 log p(y|ξ̂ t ,Mt )} denotes the
effective number of free parameters in Mt , where ξ̂ t is the posterior mean of ξ̂ . The
expectation in the above expressions can be estimated using a Monte Carlo estimate:
D(ξ t ) ≈ − 2

S

∑S
s=1 log p(y|ξ (s)

t ,Mt ). The second part of dk can be obtained by estimating

ξ̂ as the arithmetic mean of the posterior draws ξ
(s)
t , and plug this into log p(y|ξ̂ t ,Mt ).

Because D(ξ t ) and dt are computed from posterior draws of ξ , the DIC is not very sensitive
to the prior when using relatively vague priors for ξ . This can be seen as an advantage of
the DIC.

The DIC was computed using the WinBUGS program (Lunn et al., 2000). The DIC was
computed for the two priors that were also used for computing Bayes factors. The Student’s
t prior yielded DIC(M1) = 63528.4 and DIC(M0) = 63571.1 and the normal prior yielded
DIC(M1) = 63530.8 and DIC(M0) = 63560.5. The DICs for both priors favor M1 over
M0, hence the model in which none of the items are invariant is preferred by this criterion.

5. Final Remarks

A general class of BIRT models is discussed, which represents flexible latent variable
models to analyze item response data. Following a Bayesian approach, several modeling
advantages can be given. Prior information can be easily included in the analysis, and
more accurate inferences can be obtained for small sample sizes. The procedure of mak-
ing posterior inferences can also be applied to latent variables, missing data, and other
unknown quantities. Furthermore, the Bayesian approach comes with powerful simulation-
based methods for estimation. It is shown that the two well-known sampling techniques
(data-augmentation, Metropolis-type algorithms) can be used to estimate normal ogive and
logistic IRT models, which cover a general class of IRT models.
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The illustration concerning measurement invariance of CBASE geometry items shows
how to test hypothesis using the DIC and Bayes factor. The Bayesian procedure for testing
hypothesis can deal with multiple hypothesis, where MCMC can be used to compute
posterior model probabilities, Bayes factors, and DICs.

These different aspects of the Bayesian approach can be very useful for different
applications in educational assessment. Depending on the complexity of the assessment,
the Bayesian approach is attractive and is shown to be widely applicable. Matteucci et al.
(2012) discussed a Bayesian approach to computerized adaptive testing (CAT), where
informative priors were used to improve the parameter estimates and the efficiency of the
CAT. Fox et al. (2014) developed a Bayesian multivariate measurement modeling approach
to measure student performance and feedback-seeking behavior. Beside student responses
to an information literacy test, information was retrieved from students using an information
retrieval system, which was developed to provide students easily relevant feedback.
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