
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/220708384

Matrix	Based	Problem	Detection	in	the
Application	of	Software	Process	Patterns.

Conference	Paper	·	January	2007

Source:	DBLP

CITATIONS

2

READS

23

2	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

The	Governance	of	Cloud-Based	Collaboration	View	project

Ph.D.	publications	View	project

Chintan	Amrit

University	of	Twente

67	PUBLICATIONS			303	CITATIONS			

SEE	PROFILE

Jos	van	Hillegersberg

University	of	Twente

159	PUBLICATIONS			2,170	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Chintan	Amrit	on	06	June	2014.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/220708384_Matrix_Based_Problem_Detection_in_the_Application_of_Software_Process_Patterns?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220708384_Matrix_Based_Problem_Detection_in_the_Application_of_Software_Process_Patterns?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-Governance-of-Cloud-Based-Collaboration?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/PhD-publications-2?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chintan_Amrit?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chintan_Amrit?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Twente?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chintan_Amrit?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jos_Hillegersberg?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jos_Hillegersberg?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Twente?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jos_Hillegersberg?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chintan_Amrit?enrichId=rgreq-ecd022d0306ecf2bf6ba15b346fd18ca-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcwODM4NDtBUzoxMDQ5NjQ4OTAzMDA0MTZAMTQwMjAzNjk4ODEwOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Detection of Problems in the Application of
Software Process Patterns

Chintan Amrit & Jos van Hillegersberg

Department of IS & CM, BBT,
University of Twente, P.O. Box 217,7500 AE Enschede

{c.amrit, J.vanHillegersberg}@utwente.nl

Abstract. Software development is rarely an individual effort and gen-
erally involves teams of developers. In distributed and collocated teams
we often find problems in the organizational process structures. Though
process patterns have been around for many years, there has been little
research in the area of quantifying the problem structures in order to ef-
fectively apply the patterns. We propose a methodology using adjacency
boolean matrices which identifies problems in the software development
process.

1 Introduction

Software Development projects often prove to be both a costly and risky en-
deavor. Poor software project execution continues to result, in the best cases,
in missed deadlines, and in the worst cases, in escalations in commitment of
additional resources as a cure-all for runaway projects [1].

When we treat the root causes of problems we not only eliminate the symp-
toms, but we also are in a much better position to develop and maintain quality
software in a repeatable predictable fashion. To enable this, the industry has
what are called software best practices. These best practices are commercially
proven approaches to strike at the root of the software development problems
[2]. Some examples of best practices are:

– Develop software iteratively.
– Manage requirements.
– Use component-based architectures.
– Visually model software.
– Verify software quality.
– Control changes to software.

Most of the time, during software development it is observed that only the knowl-
edge of the best practices is not enough to guarantee successful completion of
software projects. The problem with the usage of best practices as generic solu-
tions is that they are not precisely quantified and are not solutions to specific
problems one encounters during software development. Experienced software de-
signers and developers try to reuse solutions which have worked in the past rather



2

than solve every problem from first principles. This methodology has led to the
use of software patterns, which are proven solutions to recurrent software devel-
opment problems. These patterns are mostly applied at the design stage of the
product and not in the actual implementation part of the software development.
Further, there has been no work done in quantifying the problematic areas which
the patterns address. In this paper we focus on patterns related to software de-
velopment in distributed or collocated teams and demonstrate a methodology
to suggest the problem areas in the organizational process structure. This, we
think would make it easier to implement these process patterns.

1.1 Patterns

While there are many ways to describe a patterns, Christopher Alexander who
originated the notion of patterns in the field of building architecture described
patterns as a recurring solution to a common problem in a given context and
system of forces [3]. In Software Engineering patterns are attempts to describe
successful solutions to common software problems [4]. Software Patterns reflect
common conceptual structures of these solutions and can be used repeatedly
when analyzing, designing and producing applications in a particular context.
Patterns represent the knowledge and experience that underlie many redesign
and re-engineering efforts of developers who have struggled to achieve greater
reuse and flexibility of their software. The different types of patterns are:

– Design Patterns: Are simple and elegant solutions to specific problems in
object oriented design [5].

– Analysis Patterns: Capture conceptual models in an application domain in
order to allow reuse across applications [6].

– Organizational Patterns: Describe the structure and practices of human or-
ganizations [7].

– Process Patterns:Describe the Software Design Process.

The basic format of a pattern was devised by the ”Gang of Four” [5], this
consists of

1. Pattern Name: Is a handle we can use to describe a design problem, its
solutions and consequences in a word or two.

2. Problem: Describes when and under which context one should apply the
pattern.

3. Solution: Describes the elements that make up the design, their relationships,
responsibilities and collaborations.

4. Consequences: Are the results and trade offs of applying the pattern.

Patterns are most generally represented in natural language and are typically
published in printed catalogues. Pattern presentation is generally loosely struc-
tured and consists of a series of fields each having a meaning introduced via
an informal definition or description. An example of such a structure is what is
proposed in [5]. A fragment of this is illustrated in the Table 1.



3

Field Explanation/Definition

Name Ideally a meaningful name that will be part of the shared design vocabulary. Many
existing patterns do not satisfy this requirement for historical reasons.

Also known as Other names of pattern.
Intent a short specification or rationale of the pattern, used as a principal index for goal

oriented pattern search
Applicability An outline of the circumstances in which the pattern may be applicable and, perhaps

more importantly, when it should not be applied.
Structure A diagrammatic representation of the pattern
Consequences Discusses the context resulting from applying the pattern. In particular, trade-offs

should be mentioned
Implementation Advices on how to implement the patterns, and other language specific issues. The

implementation will depend on the abstractions (objects, parameterized types,. . . )
supported by the target language.

Known uses Patterns are by essence derived from existing systems. It is therefore important that
they be justified by their use in several real systems.

Related patterns Patterns are often coupled or composed with other patterns, leading to the concept
of pattern language; e.g. a visitor may be used to apply an operation to the closed
structure provided by a composite.

Table 1. Fragment of a canonical form of pattern representation.

Identifying the problem areas related to process patterns [8,7] can prove diffi-
cult for large distributed or collocated teams working on large software projects.
The way to solve this problem is to automate the process of detecting problems
related to process patterns. One needs a proper formalism of problem scenar-
ios in order to automate the process of problem detection and then leave it the
manager’s discretion, whether the particular pattern has to be applied. However,
there has been little research done in the area of formalisms of such problem sce-
narios.
In this position paper we focus on the two patterns related to software devel-
opment in distributed or collocated teams and demonstrate a technique that
suggests the problem areas in the organizational process structure. This, we
think would make it easier to implement these process patterns.
The rest of the paper is organized as follows, Section 2 describes the construc-
tion process of the process dependency matrices. Section 3 describes the matrix
formulation with the developing in pairs pattern. Section 4 describes the matrix
formulation with the Conway’s law pattern. Concluding remarks are given in
Section 5.

2 Construction of the Process Dependency Matrices

Dependency matrices have been used in Engineering literature to represent the
dependency between people and tasks. Li et al. [9] use dependency matrices to
analyze dependencies between components in a CBS. Here we create what we



4

call process dependency matrices in order to represent the connections between
software modules, software developers as well as the modules each developer is
working on. In the notation used here A[i, j] represents a matrix, while aij rep-
resents the (i, j)th element of the matrix. From the CVS (Concurrent Versioning
System) we can obtain two kinds of adjacency matrices. One is the m ∗m adja-
cency matrix SM [i, j] representing the software dependency graph [10](assuming
there are m modules) and the other an m ∗ n adjacency matrix SMA[i, j] rep-
resenting the allocation of modules to the developers(assuming there are n de-
velopers working on the m modules). The software dependency matrix would
represent:

– Function call dependency
– Inheritance dependency
– Aggregation dependency

The software dependency matrix would appear as:

SM [i, j] =


sm11 sm12 · · · sm1m

sm21 sm22 · · · sm2m

...
...

...
...

smm1 smm1 · · · smmm


Which can be concisely represented as:

(smij) =

{
1 if ci → cj ;
0 otherwise

Where ci, cj are software modules, whereas each smij represents the relation
between the modules as described above. Similarly, the n ∗m Software Module
Allocation adjacency matrix would appear as:

SMA[i, j] =


sma11 sma12 · · · sma1m
sma21 sma22 · · · sma2m

...
...

...
...

sman1 sman1 · · · smanm


Where the rows represent the software developers working on modules which are
represented along the columns. This matrix can be concisely represented as:

(smaij) =

{
1 if sdi → cj ;
0 otherwise

Where each sdi represents a software developer, while each cj represents a soft-
ware module. Hence, we see that each smaij represents the relation between
them , which is in this case whether the particular developer sdi is developing
the module cj in question. The symmetric n ∗ n matrix SND[i, j] representing



5

the work related communication network of the developers can be represented
as:

(sndij) =

{
1 if sdi → sdj ;
0 otherwise

That is each element sndij of the matrix SND[i, j]has a value of 1 if the ith

person is talking to the jth person, where each row of the SND[i, j] matrix
corresponds to the same developers as the rows of the SMA[i, j] matrix. We
now utilize these matrices in order to describe the problem scenarios of two
process patterns.

3 Developing in Pairs, Pattern

This pattern deals with pairing compatible programmers together so that they
can produce more together than they can working individually [8]. Also there
has been research claiming that pair programming produces better products in
less time [11].Further, its better for the software product when all its modules
has two developers working on it, as, when one of them leaves the company the
other has an idea of what is to be done.
In our matrix based technique, we create a n ∗ t matrix (PP [i, j]) which has all
the software modules in the matrix (SMA[i, j]) developed by at the most one
programmer. Hence, if t = 0 then it means all the software modules are developed
by two or more programmers. The matrix (PP [i, j]) gives an indication of the
possible problematic software modules; those with only one programmer working
on it as well as those with no one currently responsible. We can express the
(PP [i, j]) matrix as follows:

(ppij) =

(
smaij iff

n∑
k=1

smakj < 2, ∀0 ≤ j ≤ m

)

The algorithm used to create (PP [i, j]) is:

function Cal_PairPattern(bool[1..n,1..m] SMA) {

var bool[1..m] PPColumn

var int moduleSum = 0

var int columnCount = 0

var int columnC = 0

//Finding the columns that add up to less than 2

for j = 1 to m

{

moduleSum = 0

for k = 1 to n

moduleSum = moduleSum + SMA[k,j]

if(moduleSum < 2)



6

{

PPColumn[j] = 1

columnCount = columnCount + 1

}

else

PPColumn[j] = 0

}

create var bool [1..n, 1..columnCount] PP

//Assigning values to the PP matrix

for j = 1 to m

if(PPColumn[j] > 0)

{

columnC = columnC + 1

for i = 1 to n

PP[i, columnC] = SMA[i,j]

}

// Display matrix PP

Display(PP)

print columnCount

return

}

4 Conway’s Law Pattern

”Organizations which design systems (...) are constrained to produce designs
which are copies of the communication structures of these organizations” [12]
This pattern states that the structure of the system mirrors the structure of
the organization that designed it. The shaping forces behind this law are that,
architecture shapes the communication paths in an organization and that for-
mal organization structure shapes architecture [8,13]. Another way of looking at
Conway’s law is saying that dependencies between software modules cause de-
pendencies between the developers developing them. The dependencies between
the code modules maybe inheritance, aggregation or simple function calls from
one module to another. These dependencies create further dependencies among
the programmers who work on the particular modules [12].

We use adjacency matrices to suggest a dependency metric which can be used
to measure dependencies in allocations of software modules.

4.1 Dependency Matrix Construction

For the sake of this research we consider two kinds of dependencies in the devel-
opment of software:



7

1. Developers working on the same modules.
2. Developers working on modules which are mutually dependent themselves.

We propose an algorithm for the construction of a n ∗ n adjacency matrix
representing the dependency between Software Developers based on the follow-
ing:

(sddij) =

1 if smaik ∧ smajk = 1, ∀ 0 ≤ k ≤ m ;
1 if smaik ∧ smajl ∧ smkl = 1, ∀ 0 ≤ k ≤ m, 0 ≤ l ≤ m;
0 otherwise

In the above construction of the software developer dependency matrix, the
value of 1 is assigned whenever there are more than one developer working on
the same software module. Also a 1 is assigned whenever developers work on
modules which share a dependency.

The logical difference between the software developer dependency matrix
(SDD[i, j]) and the matrix representing the work related communication net-
work of the software developers (SND[i, j]) would give us a n∗n matrix (DDM [i, j])which
represents the unresolved dependencies in the existing communication network
of developers. This can be represented as:

(ddmij) =
(
sddij ∧ sndij

)
The summation of the logical difference between the software developer de-

pendency matrix (SDD[i, j]) and the matrix representing the work related social
network of the software developers (SND[i, j]) would give us a metric which sug-
gests the requirement of greater communication among the software developers.
As we are only considering undirected networks the matrices (SDD[i, j]) and
(SND[i, j]) are symmetrical. So, the summation should be divided by 2 to get
the actual number of non-existent dependencies. This can be described as a
dependency metric as follows:

depdendency metric = 1/2

n∑
i=1,j=1

(sddij ∧ sndij)

Using these two matrices we construct the dependency matrix of the devel-
opers using the following algorithm:

function Cal_DependencyMetric(bool[1..n,1..m] SMA,

bool[1..m,1..m]SM)

{

var bool[1..n,1..n] SDD

var bool[1..n,1..n] DDM

var int dependency_metric = 0

//Dependencies based on people working on the same code module



8

for i = 1 to n-1

for j = i+1 to n //We are not interested in self dependencies

for k = 1 to m

SDD[i,j] = SMA[i,k] AND SMA[j,k]

//Dependencies based on people working on dependent code

// modules

for i = 1 to n-1

for j = i+1 to n

for k = 1 to m

for l = 1 to m

if(!SDD[i,j]) //We don’t want to lose existing dependencies

SDD[i,j] = SMA[i,k] AND SMA[j,l] AND SM[k,l]

//Calculating Dependency Metric

for i = 1 to n

for j = 1 to n

{

dependency_metric = dependency_metric + 1/2 ( SDD[i,j] AND (NOT(SND[i,j])) )

DDM[i,j] = SDD[i,j] AND (NOT(SND[i,j]))

}

//Display the matrix DDM

Display(DDM)

print dependency_metric

return

}

To calculate the transitive dependencies we can use Warshall’s algorithm
[14] (Appendix A) for transitive closure of the matrix (sddi,j). This dependency
metric varies with time, as do all the matrices represented. We could also plot
this metric and its changes with time to get a better idea of how the project
evolves.

5 Gatekeeper Pattern

5.1 Gatekeeper Pattern for co-located team

The Gatekeeper pattern (Pattern No. 23 [8]) basically says that one needs to
balance communication with typically introverted engineering types. The reason
being that isolationism doesn’t work and information flow is important, but the
problem is communication overhead goes up linearly with the number of exter-
nal collaborators, hence what the team manager should strive for is moderate
communication between all the employees [15]. Here, we identify the problem ar-
eas as the non -communicating introverted engineers. In order to identify what
are known as isolates in social networks we have lots of clustering techniques
available in social network literature.



9

5.2 Gatekeeper Pattern for a globally distributed team

The gatekeeper pattern for a distributed team is in slightly

6 Conclusion

In this position paper we have tried to demonstrate a technique for quantifying
problems related to software processes in organizations. Once these problems
have been identified, we can leave it to the discretion of the responsible man-
ager to apply the particular process pattern related to the problem in hand. We
have demonstrated this technique with two particular problems related to as-
signment of software modules to developers. The first problem is related to pair
programming, where there might be no developer or just one developer involved
in developing what might be an important software module. If this particular
developer leaves the company then there could be delays and unwanted associ-
ated costs.
The second pattern deals with dependencies in software modules which create an
intrinsic dependency between programmers working on it. Though past research
in CSCW has focussed on these dependencies [16], they haven’t described any
technique to effectively identify the problem that they are trying to solve. We
have described a technique to identify these dependencies, as well as a metric
to calculate to measure the extent of the problem, before trying to resolve the
dependencies. We are currently working on a tool which implements these algo-
rithms described. Future work could involve quantifying other process patterns
and making them more easily applicable.

References

1. Kraut, R.E., Streeter, L.A.: Coordination in software development. Commun.
ACM 38(3) (1995) 69–81

2. Kruchten, P.: The Rational Unified Process, An Introduction. Addison Wesley,
Massachusetts (1998)

3. Alexander, C., Ishikawa, S., Silverstein: A Pattern Language. Oxford University
Press, New York (1977)

4. Schmidt, D., Fayad, M., Johnson, R.: Software patterns. Communication of the
ACM 39 (1996) 37–39

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patters Elements of
Resuable Object Oriented Software. Addison Wesley, MA (1995)

6. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison Wesley, Reading
MA (1997)

7. Coplien, J.O., Harrison, N.B.: Organizational Patterns of Agile Software Develop-
ment. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (2004)

8. Coplien, J.O., Schmidt, D.C., eds.: Pattern languages of program design. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA (1995)

9. Li, B., Zhou, Y., Wang, Y., Mo, J.: Matrix-based component dependence represen-
tation and its applications in software quality assurance. SIGPLAN Not. 40(11)
(2005) 29–36



10

10. Myers, C.R.: Software systems as complex networks: Structure, function, and evolv-
ability of software collaboration graphs. Physical Review E (Statistical, Nonlinear,
and Soft Matter Physics) 68(4) (2003) 046116

11. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case
for pair programming. IEEE Softw. 17(4) (2000) 19–25

12. Conway, M.: How do committees invent. Datamation 14 (1968) 28–31
13. Herbsleb, J.D., Grinter, R.E.: Splitting the organization and integrating the code:

Conway’s law revisited. In: ICSE ’99: Proceedings of the 21st international con-
ference on Software engineering, Los Alamitos, CA, USA, IEEE Computer Society
Press (1999) 85–95

14. Warshall, S.: A theorem on boolean matrices. J. ACM 9(1) (1962) 11–12
15. Carroll, T., Burton, R.M.: Organizations and complexity: Searching for the edge

of chaos. Comput. Math. Organ. Theory 6(4) (2000) 319–337
16. Souza, C.R.B.D., Redmiles, D., Cheng, L.T., Millen, D., Patterson, J.: Sometimes

you need to see through walls: a field study of application programming interfaces.
In: CSCW ’04: Proceedings of the 2004 ACM conference on Computer supported
cooperative work, New York, NY, USA, ACM Press (2004) 63–71

APPENDIX

A Warshall’s Algorithm

Warshall’s Algorithm of transitive closure. Given directed graph G = (V,E),
represented by an adjacency matrix A[i, j], where A[i, j] = 1 if (i, j) is in E,
compute the matrix P, where P [i, j] is 1 if there is a length greater than or equal
to 1 from i to j.

Warshall(int N, bool[1..n,1..n] A, bool[1..n,1..n] P) {

int i,j,k;

for(i=0; i<N;i++)

for(j=0; j<N; j++)

P[i,j]=A[i,j]

for(k=0; k<N; k++)

for(i=0;i<N; i++)

for(j=0; j<N; j++)

if(!P[i,j]) P[i,j]=P[i,k]&&P[k,j];

}

View publication statsView publication stats

https://www.researchgate.net/publication/220708384

	Detection of Problems in the Application of Software Process Patterns
	Chintan Amrit & Jos van Hillegersberg
	Introduction
	Patterns

	Construction of the Process Dependency Matrices
	Developing in Pairs, Pattern
	Conway's Law Pattern
	Dependency Matrix Construction

	Gatekeeper Pattern
	Gatekeeper Pattern for co-located team
	Gatekeeper Pattern for a globally distributed team

	Conclusion
	Warshall's Algorithm



